
Applied Energy 364 (2024) 123195

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Sensitivity of multiscale large Eddy simulations for wind power calculations
in complex terrain
Giorgia De Moliner a, Paolo Giani b,1, Giovanni Lonati a, Paola Crippa b,∗

a Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
b Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall of Engineering, Notre
Dame, 46556, IN, USA

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Dataset link: https://github.com/Env-an-Stat-g
roup/24.DeMoliner.APEN

Keywords:
Wind power
Large eddy simulations
Coupled meso-micro simulations
Perdigão
WRF-LES

A B S T R A C T

Coupling Large Eddy Simulations (LES) with Numerical Weather Prediction (NWP) models has promising
applications for wind energy. Regional climatology, optimal siting of wind turbines as well as short term wind
energy forecasts can be improved by considering all the energetic scales of atmospheric motions. However, the
complexity of NWP-LES coupled simulations introduces challenges and uncertainties that need to be addressed.
This study focuses on understanding the relative importance of different factors and assumptions in NWP-
LES calculations for wind energy applications. Using a recent large ensemble of LES simulations driven by
NWP boundary conditions over the complex terrain of the Perdigão area, our analysis reveals significant
discrepancies in wind power estimates across ensemble members, particularly over hilltops. Depending on the
model configuration and the coupling technique, instantaneous predictions can be as sensitive as 800 kW for a
2 MW wind turbine, in terms of ensemble standard deviation. On multi-day time averages, the model sensitivity
is in the order of 150 kW. We further analyze the main factors that lead to the observed model sensitivity.
Results from a four-way analysis of variance identify topography and land use datasets as the primary drivers
of variability, for time averaged estimates. The temporal analysis shows strong inter-daily variability and
the importance of turbulence modeling and the coupling techniques for instantaneous predictions. Overall,
most of the sensitivity is observed during day-to-night and synoptic transitions. By understanding the relative
importance of different factors, future model development and applications can be informed to enhance the
accuracy and reliability of wind energy assessments.
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1. Introduction

The imperative need of transitioning current energy systems, heav-
ily reliant on fossil fuels, to renewable and carbon-neutral energy
sources is motivated by the need of addressing pressing environmental
and societal challenges, including climate change, public health, energy
security, and economic development. Many countries, including the
United States, China and European Union member states, have set
ambitious net-zero emissions targets, necessitating significant trans-
formations, such as transitioning to renewable energy sources and
increasing energy efficiency [1,2]. Wind energy is a crucial component
of these plans due to its cost-effectiveness and minimal environmental
impact throughout its lifecycle. Decades of scientific advancements and
technological progress have propelled wind energy to become a main-
stream source of electricity, accounting for nearly 7% of the world’s
total electricity generation [3]. Current studies suggest that wind en-
ergy alone could fulfill the world’s entire energy demand by 2030 [4,5].
Nevertheless, more research and innovations are critical to meeting
these expectations, as a widespread use of wind energy will require
technology to be pushed into uncharted territories, both scientifically
and engineering-wise [6,7]. Additionally, continuous advancements
are essential to ensure the cost-effectiveness and competitiveness of
wind energy in the market [4,5]. Veers et al. [6] identified three
primary challenges in wind energy research that must be tackled to
enable an extensive and cost-effective utilization of wind energy: (i) a
comprehensive understanding of the atmospheric flow dynamics within
wind farms’ operational zone, (ii) the aerodynamics and structural
dynamics of larger wind turbines, both onshore and offshore, and (iii) a
collaborative integration of wind farms into the future electricity grid.
The present study contributes to the first objective by investigating
what is the sensitivity of wind energy calculations with nested and
realistic Large Eddy Simulations (LES).

Quantifying and predicting wind speeds at turbine hub height re-
quires understanding atmospheric dynamics and microscale flow prop-
erties within the planetary boundary layer (PBL), a task that is par-
ticularly challenging in regions of complex terrain [8], namely areas
characterized by irregular topography and land use. Several studies
have investigated microscale flows in complex terrain via high resolu-
tion numerical simulations, in idealized settings (e.g., with LES [9]) or
via lower resolution Reynolds-Averaged Navier–Stokes (RANS) meth-
ods for Numerical Weather Prediction (NWP) applications, in realistic
settings [10]. Accurate simulations of processes at such fine spatial
scales also require acknowledgment that the microscale flow is in-
fluenced by larger mesoscale conditions, thus developing full-physics
coupled meso- to micro-scale simulations (i.e., multiscale simulations)
is critical to obtain a realistic model output [11,12]. The meso- to
micro-scale coupling, also referred to as multiscale simulations, is par-
ticularly challenging, as current meso- and micro-scale models rely on
fundamentally different assumptions to resolve turbulence processes.
Mesoscale models are based on the RANS approach, where unsteady
mean properties of the flow are of interest and turbulent vertical
transport in the PBL is completely parameterized with 1D PBL schemes.
Conversely, microscale LES models, applied at finer resolution (i.e., tens
of meters), directly resolve the energy-containing turbulent eddies and
parameterize the effect of the unresolved subgrid scales (SGS) on the
mean flow. Major uncertainties and challenges still remain as how
to couple meso- to micro-scale simulations and to properly simulate
phenomena at gray zone (GZ) or Terra Incognita resolutions [13],
which occur at around 1 km and for which assumptions from SGS
parameterizations and 1D PBL schemes are violated [14]. As a re-
sult, unrealistic flow structures may be simulated if traditional closure
techniques are not revised [15,16]. However, it is of high interest
to perform simulations at gray zone resolutions, as they dynamically
inform finer nests and are critical to a number of different applications.
2

While recent studies have explored new approaches to overcome these
difficulties [17–21] and improve the accuracy and efficiency of multi-
scale model runs (e.g., [12,22–24]), a comprehensive understanding on
the subject is still elusive [25,26].

