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A B S T R A C T   

Architectural styles and their evolution are central to architecture history. However, traditional approaches to 
understand styles and their evolution require domain expertise, fieldwork and extensive manual processes. 
Recent research in deep learning and computer vision has highlighted the great potential in analyzing urban 
environments from images. In this paper, we propose a deep learning-based framework for understanding 
architectural styles and age epochs by deciphering building façades based on street-level imagery. The frame
work is composed of two stages: Deep ‘Learning’ the architecture and Deep ‘Interpreting’ the architecture age 
epochs and styles. In Deep ‘Learning’, a deep convolutional neural network (DCNN) model is designed to 
automatically learn about the age characteristics of building façades from street view images. In Deep ‘Inter
preting’ stage, three components are proposed to understand the different perspectives regarding building ages 
and styles. In the experiment, a building age epoch dataset is compiled for the city of Amsterdam and Stockholm 
to understand the evolution of architectural element styles and the relationship between building ages and styles 
spatially and temporally. This research illustrates how publicly available data and deep learning could be used to 
trace the evolution of architectural styles in the spatial-temporal domain.   

1. Introduction 

Architectural styles evolve over time, complementing the develop
ment of social, economic and religious aspects of the society. Architec
tural styles and history are usually identified and studied by architects 
and architecture historians based on buildings' structure, material, 
decorations, form of architectural elements, as well as the contexts. 
Traditional studies often involve expertise around architectural styles, 
requiring field studies of representative buildings and extensive 
knowledge of the social and economic context. More importantly, the 
long time span and wide geographical distribution of global architec
tural styles and histories make it difficult to articulate the evolution of 
styles and genres on a large scale. The current study is limited by these 
time-consuming and knowledge-intensive methods. 

Building age plays an important role in architectural history and 
styles, building energy modeling, real estate valuation, and urban 
planning. Previous literature has shown the connections building age 
has with other building stock attributes. Research shows that building 
age is a key factor in energy consumption modeling and an accurate 
estimation of building age would increase accuracies of building energy 
models and simulations (Aksoezen et al., 2015; Firth et al., 2010; Nouvel 
et al., 2017; Tooke et al., 2014). More accurate and completed building 

age data would help propose differentiated planning policies for suc
cessful renovation strategies. Building age estimation is also important 
in the classification of vulnerable properties for post-disaster recovery 
and earthquake simulation (Mangalathu et al., 2020; Steimen et al., 
2004; Wieland et al., 2012). Successful identification of vulnerable 
buildings would benefit the decision-making for emergency responders 
and post-disaster recovery for local officials. Evidence shows that 
building age is influential on the valuation of real estate and rent prices 
(Brunauer et al., 2010; Zietz et al., 2008). Also, Dalmau et al. (2014) 
describe how building age data could be associated with urban planning 
and regulations. 

Despite the importance in various fields, data of the construction 
period is often difficult to obtain. First of all, building age data is not 
always available. Biljecki and Sindram (2017) suggest that Open
StreetMap (OSM) contains very sparse data of building age in most 
cities. Even in some cities where it is open to the public, the coverage 
might not be enough for large-scale analysis. In the building stock 
dataset Agugiaro (2016) compiled for Vienna, compared to other 
building attributes (building class, building usage, etc.), building age has 
lower completeness. Secondly, it is labor-intensive and time-consuming 
to collect instance-level building age data in a large scale. Thirdly, while 
previous studies perform well in terms of prediction, limitations and 
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challenges still exist in these methods. Most of the current studies 
involve data that are difficult to obtain or very complicated to process 
such as 3D GIS model and LiDAR. Multiple sources of data make it 
difficult to compile and calibrate so that human intervention and labor 
force are needed for this process. 

With recent years development of deep learning, it has been proven 
that a machine is able to predict different aspects of built environments. 
A number of efforts have been devoted to predicting architecture ages 
with morphological descriptions of buildings (Biljecki & Sindram, 2017; 
Rosser et al., 2019; Tooke et al., 2014), classifying architectural styles 
(Doersch et al., 2012; Lee et al., 2015), and rating places to mimic 
people's perception (Naik et al., 2014; Zhang et al., 2018). Besides deep 
learning itself, using images to study built environments is getting more 
and more popular because of the increasing computation power. As the 
visual representation of buildings, street-level imagery has been widely 
used in a variety of fields in urban science. A number of research have 
adopted images to assess the built environment (Li et al., 2015), identify 
the unique objects in different cities (Zhang et al., 2019), and explore 
real estate valuation (Kang et al., 2021; Lindenthal & Johnson, 2021). 
We follow the trend of using street-level imagery to study built envi
ronments, not only because of its public availability but also because it is 
more intuitive than many other existing data. Fig. 1 shows street view 
images of buildings constructed in different ages. As human observers, 
we can roughly determine the order in which these buildings were built 
after some learning. 

In this research, we apply deep learning not only to prediction and 
classification tasks, but also to building styles and history studies. With 
this approach, this paper aims to provide an alternative perspective for 
architectural research. A framework is implemented to demonstrate the 
potential of deep learning in understanding architectural styles. This 
framework consists of two stages: Deep ‘Learning’ the architecture and 
Deep ‘Interpreting’ the architecture ages and styles. In Deep ‘Learning’, 
a deep convolutional neural network (DCNN) model for building age 
epoch prediction is designed to learn about the characteristics of 
building façades in terms of building ages from street view images. In the 
Deep ‘Interpreting’ stage, three components are proposed to understand 
the four perspectives below regarding building ages and styles: 1) By 
applying the age epoch prediction model to different cities, we are able 
to understand the homogeneity of architectural styles across cities; 2) 
With analyzing what the model is paying attention to, visual clues about 
architectural element evolution is found; 3) The visualization of deep 
feature obtained from age epoch prediction model shows the relation
ship among architectural styles. 4) Lastly, the deep feature from age 
epoch prediction model, combined with an independent existing 
building style classification model is able to help trace the evolution of 
architectural styles. 

