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act

m computing promises to revolutionize our understanding of the limits of computation, and
tions in cryptography have long been evident. Today, cryptographers are actively devising po
m solutions to counter the threats posed by quantum-enabled adversaries. Meanwhile, quantu
ts are innovating quantum protocols to empower defenders. However, the broader impact of quantu
ting and quantum machine learning (QML) on other cybersecurity domains still needs to be explore
work, we investigate the potential impact of QML on cybersecurity applications of traditional M
e explore the potential advantages of quantum computing in machine learning problems specifica
to cybersecurity. Then, we describe a methodology to quantify the future impact of fault-tolera
lgorithms on real-world problems. As a case study, we apply our approach to standard metho
tasets in network intrusion detection, one of the most studied applications of machine learning
curity. Our results provide insight into the conditions for obtaining a quantum advantage and t
r future quantum hardware and software advancements.

rds: Quantum computing, Quantum machine learning, QML, Evaluation, Framework, Impact,
rincipal Component Analysis, Network Intrusion Detection, Network Security

roduction

ntum computing combines concepts from
ter science, mathematics, and physics to pro-
ovel computational model. A quantum com-
s a programmable physical system that obeys
s of quantum physics. Writing code for a
m computer means specifying the evolution
antum mechanical system such that the sys-
nal description encodes the output of the
tation. Expected to expand the way we pro-
ormation radically, quantum computing pro-
ew primitives unavailable in classical infor-
processing.

responding author
ando.bellante@polimi.it
maso.fioravanti@mail.polimi.it
hele.carimati@polimi.it
ano.zanero@polimi.it
nus.edu.sg

The impact of quantum computing exten
across a wide range of domains. Quantum sim
ulation, for example, allows researchers to mod
complex quantum systems that are intractable f
classical computers, with significant implicatio
for material science, chemistry, and fundament
physics. Additionally, quantum computing is dr
ing the development of the quantum internet, whi
aims to utilize quantum entanglement for ultr
secure communication. The emerging field of qua
tum software engineering focuses on creating too
languages, and frameworks to efficiently design a
optimize quantum algorithms, ensuring practic
and scalable implementations.

In cryptography, the influence of quantum com
puting has been particularly profound. In 199
Peter Shor published an algorithm for factoring i
tegers and solving the discrete logarithm proble
in polynomial time [1], mining the security of cu
rent asymmetric cryptography. Additional alg

t submitted to Elsevier December 23, 20
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primitives potentially threaten the security
ters of symmetric cryptography and hash-
orithms. These developments profoundly im-
cryptography, leading to the dawn of post-
m cryptography [2], a research line striv-
devise cryptographic primitives and proto-
silient to quantum-enabled attackers. Con-
ly, quantum scientists are developing proto-
aid quantum-enabled defenders [3]. Cryp-

hy, however, is not the sole domain expected
sform with the advent of practical quantum
ting.
her promising field is machine learning
where quantum computers are expected
ble processing more extensive and complex
s, potentially leading to more accurate and
t algorithms. The interest in quantum ma-
earning (QML) can be traced back to 2009
arrow et al. [4] proposed a quantum al-
to solve linear systems in time that de-

nly poly-logarithmically on the system’s size
lynomially on other parameters. This result
he way for new quantum linear algebra that
very useful in ML [5].
ltaneously, classical6 machine learning has
uccessfully applied to a wide range of cy-
rity tasks, from malware and binary anal-
7] to detecting network intrusions [8] and

al frauds [9]. As ML algorithms become in-
o both defenders’ and attackers’ arsenals for
g [10] and attacking [11, 12] computer sys-
he potential impact of QML on cybersecurity
s a natural question.
nt literature has begun exploring the perfor-
of near-term heuristic QML algorithms for

ter security problems, such as denial of ser-
botnet detection. However, the absence of
ical guarantees for these near-term heuris-
d the limitations of current hardware and
ors hinder researchers from predicting the
and performances of these algorithms on re-
datasets. The research question of how QML
pact cybersecurity in the long run when fault-
t quantum computers are available has been
explored in any previous literature to our
dge.
is work, we address this question by pre-
a theoretical analysis of the potential ad-

es of quantum computing in ML. We build a

his manuscript, the word “classical” means non-
.

simple framework to identify the conditions und
which a QML algorithm for a fault-tolerant qua
tum computer outperforms a classical one. T
goal of the framework is twofold:

• Study how the errors of QML algorithms
which are a particular kind of randomized a
proximation algorithms — affect the perfo
mance of quantum models with respect to th
classical counterparts;

• Compare the running times of quantum a
classical ML models to discover the settin
where quantum algorithms provide an adva
tage.

This framework enables cybersecurity exper
and practitioners to assess whether quantum m
chine learning algorithms can effectively addre
specific practical problems. It provides a benc
marking tool for fair comparisons of future QM
solutions in the cybersecurity domain, which w
surely be proposed in the next few years.

As a demonstrative case study, we apply t
methodology to PCA-based quantum machi
learning models for network intrusion detection,
typical ML application in cybersecurity. In partic
lar, we study how the algorithmic errors introduc
during the QML training affect the performan
of intrusion detection models on real datasets.
do so, we implement and test a numerical simu
tion of essential quantum subroutines – amplitu
estimation, phase estimation, and tomography
pure states. These subroutines are critical buil
ing blocks that enable simulations of many exi
ing QML algorithms. In our case study, we ev
uate the performances of quantum clustering (
means [13]) and quantum dimensionality reducti
(QPCA [14]) for intrusion detection.

In summary, this paper contributes to elucida
the potential impact of quantum machine learni
on cybersecurity by providing a theoretical fram
work for assessing the advantages of quantum alg
rithms over classical ones, as well as conducting
case study on PCA-based quantum algorithms f
network intrusion detection, shedding light on th
performance and feasibility in real-world scenario

The manuscript is structured as follows. In Se
tion 2, we discuss the importance of machine lear
ing in cybersecurity, the recent literature on nea
term heuristic-based QML, and describe the oppo
tunities for QML algorithms in the fault-tolera

2
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. Section 3 provides readers with the neces-
antum background to understand the pro-
ramework. Section 4 presents the evaluation
ork. Finally, in Section 5, we present the
udy on PCA-based quantum algorithms for
k intrusion detection.

antum machine learning algorithms for
puter security

e rapidly evolving landscape of computer se-
the intersection of quantum computing and
e learning has emerged as a frontier with
rmative potential. As we witness the ad-
ents in quantum technologies, researchers
mbarked on developing quantum machine
g (QML) algorithms that could find cyberse-
applications. This section explores the con-
s between computer security and quantum
e learning, discussing the current landscape
promising horizons within the fault-tolerant

.

achine learning for cybersecurity

hine learning algorithms have found
read success in cybersecurity applica-
0, 6, 15].
e unsupervised learning domain, Principal
nent Analysis (PCA) stands as an indis-
le tool for preprocessing and analyzing large,
x datasets. Its applications span anomaly
rusion detection, feature selection, and pri-
rotection. In anomaly detection [16, 17],
elps identify unusual patterns in network
system logs, or user behavior, thereby mak-
asier to detect deviations that may signal cy-
cks or malicious activities. For Intrusion De-
Systems [18] (IDS) and Malware Detection,
ids in analyzing network traffic data and mal-
mples, respectively, and reduces the feature
o preserve the most pertinent information.
ing feature selection in machine learning-
cybersecurity applications [19], PCA selects
t features, discarding less significant ones
hancing the model’s efficiency and accu-
dditionally, the application of clustering al-
s (e.g., Hierarchical, k-means, and spectral

ing) has earned significant attention as an ef-
tool for identifying patterns and anomalies
large datasets of security-relevant phenom-
e network intrusions [20, 21, 22] and mal-
3].

At the same time, supervised learning techniqu
such as Support Vector Machines (SVMs), line
regression, Neural Networks (NNs), and Convol
tional Neural Networks (CNNs) are used for mu
tiple tasks. SVMs find use in malware classi
cation [24] and intrusion detection [25], as th
can handle high-dimensional data and can segr
gate malicious activity from normal through hype
plane separation in feature space. Linear regre
sion, though traditionally employed in predicti
modeling, can also forecast the behavior of securi
metrics over time, thereby aiding proactive thre
management. Neural Networks are used, for i
stance, in phishing detection [26] and vulnerabili
identification [27], thanks to their ability to lea
complex patterns in data. Convolutional Neur
Networks have proven to be particularly effecti
in malware analysis [28, 29].

As machine learning establishes itself as a p
otal tool in cybersecurity, the potential applic
tions of quantum machine learning (QML) becom
increasingly evident. Accelerating computation
processes through quantum computing has the p
tential to significantly enhance security measur
particularly in solving complex problems such
the analysis of massive-scale datasets, symbo
execution-based malware analysis, and automat
vulnerability discovery through fuzzing.

2.2. Current research trends

In recent years, researchers have started explo
ing applying quantum machine learning to cybe
security problems. Most ongoing applied resear
focuses on designing and testing QML algorithm
for NISQ (Noisy Intermediate-scale quantum) d
vices – small, non-error-corrected quantum compu
ers. This research line expects to ease the hardwa
requirements imposed by error-corrected archite
tures and start benefiting from the first quantu
computers. The main idea is to program the qua
tum computer with parameterized gates, akin
classical neural networks, and optimize the circu
parameters using a classical computer. For a com
prehensive review of the subject, we refer to [30]

Along this research line, Kalinin and Krund
shev [31] evaluated the application of Quantu
SVM and CNN to intrusion detection. Sur
otrisongko and Musashi [32] investigated var
tional quantum algorithms for botnet detecti
based on domain generation algorithms (DGA). P
yares and Mart́ınez-Santos [33] discuss applicatio

3



Journal Pre-proof

of QML
ral Ne
of serv
variatio
gate su
vestiga
LSTM

Desp
algorit
their p
cent re
for par
signific
many
theoret
and ha
on prac
of the
perime
of thes
scale q
difficul
chine l
lations
algorit
sical co

2.3. O

Besi
have b
tum co
memor
ing tec
searche
blemat
to redu
sical co
and an
tional
rems a
Examp
rithms
ing.

Unsup
gorithm
many,
cal clu
neighb
ture m
eigenva
sparse

r-
n-
rt
w
re
g,
al
.

-
c-
al-
he
th
at
e
le
in
eir
n-
ts
on
n-
he
a-
es

es
ng
a-
ng
ss
e-
re
x-
a-
r-
al
ig-

x-
n-
ty
in
ed
re
o-
eir
ld
r-
on
Jo

ur
na

l P
re

-p
ro

of

using variational algorithms for SVM, Neu-
tworks, and an ensemble to detect denial
ice (DOS) attacks. Masum et al. [34] use
nal SVM and Neural Networks to investi-
pply chain attacks. Beaudoin et al. [35] in-
te using variational algorithms for quantum
and NN to detect Trojan-infected circuits.
ite the simplicity offered by these variational
hms, obtaining provable guarantees about
erformances remains challenging. Some re-
sults fuel the conjecture that it will be hard
ameterized quantum circuits to outperform
antly and consistently classical algorithms in
relevant areas [36]. Moreover, the lack of
ical guarantees makes quantum simulators
rdware crucial for evaluating their impact
tical applications, restricting the dimensions
datasets on which it is possible to run ex-
nts. We believe that the proper test bench
e quantum algorithms will be when NISQ-
uantum computers are available. The same
ties stand for quantum annealing and ma-
earning approached through QUBO formu-
[37]. For these reasons, we focus on QML
hms with a provable speedup over their clas-
unterparts.

pportunities in the fault-tolerant regime

des NISQ and QUBO algorithms, researchers
een investigating what fault-tolerant quan-
mputers equipped with a classically writable
y can do for machine learning. Leverag-
hniques from quantum linear algebra, re-
rs developed “quantized” versions of em-
ic machine learning algorithms [5]. They aim
ce the running time requirements of the clas-
unterparts to process data in shorter times
alyze more data with the same computa-
power. These algorithms come with theo-
nd analyses that bound their running times.
les of fault-tolerant machine learning algo-
with provable running times are the follow-

ervised learning. There are several al-
s for unsupervised learning. Among the
we cite quantum algorithms for hierarchi-
stering [38], spectral clustering [39], nearest
or [40, 41, 42], k-means [13], Gaussian mix-
odels [43], quantum algorithms for PCA ed
lue-based techniques [14], and for learning
representations [44].