The growing expansion in computational resources has allowed
full-physics, online coupling between mesoscale weather simulations
and microscale simulations for wind energy purposes [27–29], where
the coarsest LES domain is forced by realistic and time varying lat-
eral boundary conditions generated by the parent simulation. Large-
scale tendencies are dynamically integrated in high-resolution simu-
lations, thus overcoming several idealizations in canonical LES that
relies on steady-state forcing [30]. Realistic inhomogeneous terrain
can also be incorporated, which overcomes limitations of downscal-
ing attempts with doubly-periodic boundary conditions that integrate
unsteady large-scale tendencies [31,32]. The full online coupling ap-
proach is particularly important to study transient phenomena
(e.g., frontal passages [33], thunderstorm outflows, baroclinic systems,
low-level jets) and changes in atmospheric stability associated with the
diurnal–nocturnal cycle [34], topography-induced flow [35], and to
link site-specific wind conditions to the long-term climatology of the
area [34]. The latter plays a key role in providing reliable predictions
of the annual energy potential of wind farms, thus reducing financial
risks [36], particularly in regions of complex terrains. Short-term wind
energy forecasts can also benefit from LES coupled with mesoscale
simulations [37,38]. However, multiscale simulations are still in their
early stage, are highly complex and require many input parameters
and assumptions, potentially leading to large uncertainties in their
output. In this study, we leverage a recently performed numerical
experiment including 36 full-physics multiscale simulations, which
specifically investigate PBL dynamics and modeling challenges at gray
zone resolutions [39], and bring a novel perspective on the impact of
numerical modeling choices and the representation of all relevant scales
for wind energy applications. Our goal is to explore the sensitivity
of wind energy estimates, derived from a unique ensemble of runs
spanning the full range of scales, from the meso- to the micro-scale
(LES runs), and quantify their uncertainty and sensitivity to a range of
input modeling settings. Specifically this work aims to:

1. Characterizing the time-resolved sensitivity and uncertainty of
wind power production estimates with multiscale numerical sim-
ulations, for an isolated 78 m wind turbine in complex terrain
(Perdigão field site);

2. Characterizing the spatial distribution of the sensitivity of multi-
scale simulations for wind energy purposes, to further elucidate
the role of complex terrain;

3. Providing a benchmark study that can serve as a reference for
wind energy assessments performed in areas of complex terrain
with multiscale simulations.

The remainder of the paper is organized as follows. In Section 2.1
we present the numerical simulation ensemble, followed by the
methodology for the sensitivity analysis (Sections 2.2 and 2.3). The
results from the sensitivity analysis are laid out in Section 3, where
we address and discuss the temporal (Section 3.1) and the spatial (Sec-
tion 3.2) distribution of variability within the ensemble. Thereafter, we
investigate the sensitivity of power production in Section 3.3. Finally,
in Section 4, we present the main findings, draw overall conclusions
and outline potential areas for future research.

2. Materials and methods

2.1. Numerical meso- to micro-scale simulations

This work is based upon a recent ensemble of multiscale simula-
tions [39] over the Perdigão field site (Portugal), which is characterized
by two parallel ridges and a small valley in between, in an area that
is approximately 6x6 km2 [40,41]. The two parallel ridges are about

1.5 km apart and are roughly 4 km long and 550 m high at their
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Fig. 1. Five nested domain configuration (d01–d05) for the WRF and WRF-LES simulations analyzed in this work (first row). The color shading indicates the SRTM (Shuttle Radar
Topography Mission) 30 m resolution topography expressed as meters above sea level. The second row shows the land use categories according with the different datasets used
(i.e., CORINE and WRF default-MODIS21), as well as the coarse, default, topography in WRF, for d05.
summit. Relevant experimental details [40] of the campaign and other
modeling work over the Perdigão valley [41–44] can be found in recent
literature. An in-depth description of the ensemble is presented in [39],
whereas here we report the main features of such simulations.

The 36 simulations ensemble members were generated with the
Weather Research and Forecasting (WRF) model version 4.4 [45] and
its WRF-LES component, and comprise five nested domains. The grid
spacing of the five domains spans from 11.25 km in the outermost
domain (d01) to 30 m in the innermost one (d05) as displayed in
Fig. 1, while the vertical discretization is fixed in the first three domains
and more refined in d04 and d05, with a vertical spacing of about
20 m in the first 100 m, as described in Table 1. The WRF code solves
the compressible, non-hydrostatic Euler equations on the Arakawa-C
grid with hybrid, terrain-following, dry hydrostatic pressure as the
vertical coordinate [46]. The default WRF time discretization is the
time-split third-order Runge Kutta (RK3) scheme with a fixed time step
for meteorologically-relevant modes and smaller time steps for acoustic
and gravity-wave modes. No random perturbations were used to trigger
turbulence (e.g., the Cell Perturbation Method proposed by [47]) since
the surface heterogeneity in our case study provides natural pertur-
bations that trigger local circulation and are more substantial than
imposing artificial perturbations on the model.

The general circulation in the outermost domain is solved with
a mesoscale turbulence parameterization (1D PBL scheme) while the
flow in the innermost domain, that interacts with the double-ridge
topography, is solved with microscale LES closures. The difference
across the 36 configurations lies in four different input factors. Specif-
ically, the ensemble runs include (i) different topography and land
use datasets in the d03, d04 and d05 (Table 1) domains (Topography),
(ii) different initial and lateral boundary conditions for the outermost
domain (LBCs), (iii) different turbulence closures in the intermediate
3

Table 1
Five nested domain configuration applied in the ensemble runs. The second column
indicates the number of grid cells simulated, the third column the horizontal resolution,
the fourth column the approximate vertical resolution at the bottom of the boundary
layer, and the last column the time step applied at each resolution.