As an implementation, a building age epoch dataset with more than 
50,000 samples is created for Amsterdam, Netherlands. This dataset 
combines street view images with publicly available building age data 
from the Dutch city. Then, our designed DCNN model is trained with the 
dataset. Our results show the proposed components in the framework 
are effective in understanding the architectural history of Amsterdam, 
providing insights into detailed adoption and evolution of building 

styles in temporal and spatial domains. 
The contribution of this work is twofold: First, we provide a scalable 

method to estimate building ages from public available data sources; 
Second, by analyzing and interpreting the results from the deep learning 
model, we develop an approach to trace the detailed evolution of 
building styles within the city. This demonstrates how artificial intelli
gence and data-driven approaches can be applied to facilitate the 
traditional research paradigm. 

2. Related work 

2.1. Building age epoch and style estimation 

With the development of machine learning, considerable research 
over the last few years has been devoted to the estimation of building 
ages and architectural styles. For the style prediction task, most of the 
current research focuses on extracting low-level features or local image 
patches. Doersch et al. (2012) proposed detecting style-related patches 
associated with a specific city (i.e. Paris) from street view images. 
Patches are represented with Histograms of Oriented Gradients (HOG) 
and selected with an iterative linear SVM detector. Similarly, Lee et al. 
(2015) extract patches with Whitened HOG representation to estimate 
building age epochs and track the style evolution of building elements 
(e.g. windows, balconies, etc.). Unlike different previous approaches, 
Lindenthal and Johnson (2021) propose to extract deep features from 
pre-trained object detection models and build a simple multinomial 
classifier to predict architectural styles in Cambridge, UK. Besides 
architectural styles, researchers also apply deep learning on exploring 
styles and history of art (Elgammal et al., 2018). A style classification 
DCNN model was trained on 77K images of paintings. After training, an 
analysis of the model is conducted and shows that the final model is able 
to place artworks “in a smooth temporal arrangement mainly based on 
learning style labels.” This research verifies the ability of deep learning 
to extract meaningful age-information from images of artworks. 

For building age estimation task, many research chooses to extract 
morphological attributes from digital models including LiDAR data 
(Tooke et al., 2014), Digital Surface Model (DSM) (Rosser et al., 2019) 
and 3D GIS dataset (Biljecki & Sindram, 2017). Morphological attributes 
utilized in this research mainly are Area, Height, Number of Storeys and 
etc. Zeppelzauer et al. (2018) examine the use of photos for building age 
prediction. They first extract architecture-related patches. Patches are 
then fed into DCNN to classify the age periods of patches. A majority- 
voting rule over patch-level prediction results is established for 
building-level final decisions. Li et al. (2018) apply the combination of 
GSV and deep learning to building age estimation from images. They 
utilize a pre-trained model to extract built environment information 
from GSV with deep learning models. The extracted image features are 
then fed into Support Vector Regression model and predict the year of 
construction. 

Despite these previous efforts to predict building ages and styles, 
there are still limitations. First, many of the research adopted low-level 
feature extraction to represent buildings. These efforts may achieve a 
certain level of performance, however, the approach they use does not 

Fig. 1. GSV samples with buildings constructed in different periods (Image source: Google).  
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allow for a comprehensive, cognitive level understanding of the build
ings. Second, LiDAR, 3D GIS model and DSM used in previous studies are 
not readily accessible and not available for many cities. Third, scal
ability remains challenging because of the complexity of the above data 
and the manual process required. Recent years of development on deep 
learning in computer vision and increasing coverage of street view ser
vices make street view images an ideal approach for building age and 
style estimation. 

2.2. Application of street-level imagery in built-environment 

In the field of architecture and urban planning, street view images, 
combining with deep learning have been used widely for understanding 
built environments. Utilizing such techniques, researchers investigate 
locational discriminative objects (Zhang et al., 2019; Zhou et al., 2014), 
measure perception of places (Naik et al., 2014; Zhang et al., 2018), and 
assess the built environment (Li et al., 2015). Besides, many research 
focuses on building-level analysis with GSV (Gonzalez et al., 2020; Yu 
et al., 2020). For example, Kang et al. (2018) combine the use of GSV 
and deep learning to classify the real use of buildings, including apart
ment, house, industrial, office, retail and other common land use. 

Previous studies have demonstrated techniques, methods and prac
tical applications of understanding built environments with images. 
Building on the above literature and following the trend of deep 
learning, our research combines DCNN model and street view images 
approach. This approach provides an accurate, automated and intuitive 
way to predict building ages in a large-scale urban area. 

3. Data description 

3.1. Study area 

This work takes Amsterdam as the study site. As the capital city of the 
Netherlands, Amsterdam is characterized by its long history of urban 
development, dating back to the 12th century. After more than 700 
years of expansion, it contains a mixture of architectural styles and 
buildings from different eras. Especially in the city center, the building 
years range from 1300 to 2020, which makes Amsterdam a challenging 
area for building age prediction. Besides the diversity of building styles 
and chronologies, the Netherlands maintains a relatively completed and 
open building stock dataset, including the geometry of buildings and 
various attributes related to the study. Access to these data offers pos
sibilities for exploration. Fig. 2 shows the footprint of buildings in 
Amsterdam. 

