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New Covariance Models for Local Applications

of Collocation

R. Barzaghi, A. Borghi, G. Sona

DIIAR - Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

Abstract. The least-squares  collocation
method, used to predict or filter a signal, is
based on the estimation of the empirical covari-
ance function and the fitting of the empirical
values with a proper model function. Generally,
with the standard methods on the sphere, we
reach a good fitting only up to the first zero of
the empirical function. In this work we have
investigated how much the collocation filtering
is affected by a poor fitting of the empirical
covariance.

Numerical tests have been done both on 1D
observed and simulated data to quantify the
combined impact on filtering of non stationarity
and covariance fitting.

Furthermore, a new model function on the
sphere has been developed which is able to fit
in an optimal way the empirical values.

Simulations have been also carried out on the
sphere to test the effectiveness of the collocation
filtering using the new covariance model.

1 Introduction

Collocation is widely used in Geodesy for esti-
mating functionals of the anomalous potential of
the Earth. Very often, local solution are com-
puted based on the well known remove-restore
procedure. Thus, the collocation estimate refers
to the so called residual geoid computed using
the residual gravity anomaly Ag,, which reflects
the local features of the gravity field.

Local covariance models have been proposed
in the past (Knudsen (1987); Tscherning and
Rapp (1974)) and are nowadays commonly used
when computing geoid in local areas.

The basic models, implemented in the COV-
FIT program, contained in the GRAVSOFT
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package, are of the type:
COVrr(P,Q) =

- fja? (R—)+ Pieos®) (1)

rr!

where:

€; error degree variances

2 _ .
0; =  degree variances, e.g.

(@ -1 :42)(2' - B) (R_RB>

R is the Earth radius

r,r’ are respectively the radial distances of
points in space P, )

P; the Legendre Polynomial of degree ¢
¥ the spherical distance between P and @)

Generally, with this model we reach a good fit-
ting only up to the first zero of the empirical
function, being the two functions quite different
for larger values of the spherical distance. In Fig-
ure 1 is represented an example of a fitting of an
empirical covariance function computed on local
data.

Starting from an idea of Albertella et al.
(1994), we have developed a new model function
for local application on the sphere, that is a fi-
nite combinations of Legendre Polynomial taken
at fixed step A with positive ¢, coefficients to
guarantee the positive definiteness of the covari-
ance function. So our new model is represented
by the relationship (2):

COV(P,Q) = ) _ ¢nPa(cos ¥)
neA

(2)

where
P,(cos ¥) € R = {P,(cos V) € Glc, > 0},

3 = {PNmin+A:PNmin+2A7-- -;PNma:c =
= {P,(cos¥),n € A}



The fitting! of the empirical values in Fig. 1
have been repeated with the new model, and,
as showed in Fig. 2, we have reached a very good
fit, being the model function completely super-
imposed to the empirical values, even at large
values of the spherical distance.

degree

Figure 1: Empirical covariance function fitting
with the COVFIT program of the GRAVSOFT
package
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Figure 2: Empirical covariance function fitting
with the COVLOC program

The model function has been estimated using
the COVLOC program that we developed for fit-
ting the empirical values with the model (2).

In the
sented the

following flow-chart is
COVLOC program

pre-
structure.

1This is done by a least square fitting considering
weighted C(P;,Q;) observations, being the weight the
number products used in computing C(F;, Q;).
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[ Y — ANmax ]

o —
N = {PN min+4 > PN min+24 > PN min+3a 5+++s PN max }

Least squares

Cn

no

yes

COV(P,Q) = Y c,P,(cosy)

neA

The Legendre Polynomial of the set & in For-
mula (2) are taken at a fixed step A, chosen in
relationship to the cap width ¥ by the following
relation (Albertella et al. (1994))

180
A= 3)
Based on A and on the number of empirical co-
variance values, the maximum degree N,,,; of
the Legendre Polynomial is fixed and we can
compute the complete set 3.

By fitting the empirical covariance function
values using least squares, the coefficients c,, are
computed: then their positiveness is checked to
guarantee the positive definiteness of the covari-
ance function.

If one or more coeflicients are negative, for
instance cs, the relative polynomial, P;, is elim-



inated from the set § and the coefficients com-
putation is repeated.

When all the estimated ¢, are positive, the
new model covariance function is computed as a
finite combination of Legendre Polynomial.

With the two covariance models (1) and (2),
tests on filtering accuracy as related to the fit
of the empirical values have been carried out.
Particularly, the hypothesis of stationarity of the
data has been checked to test a possible interac-
tion between stationarity and covariance fitting.
We wanted to quantify the effect on the collo-
cation filtering, due to model covariance fitting,
both in stationary and non stationary cases. The
stationarity hypothesis has been checked through
the following condition:

20(0) = B{ly®)*} + E{y(t + DI’} (9
that is we tested if the C(0) is constant along the
whole data domain.