Domain 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝛥𝑥 = 𝛥𝑦 𝛥𝑧𝑆 𝛥𝑡

d01 196 × 196 × 77 11250 m 36 m 75 s
d02 196 × 196 × 77 3750 m 36 m 25 s
d03 196 × 196 × 77 750 m 36 m 5 s
d04 196 × 196 × 91 150 m 24 m 1 s
d05 196 × 196 × 109 30 m 12 m 1/5 s

gray zone domains (GZ treatment) and (iv) different SGS models for
the LES innermost domain (SGS-LES). Two different options are used for
Topography, and include the default WRF coarse datasets (around 900 m
in resolution) and tailored fine datasets from NASA’s Shuttle Radar
Topography Mission (SRTM [48]) for topography and the Coordination
of Information on the Environment (CORINE) for land use [49], that
have 30 m and 100 m resolution, respectively. We use both the default
WRF static datasets and ad-hoc high-resolution datasets (SRTM and
CORINE) to test the sensitivity of the model to these settings and un-
derscore the importance (or lack thereof) of going beyond WRF default
settings and implementing ad-hoc datasets for high-resolution WRF
applications. Three choices are used for LBCs, including the Global Data
Assimilation System (GDAS) final analysis [50], the high-resolution
operational data from the European Centre for Medium-Range Weather
Forecast (HRES-ECMWF [51]) and ECMWF’s ERA5 reanalysis [52].
Boundary conditions are updated every 6 h for HRES-ECMWF and
GDAS, whereas they are updated hourly for ERA5-driven simulations.
Three choices are considered for GZ treatment : a traditional 1D PBL
scheme (The Yonsei University Scheme, YSU [53]), the scale-aware
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version of the YSU (Shin-Hong [20]), that introduces scaling factors
to account for partially resolved turbulence, and Zhang’s 3D blending
closure [17], that was also designed to be scale-adaptive but also cal-
culate horizontal fluxes. All three options (a PBL scheme, scale-aware
schemes and 3D closures) have been used in recent literature [25],
and they differ in the way subgrid turbulent fluxes of heat, momentum
and moisture are computed. Finally, two options are tested for LES-
SGS, the Turbulent Kinetic Energy (TKE) closure of Deardorff [54] and
the deformation-based Lilly–Smagorinsky closure [55,56]. The values
for the Smagorinsky constant and the TKE coefficient are 0.25 and
0.15, respectively. The ensemble includes every possible combination
of options for the four input factors resulting in 2 × 3 × 3 × 2 = 36
simulations.

The simulations cover four days during the Intensive Operation
Period of the Perdigão field experiment, from May 19th 2017, 00
UTC to May 23rd 2017, 00 UTC. Note that the local time is UTC+1
during the simulated episode, and results with a temporal component
are reported in UTC. During the simulation days, no precipitation,
but a mixture of clear sky days and high and medium clouds are
observed [40,41]. The simulated period starts from relatively high
pressure conditions linked to fair weather, and the flow over the double
ridge is mostly dynamically-driven. During the night of May 20 and
May 21, a low pressure system, stronger winds aloft, and high clouds,
reach the domain from the South-West. By late May 21 and May 22,
weaker synoptic winds reach the Perdigão area, allowing for more local
thermodynamically induced valley–ridge circulations.

2.2. Four-way analysis of variance

The goal of this work is to disentangle the effect and the relative im-
portance of the four different input factors described in Section 2.1 on
time-varying wind power estimates at a specific point in space, where
a 78 m tall wind turbine is located, as well as across the simulated
spatial domain. We focus on the innermost domain (d05), discretized
at 30 m resolution and simulated with 36 different configurations of
WRF-LES. To evaluate the sensitivity of the dataset to various input
factors, we perform a four-way Analysis of Variance (ANOVA [57])
which identifies the factors with greatest impact on the variability
across the ensemble members by decomposing the variance.

To assess both the spatial and temporal variability of the model
output, we conduct two separate analyses. The spatial analysis covers
the entire innermost domain, while the temporal analysis focuses only
on the turbine site. Both analyses examine the relationship between
wind speed at 78 m and power production. Wind speed at 78 m is
linearly interpolated from the two closest vertical grid points at each
time step. Further, we conduct the sensitivity analysis for both the
entire simulated time period and four specific sub-periods of interest:
(i) daytime (12–15 UTC), which features a fully developed convective
boundary layer (CBL); (ii) late afternoon (16–20 UTC), which represents
the transition period from daytime to nighttime; (iii) nighttime (00–03
UTC, May 19–21), when a stable boundary layer conditions prevails;
and (iv) a period characterized by a change in synoptic conditions
(May 21, 12 UTC to May 22, 06 UTC), when both the prevailing wind
direction and wind speed vary significantly (synoptic transition).

Here we first introduce the fundamental concepts of a one-way
ANOVA, and then generalize it to a four-way version, required to
explore the model sensitivity to the four perturbed input factors. Each
factor comprises 𝐾 number of levels or groups, which correspond to the
input options discussed in Section 2.1 (i.e., 𝐾 = 2 for Topography, 𝐾 = 3
for LBCs, 𝐾 = 3 for GZ and 𝐾 = 2 for LES-SGS). In each group there
are 𝑁 runs, which in our ensemble is constant across groups within the
same factor, for a total of 𝐾𝑁 runs. The purpose of a one-way ANOVA
is thus to test if runs from several groups in a factor have the same
mean. Let 𝑥𝑖𝑗 be the simulated value 𝑥 for run 𝑗 = 1,… , 𝑁 in group
𝑖 = 1,… , 𝐾, so for example 𝑥14 is the fourth run in the first group. If, for
instance, we were testing the model sensitivity to only the LBC factor
4

Fig. 2. ENERCON-2 MW wind turbine power curve [58]. Dashed red lines represent
the cut-in speed, rated speed and cut-off values, from left to right.

the three groups would have been GDAS, ERA5, HRES-ECMWF, and so
𝑥14 would be the wind values from the fourth run that uses GDAS as
LBCs.