Supervised learning. The literature on supe
vised algorithms is equally proceeding. For i
stance, we have quantum algorithms for Suppo
Vector Machines [45], linear regression [46], slo
feature analysis [47], and many others. There a
also some quantum algorithms for deep learnin
like quantum neural networks, convolutional neur
networks, and perceptron algorithms [48, 49, 50]

Most of these algorithms have the following im
portant characteristic: once provided quantum a
cess to the data, the complexity of the quantum
gorithms depends only polylogarithmically on t
number of data points. This starkly contrasts wi
classical algorithms, where the dependence is
least linear. The theoretical guarantees that com
with analyzing these algorithms make them suitab
for evaluating the impact of quantum computing
the future, allowing researchers to investigate th
use on realistic datasets without the need for qua
tum simulators or hardware (e.g., see experimen
in [14, 47, 51]). For this reason, we will focus
evaluating the impact of quantum machine lear
ing algorithms in the fault-tolerant regime. In t
reminder, we use QML to refer to quantum m
chine learning algorithms with provable guarante
in fault-tolerant settings.

2.4. Motivation and relevance to cybersecurity
The cybersecurity field faces growing challeng

from increasingly sophisticated threats, requiri
continual advancements in detection and mitig
tion techniques. While traditional machine learni
algorithms have demonstrated considerable succe
in areas such as intrusion detection, anomaly d
tection, and malware analysis, these methods a
increasingly strained by the scale and comple
ity of modern security problems. Quantum m
chine learning offers a potential pathway to ove
coming these limitations by enabling computation
speedups and enhanced algorithms that could s
nificantly improve cybersecurity defenses.

The primary motivation for this work is to e
plore the future implications of fault-tolerant qua
tum machine learning algorithms in cybersecuri
applications. To date, much of the research
quantum computing for cybersecurity has center
around NISQ devices, which, while promising, a
constrained by hardware limitations and lack the
retical guarantees. These limitations hinder th
scalability and applicability to large, real-wor
datasets, such as those commonly used in cybe
security. Our approach is different: we focus

4
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lgorithms designed for fault-tolerant quan-
mputers, which hold the potential to over-
hese constraints and deliver provable perfor-
guarantees. In this paper, we define a quan-
orithm as advantageous if it runs faster than
ssical version while still delivering compara-
ults. However, the exact conditions under
quantum algorithms outperform their classi-
nterparts remain uncertain, particularly in
al cybersecurity applications. This uncer-
presents both a challenge and an opportunity
arch.
work aims to address this gap by provid-
evaluation framework that allows cybersecu-
perts to systematically assess the potential
ages of QML algorithms in a fault-tolerant
. We also offer a case study on PCA-based
ly detection for network intrusion that illus-
ow such a framework can be applied to stan-
achine learning tasks, offering insights into
nd how quantum algorithms may achieve a
gful advantage. While the case study serves
case the framework, the broader contribu-
s in the methodology, which can be adapted
ous cybersecurity domains and tasks. By
g on fault-tolerant quantum computing and
hms with provable guarantees, this paper es-
es a foundation for future research that will
vant as quantum hardware advances. The
ot only highlights the potential impact of
n cybersecurity but also equips practitioners
ractical tools to evaluate this impact, ensur-
t the cybersecurity community is prepared
ess the capabilities of quantum computing
he technology matures. In summary, the mo-
behind this research is twofold: first, to

ate the theoretical underpinnings and per-
ce benefits of fault-tolerant QML algorithms
ersecurity; and second, to provide a robust
ork for practitioners to assess the practi-
ibility and scalability of these algorithms as
m computing technology continues to evolve.

antum computing background

section provides an overview of the key
m computing concepts essential for eval-
fault-tolerant quantum machine learning
algorithms. Readers seeking a brief intro-
to quantum computing are directed to Ap-
A, while a comprehensive one is available

Qubits and registers. A qubit, or quantum b
is the fundamental unit of quantum informatio
Differently from classical bits, qubits can exist in
superposition of |0⟩ and |1⟩ states and collapse
one of these states when measured. The state of
single qubit is described by a complex vector wi
two entries, from which it is possible to compu
the probability of collapsing in one state or anoth
The state of multiple qubits can be described by
complex vector of size exponential in the number
qubits, and qubits can be correlated.

Quantum algorithm. A quantum algorithm is
computational procedure that consists of two k
processes: evolving and measuring a specific in
tial quantum state multiple times. The evoluti
process involves applying a series of quantum ope
ations or gates to the initial quantum state. The
operations change the state of qubits in a controll
manner. Instead, measurement collapses the qua
tum state from its superposition of outcomes to
definite state, yielding the outcome of the comp
tation. The process of reconstructing a quantu
state requires statistics over several measuremen
and is called tomography. To perform tomograph
one must re-create the quantum state by repeati
the algorithms from scratch multiple times (e.
Theorem Appendix B.4).

Notation. We adopt Dirac’s notation, denoting
complex vector x ∈ Cn as |x⟩, for some n ∈ N, a
its transposed complex conjugate x† as ⟨x|. Tens
products |x⟩ ⊗ |y⟩ are abbreviated as |x⟩ |y⟩. F
a matrix X ∈ Rn×d, ∥X∥ represents the spectr
norm (the greatest singular value), κ(X) denot
the condition number (the ratio between the grea
est and the smallest singular values), and µ(X)
a parameter bounded by the Frobenius norm (i.

µ(X) ≤ ∥X∥F =
√∑

ij X
2
ij , see Def. Append

B.3 in Appendix B). Big-O notation is used f

algorithmic complexity, with Õ omitting polylog
rithmic terms.

3.1. Mapping quantum software on hardware

At the time of writing, numerous research ins
tutions and companies invest considerable resourc
in developing quantum computers, with some pr
totypes already available in the cloud. Curre
quantum computers have qubits in the order
hundreds and can execute gates in the order
thousands. These prototypes have neither enou
qubits nor enough quantum coherence to run a

5
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computation with a provable advantage over
l computers for problems of real interest.
heless, in the past years, some hardware ar-
ures have successfully solved computational
s of purely theoretical interest (i.e., with

ctical application) faster than any classical
ter.

n a quantum hardware platform can execute
that is computationally infeasible for clas-
mputers, it is said to have achieved quan-
premacy or quantum advantage [53, 54]. It
onable to expect that in the next decades,
m computers will be mature enough to ex-
software for more relevant problems. In-
d readers are referred to [55, 56, 57] for
rview of scalable quantum computer archi-
s. While quantum architectures are ex-
to become faster and more reliable over time,
re not projected to surpass classical archi-
s in clock time [58]. Consequently, consid-
speedups must come from algorithmic im-
ents in the number of operations executed.

e reminder, we describe the steps to con-
hen compiling quantum software into quan-
rdware. All these steps add some overhead
eeds to be considered when estimating the
ck time of a quantum algorithm.

amming. From a programmatic stand-
conceptualizing quantum computers is akin
king of an FPGA, where the circuit is de-
for mapping and execution on the device.

litate the development of quantum software,
m computers can be programmed in high-
nguages. Although these languages are less
ed than the ones we can use for classical
re, they facilitate specifying abstract gates
cuits (e.g., arbitrary qubit rotations, adders,
liers) and common subroutines such as quan-
urier transform and amplitude amplification
imation. Often, the code generated by these
vel languages is not optimized for the task
target hardware.

ilation. Quantum hardware platforms typ-
xecute only a basic set of universal quan-
ates, i.e., gates that can be combined to
ny other circuit. These gate sets often vary
rchitecture to architecture. During compi-
high-level instructions are decomposed into
ces of these gates. The Solovay-Kitaev theo-
ables efficient transpilation of quantum soft-
etween architectures, though this process can

introduce some overhead in the total number
gates [59, 60]. Optimization techniques based
heuristics are available [61] and can help reduce t
circuit size and depth. Besides dealing with circu
decomposition and optimization, compilation w
also need to take into account error correction a
connectivity constraints.

Error correction. The primary challenge
achieving large-scale quantum computers is co
structing noise-resilient qubits. Quantum Err
Correction Codes (QECC) are a set of methods th
help protect quantum information from noise. Th
usually embed one logical qubit in a bigger Hilbe
space spanned by many physical qubits and wo
by detecting errors and applying corrective gat
at runtime. QECC introduces overhead in term
of qubit quantity, number of operations, and cla
sical interaction needed to decode the errors a
control the quantum processing unit according
With current technology, this overhead is such th
asymptotic quadratic speedups are believed insuffi
cient for practical scenarios [58].

Connectivity. Another factor influencing com
pilation and effective quantum algorithm runni
time is hardware connectivity. In fact, some arch
tectures limit connectivity to interactions betwe
physically proximate qubits. To overcome this lim
itation, qubits must be swapped along the circu
using intermediate qubits to build long-range inte
actions. This introduces an overhead in the numb
of operations. During compilation, logical qub
are assigned to physical qubits to minimize lon
range interactions, as connectivity constraints m
limit circuit parallelization.

3.2. Complexity of quantum algorithms

There are different complexity measures f
quantum algorithms. As in the study of classic
algorithm complexity, at a theoretical level, we a
interested in the asymptotic scaling in the proble
parameters.

The query complexity of an algorithm is the num
ber of calls made to an oracle providing access
the problem’s input. This measure – which is al
standard in classical computer science – concea
the oracle’s implementation cost and the proce
ing cost between any two oracle calls. One of t
reasons for its adoption in quantum (and classica
computer science is the use of techniques like t
polynomial and adversarial methods to prove low
bounds in this model [62, 63].
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ample 1 - Query advantage ⇒ gate
antage.
sider a quantum application targeting
reimage attack scenario, where an ora-
provides access to a hash function (e.g.,
256), comparing the output with a tar-
hash image. The brute-force query com-
ity, evaluated in terms of hash function
s, is on the order of O(2m) for an m-
hash function. Using Grover’s search
rithm [64] with a quantum computer,
uantum computer reduces this complex-
to O(2m/2). Notably, this result only
gests a reduction in the number of hash
ction evaluations. However, in this case,
advantage in query complexity translates
an advantage in gate complexity, as the

ts of the quantum and classical oracles are
parable and vastly dominate the cost of
rmediate operations between oracle calls.
express the quantum cost in terms of time
plexity, one must delve into the imple-
tation details of the oracle (i.e., a quan-
circuit for SHA256) and consider the

rhead for error correction. An analysis of
physical resources (the number of qubits
the actual number of gates) and wall-
k time estimation, with surface error cor-
ion codes on planar connectivity, can be
nd in [65, 66].

gate complexity denotes the total number of
d two-qubit gates executed by the quantum
implementing the algorithm. This choice
from the fact that any multi-qubit gate can
omposed into a sequence of one- and two-
hat form a universal gate set and that the
otic behavior of the gate complexity remains
ted by the choice of the specific gate set.
omplexity measure is the quantum equiva-
a classical Boolean circuit’s gate complexity
ircuit-size complexity. Given the query com-
and a gate decomposition of both the oracle
e intermediate operations between the oracle
ne can determine the gate complexity.

depth of a quantum algorithm mirrors the
l circuit-depth complexity of a Boolean cir-
is the length of the longest sequence of gates
e input to the output of a quantum circuit.

