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1 Introduction

In this paper we study an ergodic quadratic control problem for a linear
affine equation with control dependent noise, namely we characterize
the ergodic limit where the coefficients of the state equation, which we
take random, are assumed to be stationary. We continue our previous
work [4], where the infinite horizon case and the ergodic case are stud-
ied, but no characterization of the egodic limit was given: in order to
do this we assume the coefficients to be stationary in a suitable sense,
see [11] and section 2 below.

Backward Stochastic Riccati Equations (BSREs) are naturally linked
with stochastic optimal control problems with stochastic coefficients.
The first existence and uniqueness result for such a kind of equations
has been given by Bismut in [2], but then several works, see e. g. [3],
[6], [7], [8], [9] followed. Only very recently Tang in [10] solved the
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general non singular case corresponding to the linear quadratic problem
with random coefficients and control dependent noise, and then in [4],
the infinite horizon case and the ergodic case are studied. Namely, we
consider a cost functional depending only on the asymptotic behaviour
of the state (ergodic control). To do it we first consider the stationary
problem, and we are able to prove that there exists an optimal pair
(u\, X\), such that

(u\, X\) ∈ U \ =
{
(u, X) ∈ L2

P(Ω× [0, 1])× C([0, 1], L2
P(Ω)) : Xs = X0 ◦ θs,∀s ∈ R

}

where θ is the shift operator and X\ is the solution of equation

dX\
t = AtX

\
tdt + Btu

\
tdt +

d∑
i=1

Ci
tX

\
tdW i

t +
d∑

i=1
Di

tu
\
tdW i

t + ftdt, (1.1)

It turns out that the optimal cost is given by

J
\
= J \(u\, X\) = 2E

∫ 1

0
〈r\

s, fs〉ds−E
∫ 1

0
|(I+

d∑
i=1

(
Di

t

)∗
P tD

i
t)
−1(B∗

t r
\
t+

d∑
i=1

(
Di

t

)∗
g\,i

t )|2ds.

(1.2)
and the following feedback law holds true:

u\
t =−

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

−1PtBt +
d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
QtD

i
t

)∗

X\
t+B∗

t r
\
t+

d∑
i=1

(Di
t)
∗g\,i

t .

The main technical point of this paper is to prove that the closed loop
equation for the stationary control problem,

dXs = HsXsds+
d∑

i=1
Ki

sXsdW i
s+Bs(B

∗
sr

\
s+

d∑
i=1

Di
sg

\,i
s )ds+fsds+

d∑
i=1

Di
s(B

∗
sr

\
s+

d∑
i=1

Di
sg

\,i
s )dW i

s ,

(1.3)
admits a unique stationary solution, see proposition 2.10.

In order to study the ergodic control problem, we first consider the
discounted cost functional

Jα(0, x, u) = E
∫ +∞

0
e−2αs[

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds, (1.4)
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where X is solution to equation
dXs = (AsXs + Bsus)ds +

d∑
i=1

(
Ci

sXs + Di
sus

)
dW i

s + fsds s ≥ 0

X0 = x.

(1.5)
A, B, C and D are bounded random and stationary processes and
f ∈ L∞

P (Ω× [0, +∞), Rn). It is proved in [4] that

limα→0αJ
α
(x) = limα→0αE

∫ +∞

0
2〈rα

s , fα
s 〉ds

− limα→0αE
∫ +∞

0
|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

sr
α
s +

d∑
i=1

(
Di

s

)∗
gα,i

s )|2ds.

Starting from this point, we can prove that in the stationary case this
optimal cost is given by (1.2), namely

limα→02αJ
α
(x) = J

\

The final step is is to minimize the following functional

Ĵ(x, u) = limα→02αJ(x, u)

over all u ∈ Û , where

Û =
{
u ∈ L2

loc : E
∫ +∞

0
e−2αs[

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds < +∞, ∀α > 0.

}

We prove that

inf
u∈Û

Ĵ(x, u) = J \(u).

and this concludes the characterization of the ergodic optimal cost.

2 Linear Quadratic optimal control in the stationary case

Let (Ω,F ,Ft, P) be a probability space endowed with a filtration (Ft)t≥0.
Assume that W : (−∞, +∞) → R is a d-dimensional brownian motion
defined on the whole real axis. For all s, t ∈ R with t ≥ s we denote by
Gs

t the σ-field generated by {Wτ −Ws, s ≤ τ ≤ t}. Notice that for all
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s ∈ R, {Gs
t }t≥s is a filtration in (Ω,F). Finally we assume that for all

s < 0, Gs
0 ⊆ F0.