A one-way ANOVA tests if the group means of 𝑥 are different
by partitioning the total variance into the variation between groups
and the variation within a group. Formally, we perform the following
decomposition:

𝑥𝑖𝑗 = 𝑥 + (𝑥𝑖 − 𝑥) + (𝑥𝑖𝑗 − 𝑥𝑖), ∀𝑖 = 1,… , 𝐾, 𝑗 = 1,… , 𝑁 (1)

where 𝑥 is the average across all 𝐾𝑁 runs and 𝑥𝑖 is the mean of
group 𝑖. Thus, the term (𝑥𝑖 − 𝑥) indicates the variation of the group
𝑖 mean from the overall mean, while (𝑥𝑖𝑗 − 𝑥𝑖) indicates the variation
of the runs within each group from their group mean. According to the
decomposition of Eq. (1), measures of dispersion within the ensemble
can be computed as follows:

𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 1
𝐾𝑁

∑

𝑖

∑

𝑗
(𝑥𝑗 − 𝑥)2 = 1

𝑁
∑

𝑗
(𝑥𝑗 − 𝑥)2 (2)

𝑠2𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
1

𝐾𝑁
∑

𝑖

∑

𝑗
(𝑥𝑖𝑗 − 𝑥𝑗 )2 (3)

The explained variance (𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑) indicates the extent to which
group means match the grand mean, thus large values of 𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑
indicate large departures among the means of each group. Accordingly,
it shows how much of the ensemble variability is explained by dif-
ferences in LBC. The residual variance, instead, quantifies differences
within each group and consequently computes the amount of variability
introduced by any other factor. A simple rearrangement of Eq. (1)
provides the mean to decompose the total variance into the sum of the
previous two quantities:

𝑠2𝑡𝑜𝑡𝑎𝑙 =
1

𝐾𝑁
∑

𝑖

∑

𝑗
(𝑥𝑖𝑗 − 𝑥)2 ≡ 𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 + 𝑠2𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (4)

A four-way ANOVA is a generalization of a one-way ANOVA and
calculates the corresponding 𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 for each input factor and allocates
the remaining variance to 𝑠2𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. Therefore, the decomposition of total
variance for a multi-way ANOVA can be expressed as follows:
𝑀
∑

𝑚=1
𝑠2𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑,𝑚 + 𝑠2𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑠2𝑡𝑜𝑡𝑎𝑙 (5)

where M is the number of factors (i.e. M = 4 in our case). We use the
software 𝑅 to compute the four-way ANOVA.

2.3. Power curve and wind energy production

The time-resolved ANOVA focuses on a single grid point, selected by

the shortest Euclidean distance to an ENERCON E-82 E1 wind turbine,
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Fig. 3. Temporal variability of five minutes averaged simulated wind speed (m s−1) at the turbine location at hub height (i.e., 78 m) across the 36 ensemble members. Observations
are in black and the arrows on top represent the hourly mean direction the wind is blowing to and the length of the bar is proportional to the mean wind speed across the
ensemble runs. The vertical bars indicate the hours used in the analyses over specific period of interest defined in Section 2.2 (i.e., daytime, late afternoon, nighttime and synoptic
transition).
Fig. 4. Time-averaged wind speed at the turbine height and location for each sub-
period of interest and for the whole simulated period. Each box refers to the variability
across the 36 ensemble members. Each whisker extends to the furthest data point in
the ensemble that is within 1.5 times the interquartile range (IQR). Red crosses show
observations at tse04 averaged in time during the same time periods.

78 m tall and with a rated power of 2 MW that has been in operation
since 2007, located on the south-west ridge (39.708N, 7.745W). The
power curve in Fig. 2 is used to estimate wind power production based
on the simulated wind speeds at turbine hub height. The cut-in wind
speed for power to be generated is about 2 m s−1. After that threshold is
met, wind power increases approximately with the third power of wind
speed up to the rated speed at 13 m s−1. Further increases in wind speed
will not affect power production, which remains constant at the wind
turbine rated power (2 MW). However, if the wind speed exceeds the
cut-off value (25 m s−1), the turbine is not allowed to deliver power to
prevent excessive stress on the structure. It is worth noting that internal
and external factors that also lead to different energy yield rates [59]
are not taken into account in our wind power estimates. Finally, it
should be noticed that our simulations do not include an actuator
disk wind turbine model [60] to avoid introducing further sources of
uncertainty. Thus, the simulated downwind flow at the turbine location
is not impacted by the presence of the actual turbine.
5

3. Results

3.1. Temporal variability of wind speed at the turbine site

Here we present five-minutes averaged simulated wind speed data
extracted from the 36 ensemble members at the turbine location at
hub height (Fig. 3). Although a full model evaluation is beyond the
scope of this study, we briefly compare the simulated wind speeds with
the observed five-minutes averages at the closest meteorological mast
that includes near hub-height measurements (100 m), to assess model’s
skill in capturing key dynamic processes at the site that are relevant
to this work. The meteorological mast was located on the South-West
ridge (39.706N, 7.744W) and its code for the Perdigão field campaign
is tse04. The observations indicate a clear diurnal cycle, with wind
speeds decreasing during convective daytime conditions and increasing
at night, a trend that is generally captured by all model runs. During
the synoptic transition on late May 21 and May 22, a notable shift in
the typical diurnal cycle is observed. Specifically, the wind direction
shifts from ENE to SSW, the wind speed drops, and the typical nighttime
increase in wind speed is not observed (top of Fig. 3). This perturbation
is driven by weaker winds aloft, as well as by a change in wind direction
that precludes the typical wind speed amplification observed on the
second/downwind ridge, where the turbine is located, when there is a
northeasterly flow.