Besides Amsterdam, Stockholm is also selected for two reasons. First, 
we choose Stockholm to test the generalizability and transferability of 
our building age epoch prediction method. Second, more importantly, 
we look into what the model learns in Amsterdam and Stockholm to seek 
more knowledge regarding architectural styles and their evolution in 
different regions. The building age data of Stockholm is from real estate 
sales data obtained from Hemnet1 and Booli,2 two of the largest real 
estate marketplace companies in Sweden. The data covers transaction 
records from 2000 to 2020. The construction year of the properties is 
extracted from sales data and joined to building footprints from Open 
Stockholm.3 

3.2. Building age data 

Dutch municipalities record basic information about buildings and 
addresses as an openly available dataset named Basisregistraties 
Adressen en Gebouwen (BAG). It contains the construction year, current 

use, and registration status associated with each address in a building. 
BAG dataset is updated every month. This paper uses the data compiled 
in May 30th, 2020. We obtained preprocessed 3D BAG data (Ledoux 
et al., 2021; Stoter et al., 2020; Dukai et al., 2020, 2021) from the 3D 
geoinformation research group of the Delft University of Technology,4 

including 182,737 addresses in the Amsterdam metropolitan area. Each 
address is linked to a building footprint geometry and 173,863 of them 
contain a valid construction year. Table 1 shows the samples of building 
age data with an original year of construction, document date, geometry 
and unique identification number. 

3.3. Building style data 

Building styles data is used in this research mainly for exploring how 
building styles change with time. Building styles evolve with the change 
of building technology, aesthetics and ideology. While the transition 
between aesthetics and adoption of technology does not happen 
instantly. By comparing building ages with architectural styles, we are 
able to trace the actual evolution of styles. 

The architectural style dataset, published by Lindenthal and Johnson 
(2021), is labeled by University of Cambridge into seven categories in 
chronological order. Details of style categories could be found in 
Table 2. In total, the dataset contains 29,177 samples and ranges from 
17th century to the present. Though the building style data is from UK, it 
is still worth using in this study for several reasons. First, this study cares 
more about the temporal dimension of styles, instead of the exact styles 
associated with each building. Since Dutch and British architecture 
influenced each other historically (Louw, 2009; Arntz, 1953), they share 
many similarities in style and transition. Second, the style dataset ach
ieves good performance and outputs reasonable results in Amsterdam, 
which will be discussed in detail in this paper. 

3.4. Street view images 

Street view images are virtual representations of the built environ
ment and have been widely used as a proxy for real-world experiences 
and perceptions. Google Street View (GSV), as a feature of Google Maps, 
provides street view service that covers more than 100 countries over 
the world. Through Street View API, GSV could be retrieved at requested 
locations along with other parameters. The default view of street view 
images is facing along the street, which is not suitable for building 
instance-level classification tasks. Heading (the angle camera is pointing 
at) could be passed into the API as a parameter to customize the camera 
angle of images. 

Here we present an algorithm to derive the heading parameter for 
retrieving building façade images from GSV. As shown in Fig. 3, we first 
project the midpoints of building façades calculated from BAG data onto 
the nearest street. With the projected points S(xs, ys) and original façades 
midpoints C(xc, yc), we are able to calculate the angle θ as shown in Eq. 
(1), 

θ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arccos
(

VnVsc

|Vn‖Vsc|

)

, if (xc − xs)〉0.

360 − arccos
(

VnVsc

|Vn‖Vsc|

)

, otherwise.
(1)  

where Vector Vn is the North Vector and Vector Vsc is the Vector from 
Point S to Point C. 

Vn = (xs, ys + 1)

Vsc = (xc − xs, yc − ys)

As a result, GSV images are requested at the location of the projected 
1 https://www.hemnet.se/.  
2 https://www.booli.se/.  
3 https://dataportalen.stockholm.se/dataportalen/. 4 https://docs.3dbag.nl/en/. 
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points with the specific angle θ. 

3.5. Training dataset building 

Though all GSV images are heading at the building façades, there are 
at least two types of samples that need to be removed: 1) the shooting 
point is far away resulting in a small building in the image; 2) buildings 
are occluded by trees or other objects. To do so, we proposed an eval
uation method based on the quantitative representation of image con
tent. The method follows three steps: 1) a candidate image is fed into a 
scene parsing DCNN model. Scene parsing models assign each pixel in an 
image a semantic category label (such as sky, building and tree). Here 
we employ a scene parsing model that is trained on the ADE20K dataset, 
which is a large-scale image dataset containing images labeled by 150 
categories; 2) the ratios of each visual object of the image are calculated; 
3) the images with the following two criteria are kept: 1) the percentage 
of building categories is the highest among all the category; 2) Buildings 
occupy more than 40 % of the image. 

We treat the building age estimation as a classification task. Most 
buildings are constructed after 1900 in Amsterdam. It is worth having 
detailed age epochs before 1900 due to the fact that the city center has 
the majority of buildings built before 1900. Combining the architectural 

history and city development history, we adopt the following age pe
riods: Early Stages (pre-1652), Eastern Expansion (1653–1705), French 
Influence Era (1706–1764), Southern Expansion (1765–1845), Neo Era 
(1846–1910), Interwar (1911–1943), Post-war (1944–1977) and 
Contemporary Era (1978–1994, 1995–2020). 

After dividing the age epochs, the groups of pre-1652, 1653–1705 
and 1706–1764 have much fewer samples than others. an imbalanced 
class dataset would lead to skewed predictive accuracy in the model 
(Japkowicz & Stephen, 2002). To solve this, data augmentation is per
formed for groups with fewer samples. Images are horizontally flipped 
and assigned with the original labels. For the groups with a larger 
number of samples, we randomly select data from them. As a result, a 
training dataset of 39, 211 samples is prepared for model training. The 
dataset is then split into two parts: 80 % is used for the modeling training 
process and the rest 20 % is used for evaluation purposes. 

4. Framework 

To demonstrate how deep learning could be leveraged in the study of 
architectural styles and history, we design a framework as shown in 
Fig. 4. First, we propose methods to deeply learn and understand 
instance-level building age epoch classification. Second, three types of 

Fig. 2. Building footprints in the study area—Amsterdam.  

Table 1 
Building age data sample.  

Document 
date 

Original year of 
construction 

Document number Inspected Geometry Identification Status 

1993-05-28 1993 199300279 False POLYGONZ 
((95208.790440900.1900.000... 

0014100010929791 Building in use 

2006-11-07 1947 200603366 False POLYGONZ 
((99323.197442377.0640.000... 