Next we set a stationary framework: we introduce the semigroup (θt)t∈R
of measurable mappings θt : (Ω, E) → (Ω, E) verifying

(1) θ0 = Id, θt ◦ θs = θt+s, for all t, s ∈ R
(2) θt is measurable: (Ω,Ft) → (Ω,F0) and {{θt ∈ A} : A ∈ F0} = Ft

(3) P{θt ∈ A} = P(A) for all A ∈ F0

(4) Wt ◦ θs = Wt+s −Ws

According to this framework we introduce the definition of stationary
stochastic process.

Definition 2.1 We say that a stochastic process X : [0,∞[×Ω → Rm,
is stationary if for all s ∈ R

Xt ◦ θs = Xt+s P-a.s. for a.e. t ≥ 0

We assume all the coefficients A, B, C, D and S to be stationary
stochastic processes. Namely on the coefficients we make the following
assumptions:

Hypothesis 2.2

A1) A : [0, +∞)×Ω → Rn×n, B : [0, +∞)×Ω → Rn×k, Ci : [0, +∞)×
Ω → Rn×n, i = 1, ..., d and Di : [0, +∞) × Ω → Rn×k, i = 1, ..., d,
are uniformly bounded process adapted to the filtration {Ft}t≥0.

A2) S : [0, +∞) × Ω → Rn×n is uniformly bounded and adapted to
the filtration {Ft}t≥0 and it is almost surely and almost everywhere
symmetric and nonnegative. Moreover we assume that there exists
β > 0 such that S ≥ βI.

A3) A, B, C, D and S are stationary processes.

In this case we immediately get:

Lemma 2.3 Fix T > 0 and let hypothesis 2.2 holds true. Let (P, Q) be
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the solution of the finite horizon BSRE


−dPt = G (At, Bt, Ct, Dt; St; Pt, Qt) dt +

d∑
i=1

Qi
tdW i

t , t ∈ [0, T ]

PT = PT .

(2.1)
For fixed s > 0 we define P̂ (t + s) = P (t)θs, Q̂(t + s) = Q(t)θs then
(P̂ , Q̂) is the unique solution in [s, T + s] of the equation


−dP̂t = G

(
At, Bt, Ct, Dt; St; P̂t, Q̂t

)
dt +

d∑
i=1

Q̂i
tdW i

t , t ∈ [s, T + s]

P̂T = PT ◦ θs.

(2.2)

In the stationary assumptions the backward stochastic Riccati equation

dPt = −
A∗

tPt + PtAt + St +
d∑

i=1

((
Ci

t

)∗
PtC

i
t +

(
Ci

t

)∗
Qt + QtC

i
t

) dt +
d∑

i=1
Qi

tdW i
t +

(2.3)PtBt +
d∑

i=1

((
Ci

t

)∗
PtD

i
t + QiDi

t

) I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

−1PtBt +
d∑

i=1

((
Ci

t

)∗
PtD

i
t + Qi

tD
i
t

)∗dt,

(2.4)

admits a minimal solution (P , Q), in the sense that whenever another
couple (P, Q) is a solution to the Riccati equation then P − P is a
non-negative matrix, see also Corollary 3.3 in [5] and definiton 3.2 in
[4]. This minimal solution (P , Q) turns out to be stationary.

Proposition 2.4 Assume Hypothesis 2.2, then the minimal solution
(P , Q) of the infinite horizon stochastic Riccati equation (2.3) is sta-
tionary.

Proof. For all ρ > 0 we denote by P ρ the solution of equation (2.1)
in [0, ρ] with final condition P ρ(ρ) = 0. Denoting by bρc the integer
part of ρ, we have, following Proposition 3.2 in [5] that for all N for

all t ∈ [0, bN + sc], P
bN+sc
t ≤ PN+s

t ≤ P
bN+sc+1
t , P-a.s.. Thus we can
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conclude noticing that by lemma 2.2

PN+s
t+s = PN

t ◦ θs.

Thus letting N → +∞ we obtain that for all t ≥ 0, and s > 0:

P
{
P t+s = P t ◦ θs

}
= 1.

Now P T+s = P T ◦θs = P T so if one consider (2.1) in the intervall [s, T +
s] with final data P T+s and (2.2) with final data P T ◦θs, by the unique-
ness of the solution it follows that Qr = Q̂r, P − a.s. and for all r ∈
[s, T + s].

We notice that in the BSRDE (2.3) the final condition has been replaced
by the stationarity condition on the solution process (P, Q).

Next we give some definitions.

Definition 2.5 We say that (A, B, C,D) is stabilizable relatively to
the observations

√
S (or

√
S-stabilizable) if there exists a control u ∈

L2
P([0, +∞)× Ω; U) such that for all t ≥ 0 and all x ∈ Rn

EFt

∫ +∞

t
[
〈
SsX

t,x,u
s , X t,x,u

s

〉
+ |us|2]ds < Mt,x. (2.5)

for some positive constant Mt,x where X t,x,u is the solution of the linear
equation

dXs = (AsXs + Bsus)ds +
d∑

i=1

(
Ci

sXs + Di
sus

)
dW i

s s ≥ 0

X0 = x.