The median value of wind speed averaged over the whole four-
day period matches the observed data within 0.5 m s−1, as shown in
Fig. 4 (in gray). However, our multiscale runs tend to overestimate
the median wind speed by approximately 1.5 m s−1 during daytime
and late afternoon and to underestimate it by a similar amount during
nighttime. The different model setups adopted do not have a signif-
icant impact on the discrepancies across the ensemble members, as
highlighted by the small spread between the 1st and 3rd quartiles of ap-
proximately 0.5 m s−1 during daytime and late afternoon. During these
time periods, the model consistently exhibits a positive bias against
observations. The variability across the ensemble members also varies
through time, with the largest variability occurring during nighttime
and synoptic transition periods. For example, on May 22, during the
synoptic transition characterized by a shift to a southerly flow, the wind
speed is weaker on average compared to the previous nights and similar
to the day–night transition. However, the spread across the ensemble
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Fig. 5. Decomposition of total variance (in gray) of time-averaged wind speed, among factor variables. Wind speeds have been simulated at the turbine site and at 78 m. On top
of the gray bars, is the coefficient of variation (i.e., standard deviation divided by the mean) is shown, while at the bottom of each colored bar, the percentage of explained and
residual variance is displayed.
runs is larger during this period (Fig. 4), indicating higher uncertainty
in the model’s ability to accurately capture the wind speed variability.
These results suggest that the nighttime and stratified flow conditions
are the most challenging for the model to capture, and that different
parameterizations/forcing play a key role in generating uncertainty
across runs. Modeling challenges in simulating stratified flows over
complex terrain are well established and have been identified in other
recent studies performed with coarser grid spacing (1–3 km) [61–65].

To quantify the role of each of the four factors under examination
in driving discrepancies across the ensemble members an ANOVA is
performed on wind speeds at hub height averaged either over the whole
timeseries or over the individual four sub-periods. Fig. 5 illustrates
the total variance (in gray) and how it is broken down across factors,
according to the methodology described in Section 2.2. With the ex-
ception of the synoptic transition, the characterization of topography is
the primary factor contributing to 40%–80% of wind speed variability
across runs. The coarser terrain dataset (i.e., the WRF default) consid-
erably smooths the terrain and leads to a three-dimensional hill rather
than a double ridged topography, which will impact the simulated
mountain–valley flow and thus generate discrepancies across the runs.
The fine and coarse land use datasets also differ in terms of surface
roughness thus further contributing to generate differences. Thus, a
careful selection of the static dataset adopted in WRF is critical to prop-
erly estimate near-surface wind speeds using realistic LES, particularly
over complex terrain, in accordance with [43,66].

During daytime and nighttime periods, the LBCs and the GZ treat-
ment also contribute to the spread, each by more than 20%, whereas
their impact is much less relevant during other time periods (i.e., day–
night transition and whole-day averages). As far as the synoptic transi-
tion is concerned, the LBCs factor mostly drives discrepancies in wind
speeds by contributing to 45% of total variance. Here, the elsewhere
dominant topography only accounts for 24% of the variability across
runs. This is likely due to the mesoscale nature of the phenomena driv-
ing PBL dynamics under changes of synoptic conditions, as during late
May 21 and May 22. Therefore, when simulating synoptic transition
episodes emphasis should be placed on how initial and later boundary
conditions for the outermost domain are represented. The temporal
6

frequency of LBCs updates appears here to be particularly relevant. The
SGS model adopted is generally the least relevant factor, contributing
to about 1% of the total variability across runs.

Finally, the decomposition of variance performed on the
five-minutes data over the whole time series indicates some inter-
daily variability (Fig. 6). Occasionally, a single factor may persistently
prevail over the others for a certain time frame (e.g., gray zone
treatment on the first night). However, a consistent daily pattern cannot
be inferred. On May 19 and May 20, the largest total variance is found
at night, consistently with the results in Fig. 4. Other patterns are
identified on May 21 and May 22, where high and low variances are
constantly observed throughout the two days, respectively. On May 22,
none of the four factors is found to dominate, which can be interpreted
in light of the overall small variance associated with the low simulated
wind speeds. As discussed earlier, the change in synoptic conditions
might be responsible for this pattern, which is also reflected in the
large variance explained by LBC between 12 and 18 UTC on May
21. The five minutes analysis allows to further identify interesting
phenomena that are not revealed by the time-averaged analysis. For
example, during the night between May 19 and May 20, the vast
majority of the spread within the ensemble can be traced back to how
turbulence has been modeled at gray zone resolutions. Conversely, as
previously shown in Fig. 5, nighttime averaged variances show that
topography is the leading factor in explaining the model sensitivity.
This analysis thus reveal that, while a certain factor may drive the
variability across runs for time averaged values, other factors may
dominate when high-frequency data are analyzed.

In conclusion, our results suggest that when a time aggregated
analysis is of relevance, as in the cases of optimal turbine siting and
regional climatology, topography and land use datasets are the leading
factors in determining the time-averaged wind speeds. The reason is that
lower or higher surface roughness, for instance, consistently lead to
higher and lower wind speed, respectively, biasing the time averages.
On the contrary, when a prediction with a short time resolution is of
interest, as in the case of hourly forecasts necessary to match the energy
demand, different results should be expected.
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Fig. 6. Decomposition of total variance [m2 s−2] of wind speed at 78 m above ground at the turbine site on each simulated day. The total variance is reported in gray.
3.2. Spatial sensitivity of wind speed to model setup

In this section, results of the sensitivity analysis performed over the
entire innermost domain are presented. The goal is to characterize the
spatial distribution of the sensitivity of multiscale simulations of wind
speed and thus investigate the role and the consistency in space of
each of the four factors under examination. To this end, a four-way
ANOVA is performed in each grid point on time-averaged wind speeds
at 78 m. Fig. 7 shows the variance explained by each factor variable,
on a logarithmic scale. Each row represents the five periods of interest
over which time-averaged wind speeds are computed.