0014100010957694 Building in use 

2019-06-24 2018 96128- 
2019:922920 

False POLYGONZ 
((94219.531432967.4300.000... 

0014100022192299 Construction 
started 

2019-04-03 2019 43449- 
2019:945738 

True POLYGONZ 
((91528.700441371.1900.000... 

0014100040017850 Building in use  
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analysis are conducted to explore four aspects of architectural styles 
evolution through time. 1) Comparison across cities is conducted to test 
the homogeneity of building styles. 2) We perform salient feature mining 
with class activation map to explore architectural elements evolution. 3) 
Deep feature is extracted from building age epoch prediction model and 
visualized for exploring age-related information within images and un
derstanding the relationship of styles. 4) A building style classification 
model is included and compared with deep feature to understand the 
changes of styles over age and the relationship between architecture 
ages and styles. 

4.1. Deep ‘Learning’ the architecture with DCNN 

With the dataset ready, we design a DCNN model for classifying 

building ages and architectural styles with street view images respec
tively. Though the method is applied to both tasks, this section will 
introduce the training process, evaluation of the results, and explora
tions on the trained model of building age epoch prediction task for 
clarity. It is worth noticing that the two models are independent of each 
other and only share the same methods during model training. 

Our model is designed based on the backbone of Dense Convolu
tional Network (DenseNet121) (Huang et al., 2017). Four dense blocks 
are used in our network and each block is connected to every other block 
(Fig. 5). Compared to other architecture, our model is able to achieve 
higher accuracy with fewer parameters. The model is able to classify 
photos of building façades into 9 classes, namely pre-1652, 1653–1705, 
1706–1764, 1765–1845, 1846–1910, 1911–1943, 1944–1977 and 
1978–1994, 1995–2020. 

We apply transfer learning from a model pre-trained on ImageNet 
dataset. The ImageNet dataset contains a wide range of common objects. 
The model pre-trained on this is able to understand objects and extract 
information from the images. Transfer learning allows us to fine-tune the 
base model and train the model to be more relevant to the task. More 
specifically, it updates the top layers of the neural networks, which are 
usually more specific to the training dataset. In general, transfer learning 
would lead to faster convergence, require less training data and lower 
the computational burden. 

After training, the model is evaluated on the 20 % city-wide vali
dation set. We adopt several methods to evaluate the result. The eval
uation aims at exploring how well the model performs and the 
characteristic of misclassified samples. Firstly, we assess the classifica
tion accuracy with a confusion matrix that shows the recall, precision 
and F1 scores. Recall is defined as the number of true positives (TP) 
divided by the sum of true positives and the number of false negatives 
(FN) as shown in Eq. (2). Precision is the number of true positives over 
the sum of true positives and the number of false positives as shown in 
Eq. (3). F1-score is the harmonic mean of precision and recall as shown 
in Eq. (4). 

Recall =
TP

TP + FN
(2)  

Precision =
TP

TP + FP
(3)  

F1 = 2* Precision*Recall
Precision + Recall

(4) 

Secondly, we examine the spatial distribution of classification 

Table 2 
Building style data attributes.  

Style Label Era Characteristics Sample 
number 

18th-century 
style  

0 1714–1837 Sash windows, fan lights 
above doors, stucco on 
facades, wrought work 
grilles and railings  

349 

Early 19th-cen
tury style  

1 1837–1870 Elaborate features such 
as carved barge boards or 
finials. Sash windows 
more affordable and 
wider  

2150 

Late 19th-cen
tury style  

2 1870–1910 substantial bay windows, 
heterogeneous 
ornamentation, stained 
glass  

4118 

Interwar  3 1918–1939 Cost of building 
construction falls, 
distinctive two-pane 
windows  

6737 

Postwar  4 1950–1980 Embrace of high-rise as 
well as low-rise housing. 
Facades vary between 
brick, tiling, pebbledash 
and render  

5473 

Contemporary  5 1980–present Innovative and 
distinctive building 
techniques  

267 

Revival  6  Contemporary buildings 
that emulate historic, 
mostly replica Victorian 
architecture  

213  

Fig. 3. Process for retrieving building façade from GSV. In step 1, midpoint of building façade (red point) is projected to nearest street, this point is used as location 
for requesting GSV, in step two, the angle between vector north and vector from request point to façade midpoint is calculated and fed into Google map API as angle 
of camera (Street view image source: Google). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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accuracy to see if any spatial pattern exists, as buildings within the same 
neighbourhood tend to be constructed during the same time. First, we 
plot the prediction error of each building in our dataset. We use Cpred–Cgt 
to represent the error, where Cpred and Cgt indicate the predicted class 
and ground truth class, respectively. Since the building age classes are 
labeled chronologically, this method not only shows if the model is 
predicting incorrectly, but also shows how incorrect the prediction is. 
Second, the classification results are spatially aggregated to 150-meter 
grids. Accuracy rate is calculated for each grid with correctly classi
fied sample number divided by total sample number. 

4.2. Deep ‘Interpreting’ the architecture age and style 

4.2.1. What is the style homogeneity across cities? 
The formation of architectural styles has always been a dynamic 

process and evolves across regions. Though they are influenced or 
twisted to accommodate the economical, social and religious back
grounds of different places, buildings of same styles from cities still share 
similarities in architectural elements, form and methods of construction. 
To understand the similarities of architecture in different cities, we 
propose an age epoch confusion analysis. More specifically, we apply the 
model trained on City A directly to City X. By comparing the detailed 
performance in different age groups, we are able to identify homoge
neity in building styles across cities. 

Fig. 4. Framework of understanding architecture ages and styles through deep learning. First, we propose methods for instance-level building age epoch classifi
cation to build a deep learning and understanding of architectural. Second, three types of analysis are conducted to explore four aspects of architecture ages 
and styles. 