Typically measured before circuit compilation
specific hardware architecture, it does not consid
Quantum Error Correction (QECC) or connectivi
issues. Depth complexity offers insight into the d
gree of parallelization achievable within a quantu
algorithm.

The time complexity gauges the wall-clock tim
required to execute the algorithm on specific har
ware. Unlike the previously mentioned asympto
complexity measures, which abstract away imp
mentation details, this metric reflects the actual e
ecution time of a quantum algorithm on the chos
hardware platform, which may impose constrain
on parallelism, available error-correcting codes, a
compilation techniques. An estimate of the tim
complexity can be derived from the query comple
ity, along with the details on the implementation
the oracles and the details of the hardware archite
ture (such as compilation, error correction, conne
tivity, and parallelization). The process of estima
ing the time complexity of a quantum algorithm
expanding the oracle, optimizing the circuit, a
considering all the hardware and technological co
straints is called resource estimation.

We clarify the previous definitions with two sim
ple examples. In Example 1, we observe that que
complexity serves as a reliable measure to asse
the efficiency of a quantum algorithm, as the a
vantages readily extend to gate and time comple
ity. Contrastingly, Example 2 emphasizes the ne
for caution when relying solely on query comple
ity. The quantum algorithm for the hidden su
group problem exhibits a stark difference betwe
query and gate complexity, challenging the assum
tion that reducing query complexity guarantees
ficiency gains in other aspects.

Researchers commonly express the complexi
of fault-tolerant quantum machine learning alg
rithms in terms of queries to input oracles. An
ogous to Example 1, in QML, the negligible co
of intermediate operations between oracle calls
ten positions memory accesses as the bottlenec
This aligns with the understanding that, in qua
tum machine learning, query complexity remains
pertinent metric, offering valuable insights into t
algorithm’s efficiency.

3.3. Classical data and quantum computers

To process classical data in a quantum com
puter, we must consider input and output oper
tions, which we survey in this section.

7
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ample 2 - Query advantage ⇏ gate
antage.
illustrative example highlighting a sig-
cant disparity between query complexity
gate complexity is the quantum algo-
m for the hidden subgroup problem [67].
this case, the algorithm requires only a
ynomial number of queries to the function
cle, seemingly indicating efficiency. How-
r, the number of gates between successive
s results in an exponential gate complex-
For this algorithm, query complexity is
a good proxy for time complexity.

Along with a quantum computer, it is
n to assume the availability of a classically-
le quantumly-readable quantum random ac-
mory (QRAM). Here, a QRAM is a memory
n be written with a classical device and re-
to queries in superposition from a quantum
A memory [m0, . . .mi, . . .mM−1] is an in-

array of size M , with entries encoded in p
quantum memory is a unitary of the kind

UQRAM : |i⟩ |0⟩ 7→ |i⟩ |mi⟩ , (1)

maps the ith address to the memory entry

e algorithms may require the binary encod-
mi in a register of qubits, as produced by
itary in Eq. 1. Others may need to en-
he entries in the amplitudes of a quantum
m⟩ = 1

∥m∥
∑M−1

i=0 mi |i⟩. Others again re-

ccess to a unitary U (a circuit) such that
(⟨0|⊗q ⊗ I)U(|0⟩⊗q ⊗ I)∥ ≤ ϵ, where A is
ix representation of a portion of the mem-
e., (α, q, ϵ)-block-encoding access to a ma-
8]). Efficient access to all these data rep-
tions can be achieved with a QRAM oracle,
ribed in Eq. 1.
le a basic multiplexer circuit can implement
pping in Eq. 1, it would have a linear depth
ory size O(Mp). There exist more effi-

ircuit implementations for creating access to
data structures, such as sparse vectors or
es [69, 70]. Fortunately, better general ar-
ures for implementing Eq. 1 exist. For in-
the bucket-brigade architecture maintains a
ircuit size of O(Mp) gates but has a depth
garithmic in the memory size [71] and is

quite resilient to generic errors [72]. Although t
first log-depth QRAM architecture was present
in 2008, quantum random access memories only r
cently started to become an active topic in the r
search community. For instance, different resear
proposals exist for implementing this architectu
on a different kind of quantum hardware [73] a
in data centers [74].

We have efficient access to a quantum memo
if the mapping in Eq.1 can be performed in tim
O(poly(log(M), p)).

Output. To retrieve data out of a quantum com
puter, the possibilities are more narrow. In QM
the output is often encoded in the amplitudes of
quantum state that the algorithm produces. Su
routines like amplitude estimation (Theorem A
pendix B.6) can be used for a single-number ou
put. In cases where the output is a vector, o
can use quantum tomography of pure states (The
rem Appendix B.4). Quantum pure-state tomogr
phy enables the reconstruction of a quantum sta
by sampling it. Given a quantum state |x⟩, t
tomography algorithm outputs an estimate x su
that ∥x − x∥2 ≤ δ by performing N = Õ

(
d
δ2

measurements [76].

4. Evaluating the quantum advantage

This section introduces a framework designed
assess the quantum advantage in machine learni
applications. We focus on cybersecurity problem
However, the methodology is general and can
adapted for evaluating the impact of QML alg
rithms in various fields. First, we analyze fau
tolerant quantum machine learning algorithms, em
phasizing the challenges posed by the data loa
ing problem and the complexities in estimati
their running times on real-world datasets. Su
sequently, we detail the methodology framewor
discussing its merits and limitations.

4.1. Fault-tolerant quantum machine learning

We discuss the caveats arising from the cost
loading classical data into a quantum device a
the challenges associated with evaluating the com
plexity and impact of a quantum machine learni
algorithm.

7Note that tomography subroutines have been recen
improved in general settings, offering a further quadra
speedup in the precision δ [75].

8
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The cost of data loading

ntum machine learning algorithms can pro-
th native quantum data, originating from
lable quantum algorithms and processes,
ssical data, derived from conventional sen-
d machinery. When assessing the cost of pro-
classical data, one must also consider the ex-
associated with compiling the unitaries that
input to the data.

plying QML to contemporary cybersecurity
ges, like network intrusion detection or mal-
nalysis, the criticality of the classical data
cost onto quantum devices becomes evi-

In some cases, refraining from considering
st by assuming that the data is pre-stored
e quantum-accessible memory may lead to
ate assessments of the quantum algorithms’
cy, as emphasized by Aaronson [77].

algorithms capitalize on the ability to store
vector using only ⌈log d⌉ qubits and anN×d
using ⌈logN⌉ + ⌈log d⌉ qubits. Amplitude
gs or block-encodings facilitate this storage.
fficient quantum memory access (Eq. 1) and
ataset preprocessing, these encodings can be
ted in polylogarithmic time in the matrix di-
ns. Detailed methods for leveraging QRAM
purpose are outlined in Appendix B.

important to highlight that these encodings
tate preprocessing the input data on a clas-
vice. This step consists of preparing a spe-
ta structure to store in the quantum memory
than the raw matrices or vectors. The pre-
ing time for a N ×d matrix is Õ(Nd) and is
d only once during loading. This process is
parallelizable, efficient to update (Õ(1) per
entry), and is an essential factor in evalu-
he quantum algorithm’s speed compared to
l methods.

idering this preprocessing input step, the ex-
exponential speedup of the quantum proce-
often lost, as one needs to pay a linear time
ading [77]. As an example, this data load-
t implies that quantum algorithms may not
antly expedite the inference phase of classi-
chine learning models whose prediction time
r in the number of features. In such cases,
e required to input the test data point into
tum memory would be comparable to the
ion time itself. Nevertheless, in situations
a model’s training or inference phase incurs
omial time cost, quantum algorithms could

still offer a comparative polynomial advantage ov
classical alternatives.

4.1.2. Complexity evaluation

The complexity of fault-tolerant quantum m
chine learning algorithms is often expressed
terms of queries to a quantum memory or in the t
tal number of gates to execute considering efficie
access to a quantum memory (i.e., polylogarithm
similar to the memory access cost in the clas
cal RAM model). Similar to Example 1 – unli
Example 2 – in QML algorithms, these two cos
are equivalent up to polylogarithmic factors. Th
equivalence makes the QRAM query complexity
robust metric for quantifying the number of simp
operations required. We leverage this fact in o
evaluation methodology, enabling decisions bas
on query complexity before executing detailed r
source estimations. The QML algorithms consi
ered here are randomized approximation algorithm
Their running times depend on some probability
failure γ and approximation error ϵ. It is possib
to trade off these parameters to expedite the
gorithm’s execution at the expense of performan
and reliability. A cybersecurity expert might wa
to tailor the amount of tolerable error and failu
probability to the problem they are trying to solv
striking the best trade-off between time efficien
and accuracy/reliability.

While theorems provide asymptotic query com
plexity for QML algorithms, comparing this com
plexity to classical algorithms is not straightfo
ward. Indeed, quantum and classical running tim
often depend on different dataset parameters. F
instance, a classical algorithm for machine learni
might depend solely on the dataset’s size. In co
trast, the query complexity of its quantum cou
terpart might depend on the effective conditi
number κ(X), some approximation error ϵ, a fa
ure probability δ, one choice of µ(X) (Def. A
pendix B.3), and other dataset-dependent param
ters. These dataset-dependent parameters are cr
ical in evaluating regimes in which the quantu
algorithm can exhibit advantages over its classic
counterparts (see Examples 3 and 4).