Regardless of the sub-period, results show a significant influence of
the topography and land use datasets on the simulated wind speeds,
especially on the two parallel ridges and on the deepest section of
the in-between valley (upper-left area), where the total variance itself
is higher compared to the rest of the domain. As also highlighted
7

in Section 3.1, different accuracies in characterizing the topography
of the area leads to significant differences in the simulation of the
mountain–valley flows and thus generated discrepancies within the
ensemble. On the contrary, in all sub-periods and over the whole spatial
domain, the model is rather insensitive to the LES SGS model, as also
found in the time-resolved analysis. During nighttime and the synoptic
transition, other factors gain importance, as shown in Fig. 8. These
effects are particularly visible on the second ridge downwind (the SW
and NE ones, respectively for Nighttime and Synoptic transition) where
discrepancies among runs are higher, as well as in the flat region
further downwind (respectively, lower-left and upper-right corners).
Furthermore, it is of interest to note that in the deepest region of the
valley it is again only topography that leads to substantial differences
in wind speeds within the ensemble. The flat region upwind (in Fig. 7,
northeast and southwest corners for all subperiods and for synoptic
transition, respectively) which are not influenced by the presence of
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Fig. 7. Variance explained (m2 s−2) by each factor over the whole time series and the individual four periods of interest. The last column shows the part of variance not explained
by the adopted ANOVA model. Note the log10 scale of the colorbar. In white, variances of less than 0.01 m 2 s−2 are shown. X and Y axis are displayed as distances in meters
from the most South-West point of the domain (39.685N, 7.774W). The topography contours (30m-SRTM) are showed in gray colorscale.
the ridges indicate lower sensitivities to the majority of the factors
(white, blue and green in Fig. 7) and generally a high agreement across
simulations as indicated by a general variability of ±0.3 m s−1 among
time-averaged wind speed. Given the limited impact of the ridges on
the flow in these areas, results in this region may be informative of
sensitivity in flat terrains in general.

Under both synoptic transition and nighttime conditions, when
variance is relatively high, a portion of total variance is explained by
the residuals. As interactions of all orders between additive terms are
not included in the ANOVA presented here, the residuals account for
them all and thus for the variability introduced by varying two or more
factors simultaneously (as shown in the Methods Section 2.2).

ANOVA with first-order interactions has shown prevalence of inter-
actions of topography, LBCs, and GZ treatment as the most relevant
ones (not shown). Lastly, an area of numerical instabilities is observed
at the northwest edge of the northern ridge, which is most likely a
result of the limited capability of WRF hybrid hydrostatic pressure
8

terrain-following coordinates to accurately simulate very steep slopes
close to numerical boundaries (not shown). This is reflected in the
non-negligible portion of variance explained by the LES SGS model
in that area, suggesting that different subgrid scale models play a
role in interacting with the numerical instabilities created by the fast
horizontal and vertical velocities in the steep region of the domain
(slope angles greater than 45 degrees). Note that off-centering (forward
centering 𝜏 = 0.4 [67,68]) is used in the implicit time integration of
the vertical momentum equation and the geopotential equation (in the
acoustic loop) to damp the vertically-propagating acoustic modes and
keep the model stable [39].

In summary, when simulating multi-day averaged wind speeds in
complex terrain through multiscale simulations, as well as for daytime
and late afternoon sub-periods, the elevation mapping and the land
use dataset chosen for the site mostly drive the spread within the
ensemble. This holds particularly true over ridges and in the valleys
in between. With the exception of LBCs in the daytime, the other
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Fig. 8. Factors explaining most of the variance at each location and time period. X and Y axis are displayed as distances in meters from the most South-West point of the domain
(39.685N, 7.774W).
Table 2
Mean values of the variance explained by each factor when simulating wind speed
in different time frames (columns 1-5, in percentage) computed over the whole
innermost domain. Residuals account for interactions of all orders. Results are shown
as percentages of the spatial mean of total variance (m2 s−2), which is presented in
the last column.

LBCs Topography GZ SGS-LES Residuals Total (m2 s−2)

Whole Period 19.5 60.9 12.7 0.29 6.69 0.219
Daytime 42.9 29.5 10.8 0.46 16.4 0.160
Late afternoon 14.5 62.9 5.54 0.30 16.7 0.234
Nighttime 19.4 32.9 32.3 0.32 15.0 1.142
Synoptic transition 55.4 21.6 7.81 0.21 15.0 0.848

factors under examination do not significantly influence wind field
simulations. When nighttime and synoptic transition wind speeds are
of interest, instead, also the resolution and temporal forcing of global
dataset, as well as the representation of turbulence in the gray zone are
of relevance in dictating discrepancies in wind speed estimates. Table 2
summarizes these findings. In each entry, mean values of the variance
explained by each factor computed over the whole innermost domain
are given. Results are presented as percentages of the mean value of
total variance, which is instead displayed in the last column in m2 s−2.

3.3. Sensitivity of wind power production at the turbine site

We now examine how various modeling approaches affect the
power generation predictions, with specific focus on the wind turbine
location on the southern ridge of the Perdigão domain. Although
we can apply our approach to any point within the study area, we
choose this site as a demonstration of a realistic application with an
existing wind turbine. In addition, measurements at tse04 enable the
comparison of power production estimates obtained from the WRF-LES
9

simulated wind speeds with those from the actual observations. Fig. 9
illustrates the fluctuation of wind power generation over time among
the ensemble members and in comparison with the measurements.