(2.6)

This kind of stabilizability condition has been introduced in [5]. This
condition has been proved to be equivalent to the existence of a minimal
solution (P̄ , Q̄) of the Riccati equation (2.3). Moreover whenever the
first component P̄ is uniformly bounded in time it follows that the
constant Mt,x appearing in (2.7) can be chosen independent of time.

Definition 2.6 Let P be a solution to equation (2.3). We say that P

stabilizes (A, B, C,D) relatively to the identity I if for every t > 0 and
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x ∈ Rn there exists a positive constant M , independent of t, such that

EFt

∫ +∞

t
|X t,x(r)|2dr ≤ M P− a.s., (2.7)

where X t,x is a mild solution to:



dX t =

AX t −Bt

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

−1 PtBt +
d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

)∗

X t

 dt+

d∑
i=1

Ci
sX t −Di

s

I +
d∑

i=1

(
Di

t

)∗
PtD

i
t

−1 PtBt +
d∑

i=1

(
Qi

tD
i
t +

(
Ci

t

)∗
PtD

i
t

)∗

X t

 dWt,

X0 = x

(2.8)

From now on we assume that

Hypothesis 2.7

(i) (A, B, C,D) is
√

S- stabilizable;

(ii) the process P is uniformly bounded in time;

(iii) the minimal solution P̄ stabilizes (A, B, C,D) with respect to the
identity I.

We refer to [4] for cases when P stabilizes (A, B, C,D) relatively to
the identity I. Notice that, thanks to the stationarity assumptions the
stabilizability condition can be simplified, see Remark 5.7 of [5].

Next we study the dual (costate) equation in the stationary case. We
denote by

Λ
(
t, P t, Qt

)
= −

I +
d∑

i=1

(
Di

t

)∗
P tD

i
t

−1 P tBt +
d∑

i=1

(
Q

i
tD

i
t +

(
Ci

t

)∗
P tD

i
t

)∗

,

Ht = At + BtΛ
(
t, P t, Qt

)
,

Ki
t = Ci

t + Di
tΛ

(
t, P t, Qt

)
. (2.9)
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Thanks to proposition 2.4, all the coefficients that appear in equation
drt = −H∗

t rtdt− P̄tftdt−
d∑

i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1
gi

tdW i
t , t ∈ [0, T ]

rT = 0.

(2.10)
are stationary so exactly as before we deduce that for the solution
(rT , gT ) the following holds:

Lemma 2.8 Let A, B, C, D and S satisfy hypothesis 2.2 and let
f ∈ L∞

P (Ω× [0, +∞)) be a stationary process. Fix T > 0 and rT ∈
L∞
P (Ω,FT ; Rn). Let (r, g) a solution to equation

drt = −H∗
t rtdt− P̄tftdt−

d∑
i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1
gi

tdW i
t , t ∈ [0, T ]

rT = rT .

(2.11)
For fixed s > 0 we define r̂t+s = rt ◦ θs, ĝt+s = gt ◦ θs then (r̂, ĝ) is the
unique solution in [s, T + s] of the equation

dr̂t = −H∗
t r̂tdt− P̄tftdt−

d∑
i=1

(
Ki

t

)∗
ĝi

tdt +
d∑

i=1
ĝi

tdW i
t , t ∈ [s, T + s]

r̂T = rT ◦ θs.

(2.12)

Hence arguing as for the first component P , we get that the solution of
the infinite horizon dual equation is stationary, as stated in the following
proposition:

Proposition 2.9 Assume hypothesis 2.2 and hypothesis 2.7, then the
solution (r\, g\) of

drt = −H∗
t rtdt− P tftdt−

d∑
i=1

(
Ki

t

)∗
gi

tdt +
d∑

i=1
gi

tdW i
t , (2.13)

obtained as the pointwise limit of the solution to equation 2.10 is sta-
tionary. Moreover

(
r\, g\

)
∈ L∞

P (Ω× [0, 1] , Rn)×L2
P

(
Ω× [0, 1] , Rn×d

)
.

Proof. The proof follows from an argument similar to the one in propo-
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sition 4.5 in [4]. Stationarity of the solution (r\, g\) follows from the
previous lemma.

Again we notice that in the dual BSDE (2.13) the final condition has
been replaced by the stationarity condition on the solution process
(r\, g\).

We need to show that in the stationary assumptions, the solution of the
closed loop equation is stationary. By using notation (2.9), we consider
the following stochastic differential equation, which will turn out to be
the closed loop equation:

dXs = HsXsds+
d∑

i=1
Ki

sXsdW i
s+Bs(B

∗
sr

\
s+

d∑
i=1

Di
sg

\,i
s )ds+fsds+

d∑
i=1

Di
s(B

∗
sr

\
s+

d∑
i=1

Di
sg

\,i
s )dW i

s ,

(2.14)
where (r\, g\) is the solution of the dual (costate) equation (2.13).