Fig. 5. Model architecture, the model takes GSV image as input and classifies photos of building façades into 9 classes. The network is designed based on the 
backbone of DenseNet121. 
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4.2.2. What does the model learn about architectural element styles? 
Though our model makes classification in image-level labels, it is still 

worth exploring what elements within the images lead to the prediction 
so that future improvements could be made. Class activation map (CAM) 
is used to identify discriminative regions used by CNN to make pre
dictions (Zhou et al., 2016). We add a global average pooling layer to the 
final convolutional layer of the original model. Then the weighted sum 
of outputs from the global average pooling layer is calculated as the final 
outputs. By looking at the CAM, we are able to understand which parts of 
images our model is paying the most attention and lead to the final 
classification. With CAM calculated for images, images are cropped with 
areas that draw the most attention. The cropped images are used for 
further explorations of building ages and styles. 

4.2.3. What is the relationship among architectural styles? 
Visualization of deep feature from samples is performed to show 

relationships among different building age groups. Generally, the deep 
feature extracted by the model from the images is able to represent the 
task-related information embedded within the images. In our case, the 
deep feature could be viewed as age-related information representation 
of each image. The original output deep feature of DenseNet model is 
1024 dimensions. By adding two dimension reduction layers to the end 
of model, we obtain a 256-dimensional feature vector for each image. 
The feature vector was then projected into two dimensional plane with t- 
Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten & 
Hinton, 2008). The t-SNE assigns high-dimensional data a location in 
two-dimension space. Closer locations of data points represent similar 
characteristics of the original image. By doing so, we are able to inspect 
how the model understands building age information from images and 
the relationship of building styles. 

4.2.4. What is the relationship between building age and style? 
Architectural styles change over time and reflect a society's political, 

social and technical organization and are often associated with specific 
time periods. While the changes and adoptions of building styles are not 
instant, we would like to see if what model learns from building ages is 
able to reveal building style information as a way to explore the rela
tionship between building ages and styles in Amsterdam through the eye 
of deep learning. With the model trained on building styles data, sam
ples in building age dataset could be classified into 7 architectural styles 
as described by Lindenthal and Johnson (2021). This style classification 
is based on the visual characteristics of buildings and is an independent 
decision of age epoch predictions. By exploring the distribution of 
architectural styles within age groups, we are able to trace the transition 
between architectural styles. 

5. Results 

5.1. Model performance 

5.1.1. Classification accuracy by class 
The model and whole computation are implemented in Python and 

PyTorch on Ubuntu platform with two GeForce RTX 2080 Ti GPUs. Our 
model was evaluated on the 20 % city-wide validation dataset and 
achieved a total accuracy of 81.09 %. Fig. 6 shows details about training 
samples and the training process. In addition to this, we compute a 
confusion matrix to explore how the model performs in each age epoch. 
Confusion matrix refers to a table comparing the prediction results made 
by the model and the ground truth. Table 3 presents the confusion 
matrix with actual number counted, normalized figures over the ground 
truth and recall, precision and F1-scores. The diagonal shows samples 
our model yields the same label as ground truth, while the off-diagonal 
space is where disagreement happens between prediction and actual 
label. Results show that our model achieves more than 80 % accuracies 
in most age epochs. 

5.1.2. Classification accuracy by location 
We also explore the spatial distribution of error at two scales. First, 

Fig. 7 shows the building instance-level model performance in the city 
center. Blue represents the old building being predicted as a new 
building, while pink indicates the model predicts new buildings as older 
ones. Grey means the prediction is correct. The map reveals that the 
majority of the errors are new buildings being predicted as old buildings. 
One potential reason for this is that, the canal area in the city center has 
been designated as UNESCO World Heritage and strict regulations for 
building renovation and reconstruction have been adopted here. Under 
the Dutch Monuments and Historic Buildings Act of 1988, the entire 
urban fabric and historic characteristics should be preserved here. New 
buildings are constructed in an old style and manner, which leads to 
these errors. Second, Fig. 8 shows the spatial distribution of aggregated 
classification accuracy. Classification results are aggregated to 150- 
meter grids and accuracy rate is calculated for each grid. As shown in 
the Fig. 8, the city center has a higher error rate than the outskirts. This 
might due to the high diversity of buildings ages, frequent renovations of 
old buildings in city center, and the strict regulations on renovated 
buildings stated above. Outskirts of Amsterdam present no evident 
spatial pattern, which indicates little spatial correlation on the classifi
cation results. We further calculate Moran's I (Moran, 1950) to quanti
tatively understand the spatial pattern. The Moran's I for results in 
outskirt of the city is 0.27. Moran's I has range from − 1 to 1, with − 1 
being perfect dispersion, 0 representing perfect randomness and 1 
meaning perfect clustering. The value of 0.27 here reveals that our 
predicted building age epoch in outskirts of Amsterdam shows weak 
spatial autocorrelation. 

Fig. 6. Left. Sample numbers by class. Right. Learning curves during the training process.  
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5.2. Deep ‘Interpreting’ the architecture age and style 

5.2.1. What is the style homogeneity across cities? 
To understand the architectural similarities across cities, we applied 

the model trained on Amsterdam building age dataset directly to 
Stockholm. The building age data is joined to building footprints from 
Open Stockholm. Then the same workflow is followed as described in 
Section 3.4 to retrieve GSV images for building façades. In total, 69,262 
street view images are downloaded to be filtered further to make sure 
façades are clearly visible and not covered by other objects. As a result, 
17,587 images labeled with years of construction are compiled as the 
building age dataset for Stockholm. For the total 17,587 samples, the 
overall accuracy is 24 %. As shown in Table 4, 56 % of Stockholm 
buildings constructed between 1706 and 1764 are predicted as 
1846–1910, this indicates a temporal mismatch in building styles be
tween the two cities. For the age periods of 1978–1994 and 1995–2020, 
the model achieves accuracies of 42 % and 45 %. This reveals similar 
building forms and styles between the two cities during these periods. 