Similarly to the wind speed in Fig. 3, the power production peaks
over nighttime and is lowest during daytime periods, with a mean of
1390 kW and 490 kW, respectively. While the mean wind speed over
the entire time period analyzed only slightly overestimates observations
(see Fig. 3), the model bias for the mean power production is much
larger, 840 kW from the model versus 525 kW from observations.
Namely, a 37% average power difference is found for the ensemble
mean, while the same wind speed bias in percentage was only 7%. The
imbalance increases in all sub-periods, although it is during daytime
that the highest difference is found, as the discrepancy between ob-
servations and ensemble mean is equal to 74% of latter (19% for wind
speed). This can be explained by considering that the power production
generally scales with the cube of the wind speed (see Fig. 2), thus
biases in wind speeds may be significantly amplified when estimating
wind power. As expected, the variability among the ensemble members
is also amplified in relation to the wind speeds, as demonstrated in
Fig. 10. The coefficient of variation (CV), displayed on top of each bar
in both Figs. 5 and 11, is used to quantify and compare such differences.

Values of CV (i.e., the standard deviation between ensemble mem-
bers divided by the ensemble mean) are twice or even three times
(during daytime) higher compared to their wind speed equivalents. In
the case of wind power, the greatest variability within the ensemble is
found during the period of synoptic transition (coefficient of variation
equals to 0.31), although the greatest variation in absolute terms occurs
in nighttime as its standard deviation is 305 kW, against the 270 kW
of synoptic transition. For comparison, the average electricity power
consumption for a single American household is approximately 1.2 kW,
from U.S. Energy Information Administration [69] estimates — which
implies that different model predictions would be different by an
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Fig. 9. Power production estimates [kW] for an ENERCON-2 MW turbine derived from the simulated five-minutes averaged wind speeds at 78 m at the location of the existing
wind turbine on the southern ridge. The different lines represent the wind power generated using wind speeds from different ensemble members. The black line refers to the
power estimated from the observed wind from a nearby meteorological mast (tse04), at near hub height (100 m).
Fig. 10. Time-averaged wind power at the turbine height and location for each sub-
period of interest and for the whole simulated period. Each box refers to the variability
across the 36 ensemble members. Each whisker extends to the furthest data point in
the ensemble that is within 1.5 times the IQR. Red crosses show wind power computed
from the observed time-averaged wind speeds.

amount that, for a single turbine, could power about 250 households,
during nighttime. Therefore, the ensemble power variability across
the ensemble is significant, highlighting the importance of further
constraining multiscale LES calculations to have a highly accurate and
reliable simulation tool for realistic applications. During the daytime
and late afternoon time periods, as well as for averages over the whole
four-day period, discrepancies between ensemble members are halved
if compared to other periods. However, they are still significant and not
negligible.

Here we present results from the ANOVA decomposition of variance
performed over power productions estimated from the simulated winds
at the turbine site and averaged either over the whole timeseries or
over individual sub-periods of interest. Fig. 11 displays similar patterns
to the ones of wind speeds (Section 3.1, Fig. 5). When the whole
time series and late afternoon are analyzed, topography resolution still
appears to be a dominant factor in explaining the variability in power
production across runs, with a contribution of around 70%. During
synoptic transition, as it was in the previous analysis, the model is most
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sensitive to LBCs, whose different characterizations account for 44% of
total variance. Yet, in other sub-periods some discrepancies in sensitiv-
ity patterns compered to wind speed analyses can be noticed. Given
the characteristic power production curve (detailed in Section 2.3),
whenever the input wind speeds are either below 2 m s−1 (cut-in speed)
or exceed 13 m s−1 (rated speed), the power production saturates, as
depicted in Fig. 9. Therefore, when all simulations exhibit wind speeds
either below 2 m s−1 or above 13 m s−1, an increase in wind speed
does not result in an increase in power generation, and the spread
among the simulated wind speeds leads to equal power production
estimates, pushing variance to zero, and making it insensitive to all
factors. Similarly, when only certain runs of the ensemble simulate
wind speeds above or below these thresholds, the relative importance
of each factor may vary compared to previous sensitivity analysis on
wind speeds. This is the case of nighttime and daytime sub-periods.
As captured in Fig. 3, indeed, during the first two nights certain
runs simulate winds faster than 13 m s−1, while during May 19 and
daytime hours of May 22 wind speeds occasionally drop below 2 m
s−1. Consequently, main explaining factors of total variance for wind
power differ from the wind speed ones. In particular, in both nocturnal
and diurnal hours, the effect of topography is reduced, in favor of LBCs
(52%) and GZ treatment (45%), respectively for daytime and nighttime.
In conclusion, under specific wind conditions (i.e., wind speeds of about
2 or 13 m s−1), improvements of the input features highlighted by
our wind speed sensitivity analysis may not necessarily enhance power
production estimates, and vice versa.

Similar conclusions can be drawn for ANOVA performed on five-
minutes power production simulations, whose decomposition of vari-
ance is presented in Fig. 12. Generally, similar sensitivity patterns to
the wind speed analysis can be seen. However, ‘deformations’ due
to the characteristic power curve of wind turbine are still visible.
An illustrative case is set by May 21. On the one hand, during the
early hours when wind speed are consistently above 13 m s−1 in
some simulations, decomposition of variance of wind power returns
an altered sensitivity pattern if compared to previous results on wind
speed, characterized by the absence of predominance of any factor. On
the other hand, after 12 UTC, when wind speed starts dropping and
the simulated wind direction begins to shift from ENE to SSW starting
synoptic transition, the same pattern of the wind speed analysis can
be detected, characterized by the dominance of LBCs effects, overtaken
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Fig. 11. Decomposition of total variance (in gray) of time-averaged power productions, among factor variables. Wind speeds have been simulated at the turbine site and at 78 m
above ground. On top of the gray bars, the coefficient of variation (i.e., standard deviation divided by the mean) is shown, while at the bottom of each colored bar, the percentage
of explained and residual variance is displayed.
by the gray zone treatment as the sun sets. The only difference is the
magnitude of the curves, here amplified by the characteristic cubic
shape of power curve when wind speeds are well between the range
2–13 m s−1.