Proposition 2.10 Assume hypothesis 2.2 and hypothesis 2.7 holds true
then there exists a unique stationary solution of equation (2.14).

Proof. We set f 1
s = fs + Bs(B

∗
sr

\
s +

d∑
i=1

Di
sg

\,i
s ) and f 2,j

s = Dj
s(B

∗
sr

\
s +

d∑
i=1

Di
sg

\,i
s ), j = 1, ..., d. We can extend f 1, f 2 for negative times let-

ting for all t ∈ [0, 1], f i
−N+t = f i

t ◦ θ−N , i = 1, 2, N ∈ N. We notice
that f i |[−N,+∞) is predictable with respect to the filtration (G−N

t )t≥−N .
Therefore for all N ∈ N equation


dX−N

s = HsX
−N
s ds + +

∑d
i=1 K i

sX
−N
s dW i

s + f 1
s ds +

d∑
i=1

f 2,i
s dW i

s ,

X−N
−N = 0,

admits a solution (X−N,0
t )t, defined for t ≥ −N and predictable with

respect to the filtration (G−N
t )t≥−N . We extend X−N,0 to the whole real

axis by setting X−N,0
t = 0 for t < −N . We want to prove that, fixed

t ∈ R, (X−N,0
t )N is a Cauchy sequence in L2(Ω). In order to do this

we notice that for t ≥ −N + 1, X−N,0
t − X−N+1,0

t solves the following
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(linear) stochastic differential equation

X−N,0
t −X−N+1,0

t = X−N,0
−N+1+

∫ t

−N+1
Hs(X

−N,0
s −X−N+1,0

s )+
d∑

i=1

∫ t

−N+1
Ki

s(X
−N,0
s −X−N+1,0

s )dW i
s .

By the Datko theorem, see e.g. [4] and [5], there exist constants a, c > 0
such that

(E|X−N,0
t −X−N+1,0

t |2)1/2 ≤ Ce−
a(t+N−1)

2 (E|X−N,0
−N+1|2)1/2.

So, fixed t ∈ R and M, N ∈ N, M > N sufficiently large such that
−N ≤ t,

(E|X−N,0
t −X−M,0

t |2)1/2 ≤
M−1∑
k=N

(E|X−k,0
t −X−k+1,0

t |2)1/2 ≤ C
M−1∑
k=N

e−
a(t+k−1)

2 (E|X−k,0
−k+1|2)1/2.

(2.15)
Next we look for a uniform estimate with respect to k of E|X−k,0

−k+1|2.
For s ∈ [−k,−k + 1],

X−k,0
s =

∫ s

−k
ArX

−k,0
r dr+

∫ s

−k
Brūrdr+

d∑
i=1

∫ s

−k
Ci

rX
−k,0
r dW i

r+
d∑

i=1

∫ s

−k
Di

rūrdW i
r+

∫ s

−k
frdr,

(2.16)
where ū is the optimal control that minimizes the cost

J(−k, 0, u) =
∫ −k+1

−k
[|
√

SsXs|2 + |us|2]ds.

By computing d〈P sX
−k,0
s , X−k,0

s 〉+2〈r̄\
s, X

−k,0
s 〉 we get, for every T > 0,

E
∫ −k+1

−k
[|
√

SsXs|2 + |ūs|2]ds = −E〈P−k+1X
−k,0
−k+1, X

−k,0
−k+1〉 − 2E

∫ −k+1

−k
〈r\

s, fs〉ds

− E
∫ −k+1

−k
|
I +

d∑
i=1

(
Di

s

)∗
P sD

i
s

−1

(B∗
sr

\
s +

d∑
i=1

(
Di

s

)∗
g\,i

s )|2ds ≤ 2|E
∫ −k+1

−k
〈r\

s, fs〉ds| ≤ A,

where A is a constant independent on k. By (2.16) we get

sup
−k≤s≤−k+1

E|X−k,0
s |2 ≤ C

∫ s

−k
sup

−k≤r≤s
E|X−k,0

r |2dr+CE
∫ −k+1

−k
|ūr|2dr+E

∫ −k+1

−k
|fr|2dr,

and so by applying the Gronwall lemma, we get

sup
−k≤s≤−k+1

E|X−k,0
s |2 ≤ CeC(A + E

∫ −k+1

−k
|fr|2dr).
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Since f is stationary, we can conclude that

sup
−k≤s≤−k+1

E|X−k,0
s |2 ≤ C,

where C is a constant independent on k. By (2.15), we get

(E|X−N,0
t −X−M,0

t |2)1/2 ≤ C
M−1∑
k=N

e−
a(t+k−1)

2 .

