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Multi-Agent Reinforcement
Learning Method for Disassembly
Sequential Task Optimization
Based on Human–Robot
Collaborative Disassembly in
Electric Vehicle Battery Recycling
With the wide application of new Electric Vehicle (EV) batteries in various industrial fields,
it is important to establish a systematic intelligent battery recycling system that can be used
to find out the resource wastes and environmental impacts of the retired EV battery. By com-
bining the uncertain and dynamic disassembly and echelon utilization of EV battery recy-
cling in the remanufacturing fields, human–robot collaboration (HRC) disassembly method
can be used to solve huge challenges about the efficiency of retired EV battery recycling. In
order to find out the disassembly task planning based on HRC disassembly process for
retired EV battery recycling, a dynamic disassembly sequential task optimization method
algorithm is proposed by Multi-Agent Reinforcement Learning (MARL). Furthermore, it
is necessary to disassemble the retired EV battery disassembly trajectory based on the
HRC disassembly task in 2D planar, which can be used to acquire the optimal disassembly
paths in the same disassembly planar by combining the Q-learning algorithm. The disas-
sembly task sequence can be completed through standard trajectory matching. Finally,
the feasibility of the proposed method is verified by disassembly operations for a specific
battery module case. [DOI: 10.1115/1.4062235]

Keywords: electric vehicle battery, human–robot collaboration, disassembly operation,
multi-agent reinforcement learning, disassembly task optimization, sustainable
manufacturing

1 Introduction
With the wide application of electric vehicle (EV) batteries in

various industrial fields, highly intelligent EV battery recycling is
gradually being urgent to alleviate the resource waste and environ-
mental impacts, which will promote the automatic manufacturing of
EV battery disassembly technology [1]. Due to the complexity and
uncertainty of EV battery disassembly, it is necessary to develop an
automatic disassembly process based on robot manufacturing.
However, the main gap for the automatic EV battery disassembly
is to find a better way to balance the automatic disassembly produc-
tion line and human involvement by optimizing the low cost and
disassembly capacity. However, the optimal disassembly sequence
of human–robot collaboration (HRC) can provide the disassembly
orders of retired EV battery structure to save the overall disassem-
bly operation time than other orders. The efficiency of disassembly
operations will be improved through the optimal disassembly
sequence to assign the disassembly task to humans or robots for
the specific disassembly operations. Actually, optimal disassembly
task planning can reduce the switch of disassembly tools and the
unnecessary disassembly operations that might cause the safety
problems, such as collisions, mistaking behaviors, etc. Therefore,
it becomes increasingly popular to combine HRC manufacturing
to improve the efficiency and stability of disassembly and recycling
in the flexible production and manufacturing process. HRC disas-
sembly for EV batteries still has many key issues to realize the

industrial manufacturing automation to make the machining
robots better interact with human intentions that can be used to
cooperate with human behaviors to complete the highly efficient
disassembly operation and manufacturing tasks. The HRC disas-
sembly needs to find out the disassembly operator switching from
human to robot or robot to human, which can better complete the
complex disassembly tasks to ensure the collaboration of humans
and robots with more interaction and flexibility [2]. With the devel-
opment of more advanced sensing technology and interaction tech-
nology, human and robot disassembly has achieved interactive and
collaborative manufacturing, which not only reduces the labor cost
for workers but also expands the efficiency of flexible disassembly
operations [3].
With the requirements of green energy technology, EV battery

recycling for EV batteries is becoming increasingly a huge chal-
lenge. If EV batteries are not effectively recycled, they might
cause environmental pollutions and even threaten the health and
safety of human beings. Therefore, it is important to establish a
scientific and complete automated EV battery recycling and disas-
sembly process [4]. Because there are still certain shortcomings
for robots to autonomously complete tedious disassembly tasks in
a relatively complex working environment, an efficient and safe
HRC disassembly work can effectively solve the problems in the
actual disassembly process for EV battery recycling. The disassem-
bly tasks for EV battery recycling are repetitive and labor-intensive,
and the robot can significantly improve work efficiency and reduce
labor costs to assist in the accomplishment of disassembly tasks [5].
Compared with the traditional mode of EV battery recycling, the

new disassembly method has the characteristics of a high dangerous
degree based on HRC workings with high recycling requirements.
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However, a highly flexible remanufacturing disassembly produc-
tion line needs to be executed in the actual disassembly process
to acquire the desired disassembling sub-products in a single disas-
sembly line [6]. The HRC disassembly operations need to accom-
plish the allocation of disassembly tasks that considers the
optimization decision-making between human and robot.
However, a simple disassembly process is not suitable enough to
adapt to the uncertain disassembly objects. We know that the EV
battery structure is relatively complex and it is difficult to unify
the different battery types from various enterprises for their
various layouts and modules [7]. Although the disassembly opera-
tion based on robot-assisted manufacturing can better cope with the
uncertain and flexible battery products, human operations mainly
focus on the intelligent decision-making of disassembly tasks that
will promote the robot to accomplish a stable disassembly effi-
ciency of EV battery. If there are no involvements about humans
in the disassembly process, it is difficult to complete the complex
disassembly tasks independently. By combining humans and
robots in the specific disassembly process, high-efficient disassem-
bly tasks can be better accomplished to establish reasonable disas-
sembly sequences and disassembly task assignments.
The paper mainly proposes multi-agent reinforcement learning

for HRC disassembly optimization in retired EV battery recycling.
In Sec. 2, literature reviews will be presented to compare the various
optimization methods and disassembly technology. The optimiza-
tion of the disassembly process based on reinforcement learning
will be proposed to discuss the optimal disassembly sequence and
disassembly tasks in Sec. 3. Section 4 gives a case study to demon-
strate the disassembly optimization process for certain an EV
battery module. We will discuss the future challenges and possible
research points for EV battery disassembly in Sec. 5. Section 6
gives a conclusion.