2 Applications on 1D domain

Before testing the filtering accuracy on the
sphere, some simpler cases on the 1D domain
were analysed. In particular, the covariance fit-
ting effect on filtering is tested both with sta-
tionary and non stationary data. Although it is
not theoretically correct to estimate a covariance
function in non stationary conditions, we have
done that because usually, in practical applica-
tions, no testing on stationarity is performed and
the collocation filtering is used straightforwardly.

So, in the following, the empirical covariance
function will be estimate also in non stationarity
data even though, in this non stationary case,
this must be understood in a wider an improper
sense?.

Hence, we wanted to quantify the relevance of
stationarity on filtering through covariance fit-
ting. :

2.1 Non stationary signal

The stationarity hypothesis for a set of real al-
timetric data (Fig. 3) has been checked. As one
can see in Figure 4, this condition is not satisfied;
in fact the variance values are constant only up
to 500 km and after they rapidly increase.

As we pointed out previously, in spite of the
non stationarity of the data, the empirical covari-

2We shall use the notation covariance function to iden-
tify the empirical function estimated with non stationary
data.
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Figure 3: Real altimetric data
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Figure 4: Stationarity test

ance function has been computed, as generally,
in current applications, the stationarity check is
left out. The empirical values have been fit-
ted by the function called best fit (Fig. 5). In
addition to this function which is close to the
empirical values, a Normal one has been drawn
to analyse how much the filtering accuracy in
this case depends on the empirical function fit-
ting. To define the parameters of the Normal
covariance function the following procedure has
been adopted. The value in the origin has been
fixed, as usual, equal to the variance of the data.
The correlation length has been tuned on the co-
variance function of the residuals of the data ob-
tained through a moving average (i.e. a moving
average has been applied to the data, the em-
pirical covariance of the residuals computed and
its correlation length assumed as the correlation
for the Normal function). In this way a kind of
deterministic-stochastic filter is designed, its de-
terministic feature being the correlation length
of the Normal covariance which is fixed through
an a priori assumption on the features of the
moving average.

In Picture 8 are plotted the filtered data by
least-square collocation. The signal obtained
with the best fit function is smoother than the
Normal filtering. This one reproduces better
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Figure 6: Empirical covariance functions of the filtered residuals

0.025
0.02
0.015 1
0.01 —e—spline

0.005

-0.005 ¢
-0.01

-0.015
-0.02 km

Figure 7: Covariance functions

94



+ data

= normal
» best fit
-0.3 S
047 | B km
-0.5

Figure 8: 15¢ step filtered data

+ data
= normal
s hest fit

* data

* hormal
 gpline
* best fit

-05°

Figure 10: Filtered data with the spline function

95



best fit (m) | best fit (m) | normal (m) | Spline (m)

1 step 2 step 1 step finite colloc.
i 1380 1380 1380 1380
E 0.000 0.000 0.000 0.000
o 0.064 0.056 0.055 0.054
Min -0.395 -0.382 -0.370 -0.370
Max 0.247 0.242 0.241 0.234

Table 1: Statistic of the filtered data

the high frequencies in the data, and, as con-
sequence, the standard deviation of the Normal
residuals is lower than the best fit standard devia-
tion value (Tab. 1). Besides, the normal filtering
residuals don’t show any correlation, while the
best fit residuals do (Fig. 6); so a second collo-
cation step has been computed on these resid-
uals. After two step of computation with the
best fit covariance functions we have obtained the
same standard deviation value as with one col-
location step using the Normal function (Tab. 3
and Fig. 9).

Furthermore, with the same data set, a fil-
tering based on a finite covariance model has
been tested. Following the same scheme used
in the Normal function case, the parameters of a
cubic spline have been fixed. In this way, the
deterministic-stochastic filter has been further
investigated to understand its stability with re-
spect to the covariance model function selected.
Naturally, in this case, a sharp improvement in
computation time is also reached (in the end the
CPU time was 40 time less than the one we had
in the Normal case). The outcome of such a fil-
tering is represented in Fig. 10 and the statis-
tics are summarised in Tab. 1; as one can see,
the two deterministic-stochastic filters (based on
Normal and spline covariance models) perform
better than two steps of best-fit covariance filter.

2.2 Stationary signal

To understand if in a stationary case the filter-
ing accuracy has the same behaviour as showed
in the non stationary case, a signal has been
simulated satisfying the stationary condition
(Fig. 11).

The empirical covariance function has been es-
timated and fitted by a model, called again best
fit function (Fig. 12).