So we can conclude that, fixed t ∈ R, (X−N,0
t )N is a Cauchy sequence

in L2(Ω), and so it converges in L2(Ω) to a random variable denoted
by ζ\

t . Notice that for every t ∈ R we can define ζ\
t , and we prove that

ζ\ is a stationary process. Let t ∈ R, −N < t and s > 0: since the shift
θ is measure preserving,

lim
N→∞

E|X−N,0
t ◦ θs − ζ\

t ◦ θs|2 = 0,

moreover X−N,0
t ◦ θs = X−N+s,0

t+s and

lim
N→∞

E|X−N+s,0
t+s − ζ\

t+s|2 = 0.

By uniqueness of the limit we conclude that ζ\
t ◦ θs = ζ\

t+s. Notice that
since N ∈ N and F0 ⊃ G−N

0 , ζ\
0 is F0-measurable. Let us consider

the value of the solution of equation (2.14) starting from X0 = ζ\
0. By

stationarity of the coefficients and of ζ\, we get that X is a periodic
solution of equation (2.14), that we denote by X\. In order to show the
uniqueness of the periodic solution it is enough to notice that if f j = 0,
j = 1, 2, and X\ is a periodic solution of (2.14), then

E|X\
0|2 = E|X\

N |2 ≤ Ce−aNE|ζ\
0|2.

Therefore X\
0 = 0 and this concludes the proof.

We can now treat the following optimal control problem for a periodic
cost functional: minimize over all admissible controls u ∈ U \ the cost
functional

J \(u, X) = E
∫ 1

0
[|
√

SsXs|2 + |us|2]ds, (u, X) ∈ U \, (2.17)

11



where

U \ =
{
(u, X) ∈ L2

P(Ω× [0, 1])× C([0, 1], L2
P(Ω)) : Xs = X0 ◦ θs,∀s ∈ R

}
(2.18)

and X is the solution of equation

dXt = AtXtdt + Btutdt +
d∑

i=1
Ci

tXtdW i
t +

d∑
i=1

Di
tutdW i

t + ftdt, (2.19)

relative to u.

Theorem 2.11 Let X\ ∈ C([0, 1], L2(Ω)) be the unique stationary so-
lution of equation (2.14) and let

u\
t =−

I +
d∑

i=1

(
Di

t

)∗
P tD

i
t

−1P tBt +
d∑

i=1

(
Q

i
tD

i
t +

(
Ci

t

)∗
QtD

i
t

)∗

X\
t+B∗

t r
\
t+

d∑
i=1

(Di
t)
∗g\,i

t .

(2.20)
Then (u\, X\) ∈ U \ and it is the unique optimal couple for the cost 2.17,
that is

J \(u\, X\) = inf
(u,X)∈U \

J \(u, X).

The optimal cost is given by

J
\
= J \(u\, X\) = 2E

∫ 1

0
〈r\

s, fs〉ds−E
∫ 1

0
|(I+

d∑
i=1

(
Di

t

)∗
P tD

i
t)
−1(B∗

t r
\
t+

d∑
i=1

(
Di

t

)∗
g\,i

t )|2ds.

(2.21)

Proof. By computing d〈P sXs, Xs〉+ 2〈r\
s, Xs〉 we get

E
∫ 1

0
[〈SsXs, Xs〉+ |us|2]ds = E〈P 0X0, X0〉 − E〈P 1X1, X1〉+ 2E〈r\

0, X0〉 − 2E〈r\
1, X1〉 − 2E

∫ 1

0
〈r\

s, fs〉ds

+ E
∫ 1

0
|
I +

d∑
i=1

(
Di

s

)∗
P sD

i
s

1/2 us + (I +
d∑

i=1

(
Di

s

)∗
P sD

i
s)
−1 ∗

∗
P sBs +

d∑
i=1

(
Q

i
sD

i
s +

(
Ci

s

)∗
P sD

i
s

)∗

Xs + B∗
sr

\
s +

d∑
i=1

Di
s(ḡ

\,i
s )∗

 |2ds

− E
∫ 1

0
|
I +

d∑
i=1

(
Di

s

)∗
P sD

i
s

−1

(B∗
sr

\
s +

d∑
i=1

(
Di

s

)∗
ḡ\,i

s )|2ds.
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Since by proposition 2.4, 2.9, and 2.10 (u, X) ∈ U \, we get

E
∫ 1

0
[〈SsXs, Xs〉+ |us|2]ds = −2E

∫ 1

0
〈r\

s, fs〉ds + E
∫ 1

0
|
I +

d∑
i=1

(
Di

s

)∗
P sD

i
s

1/2

×

×
us + (I +

d∑
i=1

(
Di

s

)∗
P sD

i
s)
−1

P sBs +
d∑

i=1

(
Q

i
sD

i
s +

(
Ci

s

)∗
P sD

i
s

)∗

Xs + B∗
sr

\
s +

d∑
i=1

Di
s(ḡ

\,i
s )∗

 |2ds

− E
∫ 1

0
|
I +

d∑
i=1

(
Di

s

)∗
P sD

i
s

−1

(B∗
sr

\
s +

d∑
i=1

(
Di

s

)∗
ḡ\,i

s )|2ds.