Besides exploring the style homogeneity across cities, we extend our 
building age epoch prediction methods to Stockholm to evaluate the 
generalizability of the framework. We fine-tune the pre-trained model 
from Amsterdam with building age epoch data from Stockholm. With 
17,587 samples in total, 2587 samples are held for evaluation and 
15,000 are used for training. Ten training sets with different sample 
sizes, from 1500 to 15,000 by increments of 1500, are used in this test to 
examine the minimal samples needed for transferring. Fig. 9 illustrates 
the overall accuracy achieved by different training sets. With 1500 
samples from Stockholm, our methods could correctly classify the 
building ages of 57 % of images from the evaluation set. With all 15,000 
samples used for training, the model is able to achieve a total accuracy of 
72 %. This experiment verifies the generalizability of our building age 
epoch prediction method. It shows that with few ground truth samples 
from the new city, our method could achieve relatively high accuracy in 
new cities. 

Table 3 
Confusion matrix for classification model trained on Amsterdam.  

Ground truth Prediction 

-1652 -1706 -1765 -1846 -1911 -1944 -1978 -1995 -2020 

-1652  83 %  4 %  4 %  1 %  3 %  1 %  1 %  3 %  1 % 
-1706  1 %  92 %  4 %  1 %  1 %  0 %  0 %  1 %  0 % 
-1765  1 %  5 %  88 %  2 %  1 %  1 %  0 %  1 %  1 % 
-1846  1 %  6 %  6 %  85 %  0 %  0 %  0 %  1 %  1 % 
-1911  1 %  2 %  3 %  1 %  77 %  7 %  1 %  5 %  2 % 
-1944  1 %  1 %  1 %  0 %  5 %  84 %  3 %  3 %  2 % 
-1978  1 %  1 %  1 %  0 %  2 %  6 %  77 %  7 %  5 % 
-1995  1 %  2 %  2 %  1 %  5 %  3 %  6 %  73 %  7 % 
-2020  1 %  1 %  1 %  0 %  3 %  4 %  4 %  6 %  80 % 
Recall  0.83  0.92  0.88  0.85  0.77  0.84  0.77  0.73  0.8 
Precision  0.82  0.8  0.81  0.86  0.82  0.81  0.85  0.74  0.81 
F1-score  0.83  0.85  0.84  0.86  0.8  0.83  0.81  0.73  0.81  

Fig. 7. Building instance level prediction performance. Pink represents new building being predicted as old building, blue means old building being predicted as new 
building. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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5.2.2. What does the model learn about architectural element styles? 
To explore how the model makes decisions and trace the evolution of 

architectural elements, CAM is adopted to validate samples of the 
dataset. Fig. 10 indicates clear patterns of CAM results with semantic 
objects being highlighted rather than random parts of the buildings. 
Also, it shows that the informative image regions mostly cover the 
windows or doors. What's more, the model always focuses on the second 
floor or intersection of the first and second floor. As the first floor of 
buildings are often renovated or transformed for retail purpose, Lee et al. 
(2015) crop the first floor from façades. Our model shows that no such 
pre-processing is needed in our workflow as it pays little attention to the 
first floors. Similarly, cars, bikes and pedestrians in the front of street 
view images are usually ignored as they are not related to building ages. 
Essentially, the model learns the efficient features from the images, and 
ignores the irrelevant information in the images automatically. 

Lee et al. (2015) trace how architectural elements evolved in Paris 
over the 200-year span. Similarly, we crop the original images and keep 
only the discriminative regions based on CAM. According to the cropped 
images, our model pays more attention to windows than other objects 
when making decisions. Fig. 10 illustrates how windows are associated 
with building ages as a hint for window style evolution. Windows in 

Fig. 8. Building age epoch prediction – accuracy measured at 150 m grid level.  

Table 4 
Confusion matrix for classification with applying model from Amsterdam to Stockholm.  

Ground truth Prediction 

-1652 -1706 -1765 -1846 -1911 -1944 -1978 -1995 -2020 

-1652  11 %  1 %  0 %  1 %  44 %  1 %  2 %  11 %  28 % 
-1706  33 %  0 %  0 %  0 %  17 %  0 %  0 %  33 %  17 % 
-1765  0 %  3 %  6 %  3 %  56 %  3 %  6 %  17 %  8 % 
-1846  7 %  3 %  0 %  3 %  23 %  3 %  0 %  43 %  17 % 
-1911  1 %  4 %  1 %  6 %  33 %  7 %  6 %  17 %  25 % 
-1944  0 %  1 %  1 %  1 %  9 %  15 %  14 %  37 %  22 % 
-1978  0 %  0 %  0 %  1 %  4 %  8 %  25 %  36 %  26 % 
-1995  0 %  0 %  1 %  1 %  4 %  10 %  11 %  42 %  32 % 
-2020  0 %  0 %  0 %  1 %  3 %  3 %  13 %  34 %  45 %  

Fig. 9. Accuracy changes as sample number increases, with few samples (1500) 
ground truth from Stockholm, the accuracy is able to achieve 57 %. 
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Fig. 10. Left: CAM overlayed on original images. The 
informative image regions (red areas) mostly cover 
the windows or doors between first and second floors. 
Right: Image cropped according to CAM shows the 
evolution of windows. Windows in early eras usually 
contains wider frame, more decorations and are 
narrower. Recent window styles are featured with 
square and horizontal shape with thinner frame, less 
decoration and less depth (Building façades image 
source: Google). (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 11. Deep features of each image are projected onto a two-dimensional plane to understand what the model learned about the ages of the building.  
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early eras usually contain wider frames, more decorations and are nar
rower. From 1911–1943, square and horizontal windows show up with 
the thinner frames, less decorations and less depth. 