4. Discussion and conclusions

Multiscale modeling tools have the capability to simulate atmo-
spheric motions across a broad range of spatio-temporal scales, cov-
ering almost all energetic scales. By using a coupling technique that
bridges meso- and micro-scales, high-resolution nested Large-Eddy Sim-
ulations can be dynamically informed by large-scale numerical weather
prediction models, resulting in more accurate and reliable simulations
of the planetary boundary layer. This approach has numerous beneficial
applications, including the wind energy sector. However, given the
inherent complexity of expensive multiscale simulations, particularly
in areas of complex terrain, numerous assumptions and fine tuning are
required to produce accurate output that is of practical importance.
Assessing the relative importance of a set of input assumptions for wind
energy applications is the main focus of the present study.

Specifically, we analyze a recent dataset of multiscale WRF simu-
lations [39] to investigate the sensitivity of wind power simulations
to different input factors in the innermost domain. Both time-averaged
estimates and time-resolved series are investigated, of both wind speed
at hub height and power production, through four-way ANOVAs. Sim-
ulations cover a four-day long, precipitation-free springtime period
and are centered over an area of complex terrain in central Portugal,
Perdigão.

First, the analyses presented in this work show significant discrep-
ancies in wind speed estimates with multiscale simulations, that lead to
even more considerable variations in wind power calculations. In par-
ticular, this variability is stronger over the ridges and in the in-between
valley. For a 2 MW wind turbine located on the South-West ridge, we
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find that the ensemble average power production predicted by multi-
scale simulations is 840 kW for a four-day time average (capacity factor
of 0.42), and that the interquartile range across the ensemble members
is approximately 250 kW. In other words, the 75th percentile estimate
predicts that up to approximately 850 standard American households
(1.2 kW/household, per day) could be powered by one single 2 MW
wind turbine, whereas the 25th percentile estimate predicts that about
625 households could be powered (assuming to perfectly match the
load). When scaling up these findings for an entire wind farm, the
variations among simulations can become significant for real-world
wind energy challenges. While there is strong potential for multiscale
simulations to fill in gaps in estimating wind energy resources, there
is a need of targeting this uncertainty to make multiscale tools fully
operational for wind energy purposes.

We further analyze the main factors that explain such uncertainty
in multiscale calculations, to inform future research directions. First,
we find that most of the ensemble discrepancies occur during day-
to-night transitions and synoptic transitions. Variance decomposition
demonstrates that the resolution of topography and land use dataset
are the primary factor of such variability. However, under specific
periods of time (i.e., synoptic and day–night transitions) simulations
are also sensitive to other factors, as mesoscale LBCs and modeling
turbulence in the gray zone, which can locally overtake topography.
The model appears insensitive to how the sub-grid scale is modeled
in the innermost domain, somewhat differently from what found in
idealized studies [70]. In other words, other factors relevant in realistic
simulations appear to be more important than the SGS model in predict-
ing hub-height wind speed with multiscale simulations. Furthermore,
in the deepest region of the valley, the topography factor is the major
driver of variability within the ensemble, regardless of the sub-period
analyzed, given the large differences in the WRF default datasets and
the ad-hoc high-resolution ones at 30 m resolutions.
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Fig. 12. Decomposition of total variance [kW2] of wind power at 78 m above ground at the turbine site on each simulated day. The total variance is reported in gray.
Decomposition of variance performed on high-resolution temporal
data (five-minutes) over the whole time series at the turbine site
indicates strong inter-daily variability, and a coherent and recurrent
daily pattern is not found. Occasionally, individual factors can per-
sistently prevail over the others for certain time frames, in driving
the overall ensemble spread. In summary, when conducting a time-
averaged analysis for applications such as optimal turbine placement
and studying regional climatology, special care should be taken in
selecting appropriate topography and land use datasets, because they
have a large effect on the long-term time-averaged wind speed. On the
other hand, for short-term forecasts of wind power, such as those one
needed for energy market applications, it appears that the way that
turbulence is modeled across scales can have significant impacts on
the final wind power forecasts. It is important to acknowledge that our
12
findings pertain specifically to our model setup at the Perdigão field
site, for the four days considered. Nevertheless, they provide valuable
insights into understanding the sensitivity of realistic multiscale exper-
iments conducted in complex terrain and shed light on the underlying
mechanisms driving this sensitivity for wind energy estimates.

Given the high computational cost of performing full-physics cou-
pled meso- to micro-scale simulations (as reported in [39]), we are
constrained to test the model’s sensitivity to only a limited set of
factors. It remains of interest to consider further initial parameters and
assumptions, including the role of canopy and grid spacing, which may
also influence predictions. Several authors [41,71] have argued that the
parameterization of forest canopy directly in the momentum equations
are critical to correctly recreate flow dynamics in the Perdigão domain.
Future sensitivity studies may thus focus on assessing how sensitive
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the model is to the adopted canopy model and its relative importance
compared to other modeling choices that real multiscale problems
require. Future work may also be directed to perform a comprehensive
evaluation of model’s skill against a range of observations for multiple
variables and resolutions, that will inform on best model practices.
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