So

u\
t =−

I +
d∑

i=1

(
Di

t

)∗
P tD

i
t

−1P tBt +
d∑

i=1

(
Q

i
tD

i
t +

(
Ci

t

)∗
QtD

i
t

)∗

X\
t+B∗

t r
\
t+

d∑
i=1

(Di
t)
∗g\,i

t

(2.22)
is the optimal cost: u\ minimizes the cost (2.21), and the corresponding
state X\ is stationary by proposition 2.10, so that (u\, X\) ∈ U \.

3 Ergodic control

In this section we consider cost functionals depending only on the
asymptotic behaviour of the state (ergodic control). Throughout this
section we assume the following:

Hypothesis 3.1 The coefficient satisfy hypothesis 2.2, and moreover

• S ≥ εI, for some ε > 0.
• (A, B, C,D) is stabilizable relatively to S.
• The first component of the minimal solution P is bounded in time.

Notice that these conditions implies that (P, Q) stabilize (A, B, C,D)
relatively to the identity.

We first consider discounted cost functional and then we compute a suit-
able limit of the discounted cost. Namely, we consider the discounted

13



cost functional

Jα(0, x, u) = E
∫ +∞

0
e−2αs[

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds, (3.1)

where X is solution to equation
dXs = (AsXs + Bsus)ds +

d∑
i=1

(
Ci

sXs + Di
sus

)
dW i

s + fsds s ≥ t

Xt = x.

A, B, C and D satisfy hypothesis 2.2 and f ∈ L∞
P (Ω× [0, +∞)) and is a

stationary process. When the coefficients are deterministic the problem
has been extensively studied, see e.g. [1] and [11].

Our purpose is to minimize the discounted cost functional with respect
to every admissible control u. We define the set of admissible controls
as

Uα =
{
u ∈ L2(Ω× [0, +∞)) : E

∫ +∞

0
e−2αs[

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds < +∞

}
.

Fixed α > 0, we define Xα
s = e−αsXs and uα

s = e−αsus. Moreover we set
Aα

s = As − αI and fα
s = e−αsfs, and fα ∈ L2

P(Ω× [0, +∞)) ∩ L∞
P (Ω×

[0, +∞)). Xα
s is solution to equation

dXα
s = (Aα

s Xα
s + Bsu

α
s )ds +

d∑
i=1

(
Ci

sX
α
s + Di

su
α
s

)
dW i

s + fα
s ds s ≥ 0

Xα
0 = x,

(3.2)
By the definition of Xα, we note that if (A, B, C,D) is stabilizable with
respect to the identity, then (Aα, B, C,D) also is. We also denote by
(P α, Qα) the minimal solution of a stationary backward Riccati equa-
tion (2.3) with Aα in the place of A. Since, for 0 < α < 1, Aα is
uniformly bounded in α, also P α is uniformly bounded in α. Arguing
as in proposition 2.4, (P α, Qα) is a stationary process.

Let us denote by (rα, gα) the solution of the infinite horizon BSDE

drα
t = −(Hα

t )∗rα
t dt−P α

t fα
t dt−

d∑
i=1

(
Kα,i

t

)∗
gα,i

t dt+
d∑

i=1
gα,i

t dW i
t , t ≥ 0,

(3.3)

14



where Hα and Kα are defined as in (2.9), with Aα, P α and Qα respec-
tively in the place of A, P and Q. By [4], section 4, we get that equation
(3.3) admits a solution (rα, gα) ∈ L2

P(Ω× [0, +∞))∩L2
P(Ω× [0, +∞))×

L2
P(Ω× [0, T ]), for every fixed T > 0.

Moreover by [4], section 6, we know that

limα→0α inf
uα∈Uα

Jα (0, x, uα) =

limα→0[α
∫ +∞

0
2〈rα

s , fα
s 〉ds− α

∫ +∞

0
|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

sr
α
s +

d∑
i=1

(
Di

s

)∗
gα,i

s )|2ds].

We can also prove the following convergence result for (rα, gα).

Lemma 3.2 For all fixed T > 0, rα |[0,T ]→ r\ |[0,T ] in L2
P(Ω × [0, T ]).

Moreover, for every fixed T > 0, as α → 0.