5.2.3. What is the relationship among architectural styles? 
We apply feature visualization to interpret what the model learned 

about age information and the relationship among building styles. Deep 
feature vector of each image sample is obtained from the model and 
projected onto the two-dimensional plane with t-SNE. As shown in 
Fig. 11, the color represents the age group each point belongs to. The 
projected points automatically form 9 clusters with clear boundaries. 
With dark colors representing old ages and light colors indicating recent 
eras, it is worth noticing that clusters with similar colors are also close to 
each other in the two-dimensional plane. This shows that the building 
age epoch prediction model is able to capture meaningful age-related 
information from images. The age group 0, which is the oldest era in 
our research, is adjacent to not only similar age groups (1, 2 and 3), but 
also age group 5 and 6. This indicates similarities of architectural ele
ments in these periods and an architecture revival movement in the 
early 20th century. Generally, the clear pattern demonstrates the ability 
of our model to learn and extract age-related information from images 
and distinguish among building age groups. 

5.2.4. What is the relationship between building age and style? 
In most cases, architectural styles are associated with specific time 

periods. Here, we explore the detailed evolution of architectural styles 
by inspecting the distribution of building styles within each building age 
group. As shown in Fig. 12, color represents the style group each point 
belongs, which is the prediction result from our independent architec
tural style classification model. The position of the point indicates the 
age group it relates to, which is the classification result from our 
building age epoch classification model. The general pattern aligns with 
common sense that building styles are highly related to building ages. In 
early ages (Age group 0, 1, 2, 3, 4, ranging from 1300 to 1911), most 
buildings are classified into style group 2 (Late 19th-century Style, in 
light green), which usually appears in 1870–1910 and is characterized 
by substantial bay windows, heterogeneous ornamentation, and stained 
glasses. As the age groups become more recent, the percentage of style 
group 5 (Contemporary Style) increases, indicating the transition and 
adoption of the Contemporary Style. 

6. Discussion 

6.1. Street view images as a proxy for architecture history study 

With the approach of the big data era, street view images are easier to 
access from both map services (Google,5 and Baidu6), organizations 
(Amsterdam city government7), and crowdsourcing platform, which 
provides opportunities to measure and understand built environments 
and human-environment interactions. In terms of urban building in
formation collection, compared with DSM and LiDAR, street view im
agery approaches so far are more cost-effective and scalable. 

The contribution of this work is that it not only shows the predictive 
ability of GSV and deep learning, but also how the decision process and 
analysis of the deep learning model could be applied in architectural 
history studies. With the combination of deep learning, GSV images 
could be used to explore the evolution of building styles over time. In 
this research, GSV images are used to classify building ages with high 
accuracy and transferred to other cities easily with a small number of 
ground truth samples. Because of the power of DCNN, little pre- 
processing is needed for our task. More importantly, the internal 

representation learned from the process is able to imply the architectural 
element style evolution. 

6.2. Building age and style model as a hint for building styles evolution 

The combination of the building age epoch and style model could be 
used as a hint for architectural style evolution. With our framework, we 
are able to trace the evolution of architectural elements such as win
dows, which is one of the most important architectural elements related 
to building styles (Shalunts et al., 2011; Xu et al., 2014). As discussed in 
Section 4.2.2, windows in early eras tend to be narrow, have wider 
frames, and with more decorations, while recent windows have more 
diversity in size, shape and depth. 

Our method could also be used to trace the transition of architectural 
styles in temporal and geographical dimensions. In terms of temporal 
dimension, as shown in Section 5.2.4, the distribution of building styles 
within each age group is able to reveal the temporal pattern of adoption 
of new building styles. In the sense of geographical dimension, when we 
directly applied building age epoch model trained on Amsterdam to 
Stockholm, while the two cities have a similar distribution of building 
age data, the classification performance of modern eras is much higher 
than early ones. This indicates the buildings constructed after 1979 
share similar architectural elements or characteristics in the two cities. 
As Kenneth Frampton argues that modern architecture is becoming more 
and more homogeneous (Foster, 2002), we could utilize building age 
prediction model to explore the temporal pattern of homogeneity and 
revisit classical theories about building styles. 

6.3. Limitation and future work 

The main limitation of our study is the bias of data collection. The 
construction year of buildings in BAG dataset is defined as “the year in 
which a building was originally or will be delivered as constructionally 
ready.” Renovation, expansion and addition to the building do not 
change the original year of construction. This limitation is reflected in 
Fig. 8 that our age epoch estimation model yields less accurate pre
dictions for Amsterdam city center, as buildings in the city center have 
higher possibilities to be renovated. In another sense, these misclassified 
samples are able to provide urban planners and policy makers insights 
about identifying and locating the renovated buildings. It is also bene
ficial for urban renewal, historical architecture preservation and 
gentrification. It is worth mentioning that our model chooses to ignore 
the first floor of buildings, which are more often renovated than other 
parts, while making decisions. The power of deep learning has helped us 
to avoid this limitation to some extent. 

This study could be further developed in two directions. First, 
although this work focuses on a deep learning framework aiming at 
gaining knowledge about the age and style of buildings, this work does 
not conduct a thorough performance comparison between different deep 
learning-based prediction methods. The prediction could be further 
improved if more indicators are included. For example, previous studies 
often use morphological indicators (e.g., height, area, complexity of the 
footprint, etc.). Kang et al. (2021) explore combining morphological 
attributes, image and other multi-source data to predict housing price 
appreciation. The combination of all data sources contributes to higher 
prediction power. By considering the spatial dependence of building age 
attributes and including neighbor's building age, the performance could 
be further improved and better for real-world application. Second, this 
study could explore further on building style evolution. If multiple cities 
are included, the spatial transmission and temporal evolution of archi
tectural styles might be articulated with our framework. 

7. Conclusion 

Traditional study on building styles and history is heavily realized on 
domain expertise and field studies. With the widespread application of 

5 https://www.google.com/streetview/.  
6 https://quanjing.baidu.com/.  
7 https://data.amsterdam.nl/. 
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data-driven methods in building environment studies, we propose an 
approach that applies a deep learning and computer vision for the study 
of architectural styles and history. 