Failure probability. QML algorithms fail with
probability smaller than γ > 0, similar to classic
randomized algorithms. This probability can oft
be minimized by incurring in a multiplicative co
in the running time of O(log(1/γ)), which is ne
ligible in practice. Once the cybersecurity expe

9
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ample 3 - Approximation error vs
nning time.
sider an anomaly detection system based
Euclidean distances, where a test vector
s flagged as an anomaly if it falls within
dius r of vector a⃗, i.e., ∥x⃗t− a⃗∥2 ≤ r. For
tors of d features, an exact and determin-
c classical classifier would require O(d)
rations. On the other hand, a quantum
sifier that uses Theorem Appendix B.7
evaluate the distance D with an error ϵ
., estimates D ∈ [D − ϵ,D + ϵ] with high
bability) with query complexity and ex-
number of gates scaling proportionately
h the inverse error (Õ( 1ϵ )). Determining
itable value for ϵ involves striking a bal-
e between speed and classification accu-
y. If the error is too big, we risk mis-
sifying anomalous vectors, e.g., D ≤ r
D + ϵ > r. On the other hand, if the

uired error is too small, we end up with
uantum algorithm slower than its classi-
counterpart. In conclusion, the quantum
rithm seems advantageous whenever the
blem tolerates an error that is larger than
inverse number of features (ϵ ∈ Ω(1/d)).
versely, the classical algorithm seems ad-
tageous whenever the problem requires
error smaller than the inverse number of
ures (ϵ ∈ Õ(1/d)). Overall, the advan-
e is not self-evident nor easy to evaluate,
t depends on the problem and its data.

e tolerable failure probability based on the
tion, this factor accounts for a constant in
al running time.

ximation error. The output of QML al-
s approximates the output of corresponding
l subroutines. For a vector output s, we con-
n ℓ2 or ℓ∞ approximation error over the clas-
tput s, i.e., a vector s such that ∥s−s∥2 ≤ ϵ
s∥∞ ≤ ϵ. In the case of a scalar a, we

r the absolute or relative error between the
l and the quantum output, i.e., ∥a− a∥ ≤ ϵ
a∥ ≤ ϵa.

dataset-dependent parameters. Several
ters impact QML algorithms’ performance,
the maximum norm of vectors in the dataset
eorem Appendix B.7, or η in Theorem Ap-

Example 4 - Dataset parameters.
Consider a quantum and a classical algo-
rithm for fitting a PCA machine learning
model. The model consists of the first k
right singular vectors, corresponding to the
largest k singular values of a matrix X ∈
Rn×d. The running times of the classical
and the quantum algorithms are:

Õc

(
kdn√
ϵL

log
(

1
γ

))
Õq

(
kd
δ2

∥X∥
θ

1√
p
µ(X)
ϵQ

log
(

1
γ

))

Here, ϵL represents the error related to the
relative spectral gap between eigenvalues,
θ, ϵQ and δ are the quantum algorithm ap-
proximation errors, p is the amount of re-
tained variance, µ(X) as per Def. Appendix
B.3 and γ is the failure probability. Note
that the dependence on n is encapsulated in
the Õ notation, as the quantum algorithm
depends only polylogarithmically on it. One
needs to estimate the parameters governing
the query complexity of the QML algorithm
on real datasets and use these estimates to
compare the performances of the two algo-
rithms.

pendix B.10, or sq in Def. Appendix B.3), t
sparsity of the matrix, or a threshold θ ∈ (0, ∥X
for picking the chosen number of principal comp
nents (Theorem Appendix B.9). Another cri
cal quantity is the condition number of the datas
matrix. In many real-world applications, matric
are not full-rank, meaning some small singular v
ues are zero or nearly zero, potentially resulting
an unbounded condition number. Discarding si
gular values below a threshold reduces the effe
tive condition number, potentially enhancing n
merical stability and algorithm performance. T
threshold depends on the dataset, the algorith
and the application, and its optimization can ben
fit the numerical stability and the performances
the (Q)ML algorithm, as it can help regularize t
model.

4.2. The Evaluation Framework

Building on the considerations of the previo
sections, we describe a framework for evaluating t
impact of quantum machine learning algorithms
cybersecurity problems. The framework is summ
rized in Figure 1.

10
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Possible
quantum 
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Step 0

Step 2

Find range of samples 
& features

Compute resource 
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Step 4

No

Yes

Step 1

Step 3

: Framework for evaluating speedups with quantum
ms.

: Formally define the problem and identify
t classical algorithm. Start by defining a ma-
earning problem. Collaborate with experts
alize the problem, select the best classical al-
, and choose a representative dataset for as-
speedup. The best classical algorithm might
one with the best asymptotic complexity or
t performance in practice.

: Select a quantum machine learning model.
the model and maximize the amount of ap-
ation errors. Stop before the performance of
L algorithm gets worse than tolerable. a○
a candidate quantum machine learning al-
to solve the problem. The quantum al-
may not be present in literature or may

o be tailored to the problem, requiring the
a quantum algorithm researcher. b○ Model
antum algorithm with a classical algorithm
mulates the quantum procedure by artifi-
dding errors in the relevant steps, following
or types expected from the quantum algo-
theoretical structure. Design the error to

cally/pessimistically model the approxima-
ror expected in the actual quantum compu-
Fit the quantum model and find the best set
meters (e.g., approximation errors, effective
on number) that enables a satisfying perfor-
minimizing the running time. The parame-
n be found manually or using algorithms for
arameter tuning. Usually, a satisfying per-
ce matches (or improves) the classical coun-
s.

Step 2: Measure the dataset parameters that i
fluence the running time of the quantum algorith
Measure the other dataset parameters that infl
ence the quantum algorithm’s running time a
cannot be traded for time efficiency. Examples c
be the Frobenius norm of the dataset matrix, t
maximum norm of the data points, the conditi
number, or other parameters specified in the th
orem of the quantum algorithm and described
Section 4.1.2.

Step 3: Find the combinations of the number
data points and features that enable quantum a
vantage. Use the parameters found in the pre
ous steps to quantify the query complexity of t
quantum algorithm and the classical complexity
the number of data points and features increa
Estimate the dataset size (number of samples a
features) at which the QML algorithm offers a s
nificant advantage in query complexity compar
to the classical approach.

Decision: If a practical dataset size is identifi
where the quantum algorithm exhibits an adva
tage in query complexity, proceed to step 4. Ot
erwise, return to step 1 and consider using a cla
sical algorithm if no suitable quantum algorithm
are found.

Step 4: In-depth resource estimation. Select
hardware architecture with a given connectivi
and gate set, a noise model of the qubits and gat
and an error correction code. Estimate the numb
of qubits and the resources needed for a better wa
clock time than the classical algorithm. In this co
text, the resource overhead associated with achie
ing fault tolerance — namely, the increased numb
of physical qubits, execution time, and overall co
— must be critically evaluated. If the required ex
cution time per quantum gate is deemed unrealis
due to these overheads, reconsider the dataset d
mensions identified in step 3.

This methodology can be used to identify prom
ing QML applications and rule out the tasks f
which a quantum advantage cannot be reasonab
expected. It can be used to evaluate speedups bo
in the training and inference phases of QML alg
rithms. Under the assumption that the quantu
clock-time will not become faster than the clas
cal one [58] and that the theoretical analyses of t
algorithms are tight, the Decision step after st
3 suffices to understand which tasks might ben
fit from quantum advantage in the future. Ho
ever, this decision process must consider the pote

11
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ource overhead introduced by fault-tolerant
ments. Once it is established that a quan-
vantage might be plausible for a task, an
h resource estimation will provide further in-
nto the algorithm feasibility within the cur-
ate of the technology and into the necessary
re improvements that could enable the ad-
e in the future. While we expect that im-
quantum hardware will enable the prac-
of many quantum advantages, the reader
also be mindful that classical architectures
mputers are expected to improve, albeit at a
pace.

Advantages and limitations

ecision step. This conceptual framework’s
gnificant advantage and limitation lie in the
n step.
he positive side, ruling out the advantage
ML algorithm based on its QRAM query
xity might spare the researchers the burden
orming an in-depth resource estimation, en-
cybersecurity experts and practitioners to
te their evaluation of QML algorithms. In-
he parameter estimation steps (1-2) can be
ed without the need for quantum simula-

nabling theoretical studies on large and re-
datasets. Rather than simulating the algo-
on a quantum simulator, practitioners will
understand how to introduce artificial er-
the classical versions of the quantum al-
s, following the theoretical analysis of the
m algorithm. Performing in-depth resource
tions requires deep knowledge of quantum
logies, and the scientific effort needed to
proper one makes for a scientific contri-

on its own. A preliminary analysis of the
age in query complexity can be enough to
tand the potential of a QML algorithm and
he need for detailed resource estimation.
he negative side, to successfully rule out an
hm at the decision step, we need the follow-
umptions:

e quantum computer’s clock will not signif-
ntly outpace a classical one.

e asymptotic query complexity is tight (and
t loose because of proof artifacts).

e models for the simulated errors align real-
ically with actual errors.

Any deviation from these assumptions risks d
carding a valuable candidate for quantum adva
tage. Consequently, the Decision step makes t
evaluation framework a cautious approach, pote
tially missing advantageous QML candidates wh
avoiding misclassifying a suboptimal quantum
gorithm as advantageous.

Metrics for advantage. The criteria for selecti
a quantum algorithm in Step 1 could benefit fro
further elaboration.

In this work, a quantum algorithm is consider
advantageous if it demonstrates superior speed com
pared to its classical counterpart while retaini
comparable performance. However, the selecti
criteria might be based on more complex securi
properties of QML algorithms, such as their robu
ness and resilience to adversarial attacks. As of t
day, the robustness properties of many QML alg
rithms still need to be explored and require furth
research. This broader perspective could enhan
the evaluation’s depth, accounting for security b
yond raw computational efficiency.

5. Case study: PCA-based network IDSs

In this section, we demonstrate the evaluati
framework on PCA-based QML methods and re
istic datasets in one of the most studied applic
tions of ML in cybersecurity: network intrusion d
tection. Specifically, we investigate potential qua
tum speedups in the training phase of three PC
based anomaly detection algorithms: the Princip
Component Classifier (PCC) by Shyu et al. [7
the Reconstruction Loss method used in Verkerk
et al. [79], and our own extension of PCC, call
Ensemble PCC, developed to enhance detection r
bustness through an ensemble of classifiers wh
preserving the simplicity of the original metho
In all the three algorithms, PCA-extracted fe
tures are combined with the input sample in a b
nary classifier to distinguish between normal a
anomalous network traffic. We use these alg
rithms on three standard network intrusion d
tection datasets: KDDCUP99, CICIDS2017, a
DARKNET, with the goal of classifying normal ve
sus anomalous traffic.

The machine learning training pipeline for the
anomaly detection methods typically consists
three main stages: data preprocessing, PCA mod
extraction, and fine-tuning. Among these, the PC
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extraction step is often the most computa-
intensive and resource-demanding, partic-

in the classical setting. Our analysis specif-
ocuses on comparing the quantum and clas-
mputational costs for this step, as it repre-
he primary computational bottleneck in the
l pipeline. However, classical preprocessing
e-tuning can sometimes incur higher costs
e quantum model extraction step, highlight-
need for equivalent quantum algorithms to

s these stages. While a thorough evaluation
tum preprocessing and fine-tuning would be
ble extension of this work, it lies beyond the
f the present study.

selected these PCA-based methods due to
implicity and wide applicability. First, sim-
L algorithms are essential building blocks
eloping more complex quantum models. Sec-
mple ML algorithms are particularly valu-
cybersecurity domains — such as defense

ber-physical systems — where interpretabil-
explainability are crucial [80]. These fields
transparency in automated decision-making
es, making simple, explainable models ideal
evaluation.

rtantly, this paper does not aim to improve
he latest state-of-the-art results in network
n detection. While more complex machine
g models may offer better detection perfor-
our goal is is to demonstrate the application
evaluation framework in investigating quan-
eedups. The simplicity of the algorithms
is deliberate, as it allows us to focus on the
m of assessing quantum versus classical com-
nal efficiency. This section showcases how to
ur methodology’s core steps (1, 2, 3, and De-
, with additional discussion on the resource
tion provided in Section 5.8. Although future
ay explore quantum speedups for more so-
ated models, such as neural networks or more
ed ensemble methods, these comparisons are
the scope of this study.

nomaly detection algorithms

e following, we denote the standardized in-
ta matrix as X ∈ Rn×d, having n samples, d
s, and rank r. The principal components
are the eigenvectors of the covariance ma-
TX ∈ Rd×d, denoted by {ei}ri . Their index
corresponds to the one of the eigenvalues
ordered decreasingly λ1 ≥ · · · ≥ λr. Given

Table 1: PCA model parameters.

Parameters Description
ei ith Principal component

λi
ith Eigenvalue

of the covariance matrix

pmaj (min)
Amount of variance explained
by the top (least) eigenvalues

θmaj (min)
Cut-off threshold for

the top (least) eigenvalues
k Number of top eigenvalues
q Number of least eigenvalues

a set S ∈ [r], the variance explained by the comp

nents in S is p =
∑

i∈S λi∑r
j=1 λj

∈ [0, 1].