E
∫ T

0
|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

sr
α
s +

d∑
i=1

(
Di

s

)∗
gα,i

s )|2ds →

E
∫ T

0
|(I +

d∑
i=1

(
Di

s

)∗
P sD

i
s)
−1(B∗

sr
\
s +

d∑
i=1

(
Di

s

)∗
g\,i

s )|2ds

Proof. The first assertion follows from lemma 6.6 in [4]. Notice that
stationarity of the coefficients in the limit equation gives stationarity of
the solution, and so it allows to identify the limit with the stationary
solution of the dual BSDE. For the second assertion for the optimal
couple (Xα, uα) for the optimal control problem on the time interval
[0, T ]:

∫ T

0
[|
√

SsX
α
s |2 + |uα

s |2ds = 〈P α
0 x, x〉+ 2〈rα

0 , x〉+ 2E
∫ T

0
〈rα

s , fα
s 〉ds

E〈P α
T Xα

T , Xα
T 〉+ 2E〈rα

T , Xα
T 〉 − E

∫ T

0
|(I +

d∑
i=1

(
Di

t

)∗
P α

t Di
t)
−1(B∗

t r
α
t +

d∑
i=1

(
Di

t

)∗
gα,i

t )|2ds.

(3.4)

Since, as α → 0, in (3.4) all the terms but the last one converge to the
corresponding stationary term, and since by [4] (rα, gα) is uniformly,
with respect to α, bounded in L2

P(Ω × [0, T ]) × L2
P(Ω × [0, T ]), then
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(rα |[0,T ], g
α |[0,T ]) ⇀ (r\ |[0,T ], g

\ |[0,T ]) in L2
P(Ω× [0, T ])×L2

P(Ω× [0, T ]),
we get the desired convergence.

This is enough to characterize the ergodic limit. Indeed we have that:

Theorem 3.3 We get the following characterization of the optimal
cost:

lim
α→0

2α inf
u∈Uα

Jα(x, u) = 2E
〈f(0), r\(0)〉 − |(I +

d∑
i=1

(
Di

0

)∗
P 0D

i
0)
−1(B∗

0r
\
0 +

d∑
i=1

(
Di

0

)∗
g\,i

0 )|2
 .

Proof. Let us define r̃α
t = eαtrα

t , g̃α
t = eαtgα

t . (r̃α
t , g̃α

t ) is the solution to

dr̃α
t = −(Hα

t )∗r̃α
t dt+αIr̃α

t dt−P α
t ftdt−

d∑
i=1

(
Kα,i

t

)∗
g̃α,i

t dt+
d∑

i=1
g̃α,i

t dW i
t , t ≥ 0,

and so, arguing as in lemma 2.9, (r̃α
t , g̃α

t ) are stationary processes. Now
we compute

limα→02α inf
uα∈Uα

Jα (0, x, uα) =limα→0

[
2α

∫ +∞

0
e−2αs2E〈r̃α

s , fs〉ds

−2α
∫ +∞

0
e−2αsE|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

s r̃
α
s +

d∑
i=1

(
Di

s

)∗
g̃α,i

s )|2ds


= limα→0

2α ∞∑
k=1

e−2αk
∫ 1

0
e−2αs2E〈r̃α

s , fs〉ds

−2α
∞∑

k=1
e−2αk

∫ 1

0
e−2αsE|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

s r̃
α
s +

d∑
i=1

(
Di

s

)∗
g̃α,i

s )|2ds


= limα→0

2α ∞∑
k=1

e−2αk
∫ 1

0
2E〈rα

s , fα
s 〉ds

−2α
∞∑

k=1
e−2αk

∫ 1

0
E|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

sr
α
s +

d∑
i=1

(
Di

s

)∗
gα,i

s )|2ds

 .
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Since (rα
s , gα

s ) → (r\
s, g

\
s) in L2

P(Ω× [0, 1])× L2
P(Ω× [0, 1]) we get that

limα→02α inf
uα∈Uα

Jα (0, x, uα) = 2E
∫ 1

0
〈r\

s, fs〉ds− E
∫ 1

0
|(I +

d∑
i=1

(
Di

s

)∗
P α

s Di
s)
−1(B∗

sr
\
s +

d∑
i=1

(
Di

s

)∗
g\,i

s )|2ds

= 2E〈r\
0, f0〉 − E|(I +

d∑
i=1

(
Di

0

)∗
P 0D

i
0)
−1(B∗

0r
\
0 +

d∑
i=1

(
Di

0

)∗
gα,i

0 )|2,

where the first equality holds also in the periodic case and the second
equality holds only in the stationary case.

In the following we denote infu∈Uα Jα(x, u) := J∗
α(x, u).

The next step is to minimize

Ĵ(x, u) = limα→02αJ(x, u)

over all u ∈ Û , where

Û =
{
u ∈ L2

loc : E
∫ +∞

0
e−2αs[

〈
SsX

0,x,u
s , X0,x,u

s

〉
+ |us|2]ds < +∞, ∀α > 0.

}

We will prove that

inf
u∈Û

Ĵ(x, u) = J \(u).