By lest-square collocation the synthetic data
have been filtered using the best fit covariance
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function and a Normal function. The standard
deviation value of the residuals obtained using
the filter based on the Normal covariance is a bit
lower than the best fit one, but the Normal fil-
tering of the data with some noise added (about
15% of the signal) is more perturbed (Fig. 13 and
14). In fact, looking at the statistic of the differ-
ences between the two filtering, with and with-
out noise, the standard deviation of the residuals
coming from the Normal filter has a greater value
than the best fit standard deviation (Tab. 2).

The filtering has been repeated after adding
some outliers to the data, and even in this case
the Normal filtering is more disturbed than the
best fit filtering (Fig. 15 and 16).

data-filtered signal |filtering differences
(without noise) (data with noise -
without noise)
best fit | Normal |best fit | Normal
m | (m) | (m | (m
i 586 586 586 586
E |-0.004 0.000 0.002 0.002
o 0.080 0.077 0.008 0.013
Min |-0.162 -0.175 -0.021 -0.030
Max | 0.153 0.152 -0.019 0.033

Table 2: Statistic of the filtering

So, in conclusions, these numerical experi-
ments proved that the stationarity condition is
crucial and that only with stationary data it is
important to fit at the best the empirical covari-
ance values.

3 Applications on a 2D spherical domain

The same test has been performed in a 2D spher-
ical domain to see if the same effects that we had
in 1D are present in a 2D spherical case. In par-
ticular, having proved that the stationary condi-
tion is so critical, we simulated a stationary grav-
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data - filtered signal | filtering differences filtering differences

(without noise) (data with noise - | (data with - without
data without noise) outliers)

gravsoft covloc gravsoft covloc | gravsoft covloc

(m) (m) (m) (m) (m) (m)

i 423 423 423 423 423 423
E 0.006 1.215 -0.209 -0.328 -0.020 -1.112
o 3.324 3.773 1.044 0.889 0.272 0.145
Min | -8.488 -8.640 -2.482 -2.985 -1.084 -1.500
Max 6.854 10.452 3.961 1.945 1.484 -0.665

Table 3: Statistic of the filtered data

ity signal to quantify the effect of an improved
empirical covariance fitting on filtering accuracy.
We also remark that in this paragraph the sen-
tence empirical covariance function is used prop-
erly because our data satisfies the stationarity
condition. Synthetic gravity data have been sim-
ulated on the sphere in a square of 1 degree of
side in latitude. Looking at Figure 17, we can say
that the synthetic signal satisfies the stationary
condition.

L)

0.6 0.8 1

degree

0 0.2 0.4

Figure 17: Stationarity condition with 2D spher-
ical data

In fact the variance values are nearly constant
up to 1 degree and after decrease; however only
few data are distant more than 1 degree, so that
values computed with (4) larger than 1 degree
are unreliable. The empirical covariance func-
tion has been fitted by the COVFIT program
of the GRAVSOFT package (Tscherning (1994))
and by the COVLOC program, as described in
Paragraph 1. As you can see from Picture 18,
COVLOC fitting is closer to the empirical values
than the GRAVSOFT one. The data have been
filtered by least-square collocation; the value of
standard deviation obtained using the COVLOC

99

mgalr2

degree

Figure 18: Covariance functions

fitting function, is greater than the GRAVSOFT
value (Tab. 3), but, as in the 1D case, after
adding some noise to the data, the best fit func-
tion based filtering is less perturbed by the noise
(Fig. 19). In Fig. 21 the differences between
the two filtering, with noise and without noise,
have been plotted: the COVLOC function dif-
ferences are smoother than the GRAVSOFT, as
their standard deviation values are 0.89 mgal and
1.04 mgal respectively (Tab. 3).

The outliers test has been repeated (Fig. 21).
The GRAVSOFT filtering is again more per-
turbed by the outliers; in fact the standard de-
viation value of the differences is twice than the
COVLOC value (Tab. 3).

4 Conclusions

The 1D and 2D tests proved that the stationarity
condition is critical in designing an optimal filter
even from the numerical point of view. When
this condition is satisfied, the best fit covariance
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Figure 19: Filtered data: a) with GRAVSOFT covariance function; b) with COVLOC covariance
function
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function
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model leads to a filtering which is less perturbed
by noise and outliers. So, we came to the conclu-
sion that modelling all the features of the empir-
ical values helps in designing a more stable filter.
On the contrary, with non stationary data, this
requirement, as it is quite obvious, is not rele-
vant at all; optimal filter can be defined which
are based on model covariances that very loosely
resemble the empirical covariance.

Further steps must be done to completely de-
fine the impact of such arguments and the new
model covariances in the geodetic case. In par-
ticular, in the COVLOC program, the functional
transformations (e.g. from the gravity covariance
function to the geoid undulation covariance func-
tion) must be studied and implemented. More-
over, we have to perform tests on the accuracy of
the prediction of different functionals as related
to the fit of the empirical values, as we have done
for the filtering. Some software improvements
are also necessary in the spherical case to reduce
the Legendre Polynomial computation time.
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