Fitting a PCA model means retrieving the prin
pal components and corresponding eigenvalues th
explain a total variance p. Usually, we are i
terested in the top-k components (major), thou
sometimes the least-q (minor) are of interest too.
this case, we denote the largest threshold such th
the principal components with eigenvalues

√
λi >

explain variance pmaj as θ ∈ (0,
√
λ1) and the sma

est threshold such that the principal componen
with eigenvalues

√
λi < θmin explain variance pm

as θmin ∈ (0,
√
λ1). These parameters are summ

rized in Table 1.
We proceed to describe the three anomaly dete

tion algorithms and report the quantum routin
that allow model fitting. The case study focuses
the advantages that the quantum routines can pr
vide for the extracting the PCA model during t
training phase, as this constitutes the algorithm
computational bottleneck. In all of these mode
the PCA features are computed on a training set
normal (non-anomalous) data.

Principal Component Classifier (PCC). T
first anomaly detection algorithm is by Shyu
al. [78]. Combining the input sample and the e
tracted PCA features, the algorithm computes tw
sums and compares them against two anomaly d

tection threshold. The two sums are T1 =
∑k

i=1

and T2 =
∑r

i=r−q+1
y2
i

λi
, where k and q are t

number of major and minor principal componen
(explaining variance pmaj and pmin) and yi = eTi
with z vector of standardized observations and
i-th eigenvector corresponding to the λi eigenvalu
The algorithm classifies an observation z as an a
tack if (T1 > c1 or T2 > c2), where c1 and c2 a
the outlier thresholds. The outlier threshold a

13
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Output

Preprocessing

Threshold 
Comparison

Standardization

Anomaly

Input sample z

T1

T2

> c1

> c2

Sums computation

∑
i ∈ top−k

(eT
i z)2

λi

∑
i ∈ least−q

(eT
i z)2

λi

OR 1

Principal components  
ei

Eigenvalues  
λi

PCA model

(a) Principal Component Classifier (PCC).

Output

Preprocessing

Threshold 
Comparison

Standardization

Anomaly

Input sample z

T1

T3

> c1

> c3

Sums computation

∑
i ∈ top−k

(eT
i z)2

λi

OR 1

Principal components  
ei

Eigenvalues  
λi

PCA model

∑
i ∈ top−k

cos_sim(ei, z)2

λi

∑
i ∈ top−k

corrcoef(z, ei)20,1
λi

> c2
T2

(b) Ensemble PCC (major components).

Output

Preprocessing

Threshold 
Comparison

Standardization

Anomaly

Input sample z

> c

SSE computation

∑
i ∈ d

(zi − yi)2 yes

Principal components  
ei

PCA model

y = E(k)E(k)Tz

Projection

y
’s columns are the top-k E ei

(c) Reconstruction Loss.

Figure 2: Detection procedures of the three considered PCA-based anomaly detection classifiers.

ted on a validation set using a function of T1
, respectively, plus a parameter called false
rate α ∈ (0, 1) [78]. An increase of α corre-
to a decrease in the outlier thresholds, lead-
algorithm to detect more anomalies at the

es of false positives. Sometimes we only use
on the top principal components, without

ting T2 and c2, we call this PCC with ma-
ponents. We summarize the PCC detection
ure in Figure 2a.

ble PCC. We extend the PCC algorithm
posing two novel ways of computing yi, us-
ine similarity and correlation measures, in
n to the original dot product between ei and
cosine similarity between ei and z is com-

s yi =
eT
i z

∥ei∥∥z∥ , while the correlation is com-

sing the corrcoef function from Numpy [81].
ble PCC computes three sums for the top-k
al components and three for the least-q. Like

in PCC, each sum is compared again a threshold.
any sum exceeds this threshold, then the input sam
ple is labeled as an anomaly. We call this meth
Ensemble PCC because the algorithm is equivale
to running three variations of PCC and labeling t
sample as anomalous if any of the three models ou
puts so. We observe that this ensemble improv
the performance of PCC. Figure 2b shows the E
sable PCC detection pipeline with major comp
nents.

Reconstruction loss. The reconstruction lo
anomaly detection algorithm has been widely em
ployed for a large variety of tasks. One examp
of its use in network intrusion detection is given
Verkerken et al. [79]. The key idea in this algorith
is that the top PCA components extracted from
training set of normal data can be used to expla
normal data, but introduce errors when used to e
press anomalous data. To classify an input samp
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Output

ϵ

Threshold computation

Principal components  
ei

Eigenvalues  
λi

Dataset

pmax (min)

η

Binary search for θ

PCA feature extraction

Extraction

θmax (min)

δ

Theorem B.8

Theorem B.9

Top-k (Least-q)

Top-k (Least-q)

Figure 3: Quantum PCA model extraction.

orithm projects it onto the space of principal
nents and then back into the original feature
This process of projecting the sample into
dimensional space and back leads to a re-
ction error: the method computes the loss
sum of square error (SSE) and use it as an
ly score. The SSE sum is compared against
hold and if the error is too large the sample
beled as an anomaly. The detection pipeline
cted in Figure 2c.

model extraction. The aim of the case
s to compare the classical and quantum run-
es needed to extract the PCA features from

ining set of normal data points. These fea-
an then be used in all the three detection
hms explained above.

quantum routines that can be used to fit
A models are explained in detail by Bellante
[14]. The important routines are reported
orems Appendix B.8, Appendix B.9 and
rized in the following list.

antum binary search for θ (Theorem Ap-
ndix B.8). Given an amount p of target
plained variance and a tolerance parameter
the quantum routine finds a threshold θ for
e eigenvalues such that the top-k (least-q,
th a minor fix) components selected by θ ex-
ain at least p variance, with ∥p− p∥ ≤ η.
cause of the quantum phase estimation er-
r, the routine also needs an error parame-
r ϵ to estimate the eigenvalues on which the
reshold θ is learned. The routine runs in
µ(A) log(µ(A)/ϵ)

ϵη ).

antum PCA extraction (Theorem Appendix
9, note ei = vi). Given a threshold
the second routine enables extracting the
envalues λi and the top principal compo-
nts ei. The first task can be done in

Õ(∥X∥µ(X)k log(k)
θ
√
pϵ ) to error ∥λi − λi∥ ≤ 2ϵ

√
λ

while the latter takes Õ(dk ∥X∥µ(X) log(k) log(d
θ
√
pϵδ2

to estimate the top-k principal componen
such that ∥ei − ei∥2 ≤ δ. This theorem c
be modified (flip the condition of Alg. 4, st
3 [14]) to extract the least-q principal comp
nents and eigenvalues. Provided a thresho
θmin, it can find the corresponding minor com

ponents in time Õ( θmin

σmin

µ(X)
ϵ

qd√
pmin

) with gua

antee ∥ei − ei∥2 ≤ δ.

The quantum PCAmodel extraction pipeline a
the input parameters are represented in Figure 3

Depending on whether we require both the maj
and minor components or only the major ones,
compare the quantum running times with one
two classical alternatives: either the full singul
value decomposition (SVD) with a complexity
O(min(nd2, n2d)), or, if only the major componen
are needed, a randomized PCA variant with a low
complexity of O(ndk log(k)) [82]. The running tim
parameters of these algorithms are summarized
Table 2.

5.2. Experimental settings

To simulate the PCA model extraction and pe
form the training, we selected classical PCA-bas
methods implemented in scikit-learn [83], whi
uses the numerical methods of LAPACK [84], a
modified them to model the error of the quantu
subroutines8.

For the classical simulation of the quantum e
rors, we implemented Theorem Appendix B.9 f
top-k singular vector extractor (and Theorem A
pendix B.10 for clustering), which are based

8https://github.com/tommasofioravanti/sq-learn
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PCA model computation - running time parame-

eters Description
Number of training datapoints

d
Number of features

or principal components’ size

(q)
Number of top (least) principal

components/eigenvalues to extract
∥ Dataset’s spectral norm

X)
Dataset’s normalization parameter

(see Def Appendix B.3)

(min)
Amount of variance explained
by the top (least) eigenvalues

(min)
Cut-off threshold for

the top (least) eigenvalues

in Smallest value of all
√
λi

η Max error allowed on pmaj (min)

ϵ Max error allowed on each
√
λi

δ
Max error allowed on each ei,

in ℓ2 norm

m pure state tomography (Theorem Ap-
B.4), amplitude estimation (Theorem Ap-
B.6), and phase estimation (Theorem Ap-
B.5). Theoretically, these QML routines

running time advantage over their classical
rparts with high-dimensional data.
fit our model on three publicly available
s: KDDCUP999 [86], CIC-IDS2017 [87], and
NET [88]. In Appendix C, we report addi-
experiments on the tomography subroutine
CIC-MALMEM-2022 [89] dataset. For each
, we measure the parameters that influence
orithms’ running time and find the range of
s and samples that would enable quantum
age. The goal of this use case analysis is to
re the performance of training models using
m algorithms against their classical counter-
y: 1○ studying the influence of the intrin-
r that affects quantum-machine-learning al-
s on the detection task and 2○ evaluating
ected quantum running time as the dataset

idering the characteristics of the dataset un-
alysis (i.e., number of features, number of

are aware of selected datasets’ limitations (especially
CUP99 [85, 86]). We use such datasets only to
mpare the performance of classical and quantum
ms, with the goal of understanding the long-term
of quantum machine learning.

points, effective condition number, approximati
errors), we study the trade-off between the qua
tum algorithms’ detection performance and ru
ning time, aiming at finding the “working poin
that matches classical performances while minim
ing the quantum algorithm’s execution time.
particular, we fix the error parameters and eval
ate the theoretical running time varying the num
ber of samples and features. We then compa
the running times of the classical and the quantu
anomaly detection models to quantify the datas
dimensions needed to observe any quantum a
vantage, discussing which cybersecurity tasks m
match such requirements.

In our analysis, we do not consider the time r
quired to acquire the data in a classical (quantu
readable) memory, as these procedures are to
performed only once when the data is received a
need to be done in either case. In Appendix
we conduct further experiments on clustering wi
PCA-based dimensionality reduction and the qua
tum version of k-means. For this problem, while u
ing a cybersecurity-related dataset, we do not pe
form anomaly detection, but we compare the qua
tum and the classical algorithm on a clustering me
ric and show that the two algorithms offer simil
performance.

Tomography heuristics. Appendix C discuss
an analysis of our realistic simulation of the tomo
raphy subroutine. Tomography sample complexi

scales as O
(

d log d
δ2

)
, where d is the vector size. E

periments suggest that decreasing the number
samples by a significant constant factor still pr
duces a near δ-accurate reconstruction of the sta
vector. We witness cases where we can save a co
stant factor up to ≈ 103 in sample complexity fro
for δ = 0.03, d = 55 (expected ≈ 107). This heur
tic is used in the results of Section 5.5.

5.3. PCC over KDDCUP99

We execute the principal component classifi
over the KDDCUP99 dataset. While we perfor
a set of experiments varying the percentage of va
ance retained by the models, here we report t
results of PCA70 and QPCA70, which retain 70
of the variance in the major components.

Regarding the dataset, we consider numerical fe
tures and split the dataset into a training set
5, 000 normal samples and a test set of 92, 278 no
mal samples and 39, 674 attacks. The training s
is extracted using trimming to remove outliers a
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: Comparison for classical c○ (PCA70) and quan-
(QPCA70) principal components classifier with ma-
onents only over KDDCUP99.