Let X̂ be solution of
dX̂x

s = HsX̂
x
s ds +

d∑
i=1

Ki
sX̂

x
s dW i

s + Bs(B
∗
sr

\
s +

d∑
i=1

Di
sg

\,i
s )ds + fsds +

d∑
i=1

Di
s(B

∗
sr

\
s +

d∑
i=1

Di
sg

\,i
s )dW i

s

X̂x
0 = x,

and let

ûx
s = −Λ(s, P s, Qs)X̂

x
s + (B∗

sr
\
s +

d∑
i=1

Di
sg

\,i
s ).

Notice that by proposition 2.10 if x = ζ\
0, then X̂ζ\

0 is stationary and
(ûζ\

0, X̂ζ\
0) is the optimal couple (u\

0, X
\
0).

Lemma 3.4 For all x ∈ L2(Ω), ûx ∈ Û and Ĵ(ûx, x) does not depend
on x.
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Proof. Let us consider Xs,x
t the solution of equation

dXs,x
t = HtX

s,x
t dt +

d∑
i=1

Ki
tX

s,x
t dW i

t

Xs,x
s = x,

starting from x at time s. We denote, for every 0 ≤ s ≤ t, U(t, s)x :=
Xs,x

t . We notice that

X̂0,x
t −X̂

0,ζ\
0

t = x−ζ\
0+

∫ s

0
Hs(X̂

0,x
s −X̂0,ζ\

0
s )ds+

d∑
i=1

∫ s

0
Ki

s(X̂
0,x
s −X̂0,ζ\

0
s )dW i

s = U(t, 0)(x−ζ\
0).

So by the Datko theorem there exist constants a, C > 0 such that

E|X̂x
t − X̂

ζ\
0

t |2 ≤ Ce−atE|x− ζ\
0|2.

So
E|X̂x|2 ≤ Ce−atE|x− ζ\

0|2 + E|X̂ζ\
0|2 ≤ C,

where in the last passage we use that X̂ζ\

= X\ and it is stationary.

Again by applying the Datko theorem we obtain

lim
α→0

αE
∫ ∞

0
e−2αs(2〈SX\

s, U(s, 0)(x−ζ\
0)〉+ |

√
SU(s, 0)(x−ζ\

0))|2)ds = 0.

Moreover
ût = u\

t − Λ(t, P t, Qt)U(0, t)(x− ζ\
0)

It is clear that u\ belongs to the space of admissible control space Û .

The term ũt = Λ(t, P t, Qt)U(0, t)(x− ζ\
0), t ∈ (0+∞) can be proved to

be the optimal control for the infinite horizon problem with f = 0 and
random initial data x− ζ\

0 :

inf
u∈L2

P((0,+∞);Rk)
E

∫ +∞

0
(|
√

SsX
u
s |2 + |u(s)|2) ds.

Hence Theorem 5.2 of [4] can be extended without any difficulty to get
that:

J(0, x− ζ\
0, ũ) = E〈P 0(x− ζ\

0), x− ζ\
0〉+ 2E〈r0, x− ζ\

0〉

− E
∫ ∞

0
|(I +

d∑
i=1

(
Di

t

)∗
P tD

i
t)
−1(B∗

t rt +
d∑

i=1

(
Di

t

)∗
gi

t)|2ds.
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Therefore

E
∫ ∞

0
e−2αs|ũ(s)|2 ds ≤ E

∫ ∞

0
|ũ(s)|2 ds ≤ C.

This proves that û is an admissible control since it follows that

lim
α→0

2αE
∫ ∞

0
e−2αs(|u\

s|2 − |ûx
s |2)ds = 0.

We can now conclude as follows:

Theorem 3.5 For all x ∈ L2(Ω) the couple (X̂x, ûx) is optimal that is

Ĵ(ûx, x) = min{Ĵ(u, x) : u ∈ Û}

Moreover the optimal cost, that does not depend on the initial state
x, is equal to the optimal cost for the periodic (respectively stationary)
problem, i.e.

Ĵ(ûx, x) = J
\
.

Proof. If u ∈ Û , then for every α > 0, u ∈ Uα. Consequently for every
α > 0

2αJα(u, x) ≥ 2αJ∗
α.

By taking the limit on both sides we get

Ĵ(x, u) = limα→02αJα ≥ limα→02αJ∗
α = J

\
.

By the previous lemma Ĵ(x, ûx) is independent on x so we let x = ζ\
0,

which implies that ûx = u\ and X̂x = X\. Then

Ĵ(ζ\
0, u

\) = lim
α→0

2α
∫ ∞

0
e−2αt[|

√
StX

\
t |2 + |u\

t|2]dt

= lim
α→0

2α(
d∑

k=1
e−2kα)

∫ 1

0
e−2αt[|

√
StX

\
t |2 + |u\

t|2]dt = J
\
,

and this concludes the proof.
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