In this work, we propose a framework for understanding the rela
tionship between architectural styles and building ages. Three compo
nents for building age and style interpretation are introduced in this 
framework. The building age epoch prediction method is tested on 
Amsterdam, Netherlands and Stockholm, Sweden. We also introduce a 
building style classification model and apply it to Amsterdam. By 
comparing the model performance of Amsterdam and Stockholm, 
analyzing the age epoch prediction model and combining the results of 
age epoch and style predictions in Amsterdam, we are able to trace the 
evolution of architectural element styles and architectural styles 
temporally and spatially. The age prediction model is able to achieve an 
overall accuracy of 81.09 %. The test in Stockholm shows that, with little 
ground truth samples, our model could be extended to other cities. 

This study also addresses the potential street view images have for 
understanding buildings and built environment and the practical im
plications of our methods. We also explore the possibility of combining 
building age and style classification models to trace the evolution of 
architectural styles in temporal and geographical dimensions. 

CRediT authorship contribution statement 

Maoran Sun: Data Curation; Methodology; Data Analysis; Writing- 
Original draft, Reviewing and Editing; Validation. 

Fan Zhang: Conceptualization; Methodology; Data Analysis; Writing- 
Reviewing and Editing; Project Administration. 

Fabio Duarte: Manuscript Reviewing and Editing; Project 
Administration. 

Carlo Ratti: Conceptualization; Funding acquisition; Supervision. 

Declaration of competing interest 

We declare that none of the authors have competing financial or non- 
financial interests as defined by Cities, Elsevier. 

Acknowledgement 

This work was support by the National Natural Science Foundation 
of China under Grant 41901321 and sponsored by CCF-Tencent Open 
Fund (RAGR20210101). 

References 

Agugiaro, G. (2016). First steps towards an integrated CITYGMLBASED 3D model of 
Vienna. In , volume III-4. ISPRS annals of the photogrammetry, remote sensing and 
spatial information sciences. Copernicus GmbH (pp. 139–146). https://doi.org/ 
10.5194/isprs-annals-III-4-139-2016 

Aksoezen, M., Daniel, M., Hassler, U., & Kohler, N. (2015). Building age as an indicator 
for energy consumption. Energy and Buildings, 87, 74–86. https://doi.org/10.1016/j. 
enbuild.2014.10.074 

Arntz, W. (1953). Nederlandse baksteen bouw in oost-engeland. Bouw Centraal Weekblad, 
210–212. 

Biljecki, F., & Sindram, M. (2017). Estimating building age with 3d GIS. In Proceedings of 
the 12th International 3D GeoInfo Conference 2017 (pp. 17–24). 

Brunauer, W. A., Lang, S., Wechselberger, P., & Bienert, S. (2010). Additive hedonic 
regression models with spatial scaling factors: An application for rents in Vienna. The 
Journal of Real Estate Finance and Economics, 41(4), 390–411. https://doi.org/ 
10.1007/s11146-009-9177-z 

Dalmau, F., Garcia-Almirall, P., Domínguez, E., & Escudero, D. (2014). From raw data to 
meaningful information: A representational approach to cadastral databases in 
relation to urban planning. Future Internet, 6(4), 612–639. https://doi.org/10.3390/ 
6040612 

Doersch, C., Singh, S., Gupta, A., Sivic, J., & Efros, A. (2012). What makes Paris look like 
Paris? ACM Transactions on Graphics, 31(4). 

Dukai, B., Peters, R., Vitalis, S., Van Liempt, J., & Stoter, J. (2021). Quality assessment of 
a nationwide data set containing automatically reconstructed 3d building models. 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 46(4/W4-2021). 

Dukai, B., Peters, R., Wu, T., Commandeur, T., Ledoux, H., Baving, T., Post, M., van 
Altena, V., van Hinsbergh, W., & Stoter, J. (2020). Generating, storing, updating and 
disseminating a countrywide 3d model. The International Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 44, 27–32. 

Elgammal, A., Liu, B., Kim, D., Elhoseiny, M., & Mazzone, M. (2018). The shape of art 
history in the eyes of the machine. In , volume 32. Proceedings of the AAAI Conference 
on Artificial Intelligence (pp. 2183–2191). 

Firth, S. K., Lomas, K. J., & Wright, A. J. (2010). Targeting household energy-efficiency 
measures using sensitivity analysis. Building Research & Information, 38(1), 25–41. 
https://doi.org/10.1080/09613210903236706 

Foster, H. (2002). The anti-aesthetic: Essays on postmodern culture. New Press.  
Gonzalez, D., Rueda-Plata, D., Acevedo, A. B., Duque, J. C., Ramos-Pollan, R., 

Betancourt, A., & Garcia, S. (2020). Automatic detection of building typology using 
deep learning methods on street level images. Building and Environment, 177, Article 
106805. 

Fig. 12. Distribution of building styles in age periods. Color indicates the style groups that the point belongs to, location represents age group. In more recent age 
periods (age group 7 and 8), Style 5 (Contemporary Style, in light yellow) has higher proportions. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

M. Sun et al.                                                                                                                                                                                                                                     

https://doi.org/10.5194/isprs-annals-III-4-139-2016
https://doi.org/10.5194/isprs-annals-III-4-139-2016
https://doi.org/10.1016/j.enbuild.2014.10.074
https://doi.org/10.1016/j.enbuild.2014.10.074
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0015
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0015
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0020
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0020
https://doi.org/10.1007/s11146-009-9177-z
https://doi.org/10.1007/s11146-009-9177-z
https://doi.org/10.3390/6040612
https://doi.org/10.3390/6040612
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0035
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0035
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0040
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0040
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0040
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0040
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0045
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0045
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0045
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0045
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0050
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0050
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0050
https://doi.org/10.1080/09613210903236706
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0060
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0065
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0065
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0065
http://refhub.elsevier.com/S0264-2751(22)00226-8/rf0065


Cities 128 (2022) 103787

13

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected 
convolutional networks. In Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 4700–4708). 

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. 
Intelligent data analysis, 6(5), 429–449. 
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