Recall (%) Precision (%) F1-score (%) Accuracy (%)
c q c q c q c q

93.14 92.84 98.63 98.68 95.81 95.67 97.55 97.47
93.19 92.88 98.18 98.23 95.62 95.48 97.43 97.35
96.04 95.75 96.51 96.57 96.28 96.15 97.76 97.69
98.51 98.12 94.20 92.21 96.30 96.12 97.72 97.62
98.67 98.36 92.01 92.07 95.22 95.11 97.02 96.69
99.44 99.12 90.05 90.10 94.51 94.40 96.53 96.46

atic random sampling (see Appendix E).
es are normalized and scaled for both test
ining sets, with constant features removed.

mance analysis with Major Compo-
only. We classify a sample as an attack only
c1 and normal otherwise (with c1 varying

ing to α). Results for PCA70 and QPCA70
orted in Table 3, varying the false alarm rate
, 1). For the quantum experiment, we con-
he following error parameters: we use the
m binary search of Theorem Appendix B.8
ate θ, with parameters p = 0.70, ϵθ = 1 as
that |σi − σi| ≤ ϵθ, and η = 0.1 such that

| ≤ η; we use Theorem Appendix B.9 to ex-

i and λi with parameters ϵ = 1 to estimate
r values such that |λi − λi| ≤ ϵ, and δ = 0.1
rror we tolerate in estimating singular vec-
ch that ∥ei − ei∥2 ≤ δ. With these error
ters, we match classical performances. As α
es, recall increases, and precision decreases.
expected because increasing α increases the
arm rate, resulting in a lower outlier thresh-
d more observations being classified as at-
In Appendix D, we extend this experiment
he minor components, too.

ng time analysis with Major Compo-
only. We compare the algorithms by plot-
e classical and the quantum complexity,
the number of samples n and features d.
quantum running time, we consider the time
xity of the quantum binary search and the
m top-k singular vector extraction. The first

ost of Õ
(

µ(X)
ϵη log

(
µ(X)

ϵ

))
, while the latter

s Õ
(
dk ∥X∥µ(X)

θ
√
pϵδ2 log(k) log(d)

)
queries to es-

the top-k right singular vectors and values.
pare the quantum running time with a ran-
d classical version of PCA, which has a com-
of O(ndk log(k)) [82] (since we are focusing
major components only, there are better op-
han performing the full SVD, whose com-

plexity is O(min{nd2, n2d})). Figure 4a compar
the quantum and classical running times in bl
and green, respectively. We observe that the use
QML is not advantageous for small datasets. Ho
ever, as the dataset’s dimensionality increases, t
query complexity advantage becomes evident (e.
after ≈ 4 ∗ 106 samples and ≈ 50 features).

5.4. PCC and Ensemble over CICIDS2017

We consider the principal component classifi
with major and minor components and the C
CIDS2017 dataset with DDoS attacks and norm
samples. The training set comprises 5, 000 norm
samples, while the test set of 87, 300 normal a
70, 000 DDoS samples. We follow the same prepr
cessing performed on the KDDCUP dataset.

Performance analysis. In Table 4, we repo
the performance of QPCA70 (column q1) for PC
with major and minor components, using error p
rameters δ = 0.1, ϵ = ϵθ = 1, η = 0.1, γ =

θmin =
√
0.20, and varying the false alarm ra

α. Using these parameters, we observe that t
QPCA-70 model matches the performances of t
classical equivalent (similar to the analysis of T
ble 3). The performances of both the classical a
quantum PCC algorithms on CICIDS2017 (Table
q1) are significantly worse than the ones on KD
CUP99 with major components only (Table 3).

Keeping the same parameters, we assess the d
tection performance of the ensemble method (
improvement of PCC, first proposed here). T
ensemble model improves the performance of PC
particularly recall and accuracy, by utilizing six c
teria for classifying an attack instead of two. Th
results in an improved recall, with a decrease
false negatives at the expense of false positiv
Despite the drop in precision, the substantial r
call improvements account for an overall F1-sco
increase. These results significantly improve ov
PCC, as seen in Table 4.

Running time analysis. We compare the ru
ning times by plotting the classical and the qua
tum complexity, varying the number of samp
n and features d. We consider the classical fu
SVD time complexity O

(
nd2

)
to measure the cla

sical running time, as we need all the componen
For the quantum computation, instead, we co
sider the running time of quantum binary sear
and the quantum top-k singular vectors extract
to estimate the top-k components, plus the ru
ning time of the quantum least-q singular vecto
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: Running time comparison of classical (green) and quantum (blue) algorithms. In Plot 4a we show the comparison
d QPCA of Section 5.3 (KDDCUP99). In Plot 4b we show the running times of the algorithms discussed in Section
2017). In Plot 4c we show the comparison between PCA and QPCA over the CICIDS2017 dataset, as per Section 5

or to estimate the minor components, which
min

min

µ(X)
ϵ

qd√
pmin

)
, where θmin is the custom θ

to the function to extract the least singular
and pmin is the variance retained from the
mponents. In Figure 4b, the quantum and
ssical running times are presented in blue
een, respectively.
xpected, the depicted running times are no-
igher than those in the KDDCUP99 experi-
ue to the comparison with classical full SVD
xity rather than the randomized one. Ad-
lly, the quantum case involves not only bi-
arch and top-k right singular vectors extrac-
t also the least-q extraction, contributing to
ed quantum running time. A quantum ad-
e in query complexity emerges with a large
of ≈ 2 ∗ 109 samples and ≈ 100 features.
absence of a quantum advantage over clas-
achine learning, as demonstrated by the full
l SVD with a dataset of ≈ 3 ∗ 107 samples
0 features, suggests that quantum is not par-
ly beneficial for problems requiring the ex-
n of minor components. Moreover, lever-
a more efficient classical algorithm for ex-
g minor components, such as Minor Com-
Analysis (MCA) [90], would likely diminish
antum advantage further, posing challenges
ctical application in intrusion detection.

econstruction loss over CICIDS2017

t the PCA-based model with reconstruction
er the CICIDS2017 dataset, including all the
f attacks in the anomalous class, following
e preprocessing of Section 5.4. Unlike previ-
eriments, we perform hyper-parameter tun-
a validation set and preprocess the data with

Table 4: Comparison for QPCA70 with both major and m
nor components (q1) and QPCA70 ensemble (q2) over C
CIDS.

α (%) Recall (%) Precision (%) F1-score (%) Accuracy (%
q1 q2 q1 q2 q1 q2 q1 q2

1 36.05 39.80 96.94 95.30 52.55 56.15 70.36 71.6
2 58.97 73.84 96.54 94.07 73.22 82.74 80.35 85.9
4 63.30 89.61 94.36 90.79 75.77 90.19 81.56 91.1
6 63.37 96.96 91.61 87.25 74.92 91.85 80.68 92.1
8 64.43 97.56 88.99 83.45 74.75 89.95 80.17 90.0
10 65.90 97.78 86.92 80.44 74.97 88.27 79.96 88.1

a quantile transform (see Appendix E). For t
training set, we use 50, 000 normal samples; for t
validation set, 60, 000 normal samples and 166, 9
attacks; finally, for the test set, we use 140, 000 no
mal samples and 389, 590 attacks, following [7
Through hyper-parameters tuning, we found th
the best PCA model has 12 principal componen
which retain 94.88% of the variance. The outl
threshold is t = 0.425: each sample whose anoma
score (defined in Section 5.1) is higher than t
classified as anomalous.

Performance analysis. We found that the e
ror parameters needed to match the performanc
of the classical algorithm are ϵθ = ϵ = 0.3, η
0.00075, and we set γ to 1

d . With these error p
rameters, we extract the same number of princip
components of the classical model and explore pe
turbations on δ (the error on the singular vector
Setting δ = 0.01, we match the classical perfo
mances. By increasing δ, the model tends to class
data points as attacks, as shown by the precisi
and recall trends in Table 5.

Running time analysis. For this experiment,
used the heuristic insights obtained on the tomogr
phy subroutine (see Section 5 and Appendix C):
target an approximation error δ = 0.01 but divi
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Comparison of the classical (c) PCA and quantum
A principal components classifier with reconstruc-
over CICIDS, varying δ error.

Recall (%) Precision (%) F1-score (%) Accuracy (%)
q c q c q c q c
9.12

99.12

91.28

91.28

95.04

95.04

98.08

98.08
9.17 91.23 95.03 98.08
9.79 71.31 83.18 92.52
100 27.30 42.89 50.66

: Running time comparison of classical (green) and
(blue) algorithms for Rec. Loss over DARKNET.

ple complexity of pure state tomography by
r of 100. While this heuristic sacrifices prov-
arantees, the model performs comparably to
ssical counterpart in the testing phase.
re 4c illustrates how the quantum and clas-
unning times scale. This model on CI-
017 has more principal components than
ith major components over KDDCUP99, re-
in higher running times. Specifically, the
model requires 32 components (retaining

.75% of the variance) compared to the PCC
ajor components only, which has 6 compo-
retaining p = 70% of the variance). For this
the QML algorithms achieve advantage af-
∗ 109 samples.

econstruction loss over DARKNET

present the results obtained on PCA with
truction loss over DARKNET. The test
prises 21, 000 normal samples and 14, 000

lies, the training set uses 50, 000 normal sam-
d the validation set has 20, 000 normal sam-
us 10, 000 anomalies. The d = 85 features
een normalized and scaled to 0 mean and
riance. The hyperparameter search optimiz-
F1-score over the classical PCA finds that
rter running time is obtained with 35 prin-
mponents (which retain 99.65% of the vari-
nd outlier threshold t = 0.443.

mance analysis. In the quantum model,
or parameters are set to ϵθ = ϵ = 0.35, η =

Table 6: Comparison of the classical (c) PCA and quantu
(q) QPCA principal components classifier with reconstr
tion loss over DARKNET, varying δ error. In the first ro
we use the heuristic described in Appendix C. To get
error δ = 0.01 we should use s = (36 d log d

0.01
) samples, but

see that h = s/100 suffice.

δ Recall Precision F1-score Accuracy
q c q c q c q c

h 84.40
84.17

73.18
73.71

78.39
78.59

81.07
81.30.9 87.08 68.12 76.44 78.17

2 91.47 59.97 72.44 71.69

0.0011, and p = 99.65%. With these parameters,
principal components are extracted, aligning wi
the classical case. Table 6 compares classical (
and quantum (q) performances, showing how t
model tends to classify data points as attacks
the error δ increases, similar to the previous C
CIDS2017 experiment. We achieve almost the sam
performances of the classical algorithm by using t
heuristic and setting the theoretical error on sing
lar vectors to δ = 0.1 (i.e., setting s = 36d log d

δ2 wi
δ = 0.01 but taking s/100 samples).

Running time analysis. We plot the runni
time comparison in Figure 5 using the paramete
obtained from the hyperparameter search. We o
serve a quantum advantage in query complexi
with 108 samples for dataset features up to hu
dreds.

5.7. Decision

Upon initial examination, the dataset paramete
required for the theoretical quantum advantage
not appear unrealistic, considering the volume
network packets companies receive daily. For i
stance, Microsoft’s reported DDoS attack in Ja
uary 2022 involved 3.47 Terabit of data per seco
(340 millions of packets per second) [91]. Using
training dataset from such an attack and consi
ering ≈ 50 features, the quantum model requir
≈ 1.3 ∗ 108 operations against ≈ 3.9 ∗ 1010 of t
randomized classical model (see Figure 4a). Gith
also suffered a significant DDoS attack of about 1.
Terabit per second with about 130 millions of pac
ets per second [92]. In this case, a quantum mod
would require ≈ 1.4 ∗ 108 steps against ≈ 1.3 ∗ 10
of the classical one.

While this suggests a theoretical gap in oper
tions of about two orders of magnitude, the a
vantage appears only for massive datasets. Ther
fore, the practical applicability of these QML alg
rithms for PCA-based network intrusion detecti
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s to be limited to large companies or organi-
with the resources to handle vast amounts
, computational power, time, and energy. In
n, for this particular PCA-based analysis, we
ed high generalization performances by ex-
g the principal components on a small subset
(≈ 5000 or ≈ 50000 samples), rendering the
r such extensive datasets seemingly unreal-
r this application.
ite these considerations, we proceed with
h resource estimation to gauge the current
f quantum technology for these algorithms.

esource estimation

is subsection, we analyze some key quanti-
the oracle implementation of the QRAM,
n the code 10 and analysis of Di Matteo et
. While we refrain from performing an ex-
e resource estimation, this preliminary anal-
the execution time of a QRAM query indi-
he current state of quantum hardware. We
n the QRAM Bucket Brigade parallel cir-
out of Di Matteo et al. [70], which provides
d depth at the expenses of an increased num-
auxiliary qubits. The analysis is performed
erconducting hardware with a defect-based
orrecting surface code.
consider a dataset with n = 107 rows and
features, stored in a KP-tree (see Appendix
Theorem Appendix B.2) to allow quantum
to the dataset. This data structure consists
s with a total of O(nd log(nd)) nodes. The
t of these nodes can be stored using an ad-
pace of ⌈log2(nm log2(nm))⌉ = 34 bits, as-
a system word size of 1 bit. Although a
ord size is optimistic, it simplifies the cir-
lowing us to directly apply the architectural
tes from Di Matteo et al. In practice, a
word size might be more realistic, but even
he optimistic 1-bit assumption, the results
strate the substantial resources required by
AM circuit.
configuration would require approximately

1011 logical qubits and a circuit depth of 539
This circuit also incurs a T-gate count of
1011, a T-depth of 67, and a Clifford gate
f 9.28 × 1011. For error correction, we base
lysis on a superconducting architecture with

s://github.com/glassnotes/FT_qRAM_Circuits/

ster

a defect-based surface code. Considering the sam
parameters of Di Matteo et al., we assume har
ware with a gate error probability of 10−5, a failu
probability for the magic states in the first concat
nation layer of the QECC of 10−4, and a surfa
code cycle of 200ns.

While these assumptions are intentionally op
mistic considering current hardware, they highlig
the significant challenges that remain. Under the
settings, a single QRAM query would take appro
imately 1.07ms and require 2.08 × 1014 physic
qubits. Looking more at the near future, less som
realistic parameters would be hardware with a ga
error probability of 10−3, a failure probability f
the magic states in the first concatenation lay
of the QECC of 10−2, and a surface code cyc
of 1µs. With these parameters, a single QRA
query would take approximately 28.1ms and requ
7.31× 1016 physical qubits.

These numbers underscore the notable dispari
in access time between a QRAM and a classic
RAM, whose access time is in the scale of nanose
onds. This distinction in access time has cascadi
implications for the requirements on dataset siz
Even a theoretical advantage of two orders of ma
nitude would not sufficiently compensate for the d
ference in memory access speed.

Finally, the sheer volume of physical qubits r
quired is currently beyond the reach of today’s tec
nological trends. This underscores the practic
limitations and emphasizes the considerable tec
nological advancements needed to bridge the g
between theoretical potential and current quantu
hardware capabilities for practical impacts.

6. Conclusions

In this work, we analyzed the potential impa
of QML on cybersecurity tasks. We introduced
methodology for assessing quantum machine lear
ing algorithms’ impact on specific security pro
lems. Besides laying out a clear methodology f
studying quantum advantage in ML for cybersec
rity, we demonstrated its application to fundame
tal algorithms used in network intrusion detecti
as a case study.

The results presented in this work show th
QML techniques are unlikely to outperform cla
sical methods for intrusion detection on sm
datasets. In our case study, a quantum advanta
in query complexity becomes apparent as the pro
lem size surpasses 4 ∗ 106 samples and 50 featur
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are settings where we observed significant
ical gaps between the quantum and the clas-
odels’ running times. These requirements in
ber of features and samples are potentially

ting for the intrusion detection domain since
ign with publicly available datasets and real-
cenarios [91, 93, 92]. However, the hardware
wns highlighted in Sec. 5.8 shift the advan-
bigger datasets, requiring even more phys-
bits than estimated and making the advan-
likely any soon.

case study suggests that fault-tolerant quan-
mputing could bring an asymptotic run-
me advantage, though more likely only for
e-scale datasets. However, the first genera-
quantum computers is not expected to work
sets of this size. Unless there is a significant
ement in hardware technology in the coming
the sheer size of massive datasets will signif-
exceed the capabilities of hardware imple-
ions.

evaluation framework can help the cyberse-
community find useful applications of quan-
achine learning algorithms in practically rel-
asks and better distinguish the hype often
ted with new technologies from their practi-
act. As more experts and practitioners from
d start practicing with the technologies, it
possible to acquire a better understanding
potential of quantum machine learning and
ay it will impact future users, markets, and
defense dynamics.
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dix A. Brief introduction to quan-
tum information

fundamental unit of quantum information is
it. The state of a qubit can be expressed as
r combination of vectors from an orthonor-
sis of C2, such that the sum of squares of
solute values of the coefficients sums up to
ften, we express states using the computa-

basis |0⟩ =
[
1 0

]T
, |1⟩ =

[
0 1

]T
, mean-

t a generic qubit state can be written as
|0⟩+β |1⟩, with α, β ∈ C and |α|2+|β|2 = 1.
efficients are also called amplitudes and if
han one is non-zero, we say that the state is
perposition of the basis states.
uantum register is an ensemble of qubits.
n express the state of a quantum register

= 1
∥v∥

∑2n−1
i=0 vi |i⟩ ∈ C2n , where n ∈ N is

mber of qubits in the register, each vi ∈ C,
2n−1
i=0 |vi|2 = 1. Here |i⟩ is the i-th vec-
the computational basis of C2n ; i.e., |i⟩ =
i1⟩ ⊗ · · · ⊗ |in−1⟩, where ij denotes the jth

the binary encoding of i. This representa-
analogous to the decomposition of a vector
computational basis of a vector space. It is
to note that n qubits suffice to span a space
nsion 2n.
antum algorithm consists of evolving and
ing a certain initial state, multiple times.
evolution of a n-qubits quantum state is de-
by a unitary matrix U ∈ C2n×2n ; i.e., a
such that U†U = UU† = I. These ma-
reserve norms, mapping quantum states to
alid quantum states. Any quantum algo-
excluding measurements, corresponds to a
matrix. These matrices can be decomposed
and two-qubits quantum gates, the basic el-
of quantum circuits.
utions can be combined – multiplications
nsor products of unitary matrices are still
. In practice, the reader might find it conve-
o think of multiplications of unitary matri-
ircuits applied to the same qubits (in series)
nsor products as circuits applied to differ-
its (in parallel). The evolution of quantum
is a unitary operation that requires quan-
tes to be reversible. Classical non-reversible
such as the AND) have reversible counterparts
), implemented at the cost of introducing
uxiliary qubits.
ding data from quantum states is not as im-
e as accessing a memory location on a clas-

sical computer. While quantum states can be in
superposition of the computational basis, quantu
mechanics doesn’t allow us to retrieve all the info
mation at once from these superpositions. Measur
ments are modeled through a set of measureme

operators {Mm}2n−1
m=0 such that

∑2n−1
m=0 M

†
mMm

1, with each Mm ∈ C2n . The probability th
an outcome m occurs for a state |φ⟩ is given
p(m) = ⟨φ|M†

mMm |φ⟩, and after themth outcom
is measured, the state collapses on a new sta

|φ′⟩ = Mm|φ⟩√
⟨φ|M†

mMm|φ⟩
. In this work, we can restr

the measurement operators to {|i⟩⟨i|}2n−1
i=0 . In th

case, the resulting state of the quantum register
a vector of the computational basis. In practice,
we measure a register (or a portion of it), we c
only see one bit-string corresponding to one com
putational basis state that the register decompos
onto (a sequence of 0s and 1s, like in a classic
register).

After the measurement, the register (or t
qubits read) will lose the superposition and c
lapse on the measured state without providing fu
ther information on the amplitudes. The process
reconstructing the amplitudes of a quantum sta
with respect to a given basis, requires statistics ov
several measurements and is called tomography
pure states. The reversibility of quantum mechan
prevents a generic copying algorithm from existi
(no-cloning theorem). To perform tomography, o
must re-create the quantum state by repeating t
algorithms from scratch multiple times and samp
(Theorem Appendix B.4).

Appendix B. Algorithms and subroutin
implemented

In this section, we detail the algorithms that
simulated to carry on the case study. Starting fro
the input procedures, we precisely define the mea
ing of quantum access to a matrix.

Definition Appendix B.1 (Quantum acce
to a matrix [94]). We have quantum access to
matrix A ∈ Rn×m, if there exists a data stru
ture that allows performing the mappings |i⟩ |0⟩
|i⟩ |ai,·⟩ = |i⟩ 1

∥ai,·∥
∑m

j aij |j⟩, for all i, and |0⟩
1

∥A∥F

∑n
i ∥ai,·∥ |i⟩ in time Õ(1).

This definition directly extends to vectors, whi
are special kind of matrices. We say to have qua
tum access to a vector of sizem if we can impleme
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Ux |0⟩ =
1

∥x∥
∑

i∈m

xi |i⟩ (B.1)

trolled version, and inverse, in time Õ(1).
ng access to a quantum random access mem-
is possible to efficiently create quantum ac-
matrices and vectors. This requires prepro-
the input data and storing a tree data struc-
lso known as KP-trees, after the authors of
ocedure, in the QRAM. We state the main
nd invite the interested reader to check the
in Kerenidis et al. [95, 94].

em Appendix B.2 (Implementing quan-
perators using an efficient data structure
et A ∈ Rn×m. There exists a data structure
the matrix A with the following properties:

e size of the data structure is
nm log(nm))11.

e time to update/store a new entry (i, j, Aij)
O(log(nm)).

ovided coherent quantum access to this struc-
re there exists quantum algorithms that im-
ment the mappings of Def. Appendix B.1 in
e O(polylog(nm)).

definition of quantum access makes a data
ization parameter appear in many quantum
hms. For a matrix X, we call this normal-
parameter µ(X). The smaller this param-
the more efficient the algorithms are. The
ices of Kerenidis et al. [95] describe how to
ent the data structure for µ(X) = ∥X∥F . A
uent manuscript by Kerenidis et al. [94] de-
how to obtain other values of µ, which we
e in the following definition.

tion Appendix B.3 (Memory
ter µ(X) [94]). Let X ∈ Rn×d

matrix. We define the parameter

= minp∈[0,1](∥X∥F ,
√
s2p(X)s2(1−p)(XT )),

(X) = maxi ∥Xi,·∥qq, for q ∈ [0, 2].

possible to probe the optimal µ during the
ading preprocessing step. In practice, if the

use log(nm) instead of log2(nm) because the extra
term in the original statement comes from the size
stem word.

dataset is entirely available at loading time, o
could measure µ for different values of p ∈ [0, 1] a
compare it to the Frobenius norm, to know whi
data structure is more efficient. The simulation
the quantum access routine is not required by o
evaluation framework, while the estimation of t
best µ is.

To retrieve data from quantum algorithms o
has to consider some tomography procedures. T
algorithms that we consider leverage the followi
tomography routine.

Theorem Appendix B.4 (Tomography[96
Given access to the mapping Ux |0⟩ 7→ |x⟩ a
its controlled version, for δ > 0, there is an
gorithm that produces an estimate x ∈ Rm wi
∥x∥2 = 1 with probability at least 1 − 1/poly(m
using U O(m logm

δ2 ) times such that ∥ |x⟩ − x∥2 ≤
and using U O( log(d)δ2 ) such that ∥ |x⟩ − x∥∞ ≤ δ

Now that we discussed input and output routin
we move on and present the main building bloc
of the quantum algorithms considered in this wor
phase estimation, amplitude estimation, and d
tance/inner products estimation. Each of this ro
tine builds on the previous one.

Theorem Appendix B.5 (Phase estimati
[52]). Let U be a unitary operator with eigenvecto
|vj⟩ and eigenvalues eiθj for θj ∈ [−π, π], i.e.
have U |vj⟩ = eiθj |vj⟩ for j ∈ [n]. For a precisi
parameter ϵ > 0, there exists a quantum algorith

that runs in time O(T (U) log(n)
ϵ ) and with probabil

1− 1/poly(n) maps a state |ϕi⟩ =
∑

j∈[n] αj |vj⟩
the state

∑
j∈[n] αj |vj⟩

∣∣θ̄j
〉
such that |θ̄j − θj | <

for all j ∈ [n].

This procedure can be made consistent, in t
sense that multiple runs of the same algorithm r
turn a phase with the same error [97, 43]. In o
case study, we simulate this version of phase e
timation, which is a consistent phase estimatio
We model the error using both the theory behi
phase estimation and the procedure that makes
consistent. Using phase estimation, we can bu
an amplitude estimation algorithm.

Theorem Appendix B.6 (Amplitu
estimation[98]). There is a quantum algorith
called amplitude estimation which takes as i
put one copy of a quantum state |ψ⟩, a unita
transformation U = 2 |ψ⟩ ⟨ψ| − I, a unitary tran
formation V = I − 2P for some projector P , a
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ger t. The algorithm outputs ã, an estimate
⟨ψ|P |ψ|ψ|P |ψ⟩, such that:

|ã− a| ≤ 2π

√
a(1− a)

t
+
π2

t2

obability at least 8/π2, using U and V t times
If a = 0 then ã = 0 with certainty, and if
nd t is even, then ã = 1 with certainty.

g amplitude estimation on a modified
ard test circuit, it is possible to estimate dis-
and inner products.

em Appendix B.7. [Distance and Inner
ts Estimation [13]] Assume for a matrix V ∈
nd a matrix C ∈ Rk×d that the following
es |i⟩ |0⟩ 7→ |i⟩ |vi⟩, and |j⟩ |0⟩ 7→ |j⟩ |cj⟩ can
rmed in time T and the norms of the vectors
wn. For any ∆ > 0 and ϵ > 0, there exists
tum algorithm that computes: |i⟩ |j⟩ |0⟩ 7→
2(vi, cj)

〉
where |d2(vi, cj) − d2(vi, cj)| ⩽ ϵ

1− 2∆ in time Õ
(

∥vi∥∥cj∥T log(1/∆)
ϵ

)
.

raging phase estimation, it is possible to im-
t one of the main ingredient of the quantum
odel extraction pipeline of Figure 3: the bi-
arch for θ.

em Appendix B.8 (Quantum binary
for the singular value threshold [14]). Let
e quantum access to a matrix A ∈ Rn×m.
be precision parameters, and θ be a thresh-
the smallest singular value to consider. Let
1] be the factor score ratios sum to retain.
exists a quantum algorithm that runs in time
) log(µ(A)/ϵ)

ϵη

)
and outputs an estimate θ such

−∑
i:σi≥θ λ

(i)
∣∣∣ ≤ η, where |σi − σi| ≤ ϵ, or

whether such θ does not exists.

larly, with the aid of quantum tomography, it
ible to extract the top principal components
rresponding eigenvalues.

em Appendix B.9 (Top-k singular vec-
traction [14]). Let there be efficient quan-
cess to a matrix A ∈ Rn×m, with singular
ecomposition A =

∑r
i σiuiv

T
i . Let δ > 0

recision parameter for the singular vectors,
precision parameter for the singular values,
> 0 be a threshold such that A has k sin-

alues greater than θ. Define p =
∑

i:σi≥θ σ2
i∑r

j σ2
j

.

There exist quantum algorithms that estimate: T
top k left singular vectors ui of A with unit ve
tors ui such that ∥ui − ui∥2 ≤ δ with probabil

at least 1− 1/poly(n), in time Õ
(

∥A∥
θ

1√
p
µ(A)

ϵ
kn
δ2

The top k singular values σi, factor scores λi, a
factor score ratios λ(i) of A to precision ϵ, 2ϵ

√
λ

and ϵ σi

∥A∥2
F

respectively, with probability at lea

1− 1/poly(m), in time Õ
(

∥A∥
θ

1√
p
µ(A)k

ϵ

)
or duri

any of the two procedures above.

Finally, building on the distance and inner pro
uct estimation routine, one can use a quantum ve
sion of k-means.

Theorem Appendix B.10 (q-means [13]). A
sume to have quantum access to a data matr
V ∈ Rn×d. For δ > 0, the q-means algorithm wi
high probability outputs centroids {µj}kj=1 that a
δ-close in ℓ2 norm to the centroids of the classic
k-means algorithm in time

Õ

(
kd

η

δ2
κ(V )(µ(V ) + k

η

δ
) + k2

η1.5

δ2
κ(V )µ(V )

)

per iteration with 1 ≤ ∥vi∥2 ≤ η and a number
iterations proportional to the classical algorithm.

The simulation code is available on github12 a
more info can be found in Fioravanti [99].

Appendix C. Vector state tomography

The number of measurements, N = 36d log d
δ2

the result of a probabilistic bound that guarante
a success probability greater than 1 − 1/poly(d
Maintaining this failure probability low is crucial
applications where tomography has to be repeat
many times on different vectors – imagine its u
in the prediction stage of a machine learning mod
– as its repeated use will eventually lead to an e
timate that exceeds the target error. In this se
tion, we exhibit a case where the number of samp
N = 36d log d

δ2 is larger than the effective number
samples needed to obtain a certain accuracy: i.
with a number of measurements considerably low
than N we obtain an estimate x with error δ. W
perform tomography over the first principal com
ponent of the dataset CIC-MalMem-2022[89]. T
vector has size d = 55. This experiment is report

12https://github.com/tommasofioravanti/sq-learn
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re C.6. The plot shows how many measure-
(x-axis) are necessary to get a vector esti-
ith a specific error (y-axis), both following
oretical bound (blue curve) and simulating
ual tomography procedure (orange curve).

.6: Theoretical bound (blue) on the number of mea-
ts required for tomography and a numerical simu-
orange), on the first principal component of CIC-
2022. The horizontal dashed line indicates the tar-
rror (0.03) of a vector of length 55. The vertical
line represents the theoretical bound.

.7: Distribution of error (x-axis) for tomography
rst principal component of CIC-MalMem2022 by
g the experiment 1000 times with 20, 861 samples.
is statistic with fit and plot three distributions (skew
power normal, and normal distribution).

an estimate with error 0.03 in ℓ2 distance,
d about 104 measures instead of ≈ 107, as
ed by the theoretical bound. To corrobo-
is finding, in Figure C.7, we start from a
umber of measurements (20.861) (which is
mber of measurement sufficient to reach er-
3 from Figure C.6), and we repeat the to-
hy for 1000 times, plotting on the y-axis the
cy of the ℓ2 error observed. As we can see,
or is roughly centered around 0.03.s

Table C.7: Comparison for classical c○ (PCA70) and qua
tum q○ (QPCA70) principal components classifier with m
jor and minor components over KDDCUP99.

α (%) Recall (%) Precision (%) F1-score (%) Accuracy (%
c q c q c q c q

1 98.62 98.68 97.26 96.99 97.94 97.83 98.75 98.6
2 98.66 98.73 95.96 95.58 97.29 97.13 98.35 98.2
4 98.80 98.90 91.61 91.42 95.07 95.01 96.91 96.8
6 98.84 98.99 88.88 88.25 93.60 93.31 95.78 95.7
8 98.93 99.27 86.11 85.84 92.08 92.07 94.88 94.8
10 99.59 99.87 83.25 83.14 90.69 90.74 93.85 93.8

Appendix D. Performance analysis wi
minor and major componen
over KDDCUP99

We corroborate the efficacy of the classifier d
cussed in Section 5.3 with another experiment.
this setting, we classify a sample as an attack
(T1 > c1 or T2 > c2), and as normal otherwi
We maintain the same error parameters report
in Section 5.3 to estimate both major and min
components (QPCA70 with 10 major and 7 min
components, with respect to 10 major and 6 min
of the classical case). To extract the minor com
ponents, we set the threshold to θ =

√
0.20 as

parameter in the quantum least-q singular vecto
extraction (Theorem Appendix B.9). With the
error parameters, we extract a number of prin
pal components very close to the classical mod
(QPCA70 with 10 major and 7 minor componen
with respect to 10 major and 6 minor of the clas
cal case). Also in this case, we match the classic
performance, reported in Table C.7. When usi
both major and minor components, the recall
higher than the model that used only major com
ponents (as reported in Table 3), but precision
lower. This is expected as using two control sum
mations in OR (checking both T1 and T2, rath
than T1 only) leads to a higher chance of classif
ing an observation as an anomaly, resulting in
increase in false positives and a decrease in fa
negatives (hence improving recall).

Appendix E. Clustering with PCA-base
dimensionality reduction an
K-means over KDDCUP99

In this section, we demonstrate the feasibility
applying our methodology to the clustering tas
We perform K-Means after applying PCA-based d
mensionality reduction and compare the classic
and quantum algorithm versions. We evaluate t
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.8: CH comparison between PCA and K-Means and
and q-Means, by varying the number of clusters nk

ing quality of the classical and quantum algo-
ersions by computing the Calinski-Harabasz
ndex [83] on the resulting clusters.
this experiment, we use the KDDCUP99
, projecting all the data into a new 1-
ion PCA space and applying the K-Means
ing. We vary the number of clusters nk =
30, . . . , 100] and compute the CH index.
he PCA model retains only the first prin-
omponent, we classically compute the per-
of variance retained by the first principal

nent, which corresponds to ≈ 0.6. We use
lue as input parameter p = 0.6 into the quan-
nary search, with ϵθ = ϵ = 5 and η = 0.1.
we extract the top-k components with error
. After retrieving a classical description of
t principal component, we use it to project
ta into the q-PCA feature space. We ap-
q-means algorithm over these 1-dimensional
ith error δ = 0.0005 with nk clusters. Once
d a classical description of the clustering, we
te the CH score. As shown In Figure E.8a,
ch the classical CH index values.

er information on experiments.
ore detail on the wrapper approach and the

ion process we used for hyperparameter opti-
n we refer the interested reader to [100, 101].
perparameter tuning in Section 5.5 found
e number of quantiles that maximizes the
re is 751.
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