2 Related Work
2.1 Electric Vehicle Battery Disassembly Structure. By

reviewing many related literature studies, most automotive EV bat-
teries are composed of the following parts: battery housing, battery
module, cooling system, BMU, and electronic devices such as the
wiring harness. The structure of the battery module is further
divided into module shell, insulation board, battery cell, and
control circuit board and related wiring harness. The battery
housing accounts for about 20–30% of the total weight of the
battery, and the material is mostly aluminum alloy [8]. As known,
the retired EV battery recycling needs to consider more possible
applications for echelon utilization and disassembly [9]. However,
there are many evaluation methods to judge the specific application
scenarios by analyzing the specific characteristics of the specific EV
battery pack. The entire battery pack needs to be discharged to a
safe voltage before it can be disassembled, and the entire disassem-
bly process can be divided into several large stages: disassembly of
the battery package, disassembly of the battery module, and final
disassembly of the battery cell. In the disassembly of the whole
package of batteries, the current technical means are still disassem-
bled by simple HRC or pure manual ways with inefficient and
labor-intensive operations [10]. In order to facilitate the subsequent
disassembly work, the operator first needs to remove the upper
cover of the battery shell, which usually has two connection
methods between the upper cover plate and the housing, the fastener
connection and the sealant connection.
According to the complex product structure and uncertain

product types, the size and position of the connection in the disas-
sembly process are different to remove different fastener positions.
Therefore, the design needs to optimize the disassembly sequence
and to conform to the actual operation of the disassembly
process. However, there are many engineering applications in
visual identification parts and removal of product connections,
which can be well solved in dealing with some traditional problems,
and the connection position recognition of the cover plate on the

battery shell is a relatively simple situation based on machine
vision recognition [11]. After the removal of the battery cover,
the disassembly of the wiring harness and electronic devices and
the entire cooling system is relatively complex, and the connection
between various battery modules and the battery shell is also impor-
tant to the disassembly task. The connection method used in the
battery module is basically connected by fasteners, many designers
will apply fixing glue at the bottom of the module [12]. The tradi-
tional method is still relying on manpower to use special tools to
violently remove the connection glue, which may cause the
module to be damaged with greater safety hazards and low effi-
ciency [13]. Because the wiring harness and cooling system in the
battery pack have a certain degree-of-freedom, HRC disassembly
operation requires a human to give necessary positioning assistance.
The disassembly of the battery module requires the removal of the
upper end cover and the internal wiring harness, and the connection
removal of the module. However, the structure of the module for
EV battery disassembly is more suitable for HRC disassembly oper-
ations to better accomplish disassembly tasks [14].

2.2 Human–Robot Collaboration Disassembly Methods. In
the past research on HRC manufacturing, human–robot interactions
are also becoming more and more abundant. However, many liter-
ature studies suggest that the repetitive operation task of the robot is
easier and more accurate than that of the human action. Many schol-
ars mentioned that the HRC methods to solve specific manufactur-
ing problems toward assembly or disassembly, which can support
the making decisions of the specific manufacturing operations
between humans and robots [15,16]. In the HRC disassembly
process, robots are usually required to update their disassembly
actions dynamically with human operators in a shared workspace
according to disassembly task planning. A reliable HRC worksta-
tion needs to develop its execution platform that can provide real-
time updated models and data in a dynamic disassembly environ-
ment [17]. Furthermore, pattern recognition under high-speed
cameras from traditional sensing technology further improves the
possibility of HRC [18]. With the development of intelligent
sensors and safety disassembly, the brainwave-driven HRC disas-
sembly is gradually becoming a possibility to better accomplish
the disassembly task executions and real-time data feedback [19].
However, human intention and action prediction can be achieved
by recognizing the trajectory of human joint action, which can
effectively improve the overall disassembly efficiency and ensure
safety problems such as collisions that may cause wrong operations
with intelligent robots [20]. In addition to human intention recogni-
tion, other methods also can be used to predict the disassembly tasks
and related operations based on HRC by considering the multi-
agents actions and intelligent algorithms [21,22]. As known, the
intelligent models based on neural network algorithms can be also
used to combine learning predictions of the disassembly process,
which can predict simple human actions and determine the robot
to accomplish the collaborative commands.
The EV retired batteries need to be recycled to ensure the recy-

cling requirements that the disassembly process in the entire reman-
ufacturing process should consider non-destructive disassembly.
However, it is difficult to develop the use of a fully automatic dis-
assembly mode based on HRC disassembly [23]. In terms of the
optimization of the HRC disassembly sequence as shown in
Table 1, the optimization process of the disassembly task is to gen-
erate the related basic disassembly sequence according to the actual
task requirements based on the specific algorithm to optimize the
final multi-objective optimization combined with multiple condi-
tions [24]. The specific disassembly representation can be described
by the disassembly graph model, which disassembles the original
product into the subcomponents to form a tree graph structure.
The selection of a disassembly graph model can be usually accom-
panied by multiple constraints to determine disassembly objects by
optimizing the disassembly cost and times [25]. As known, the tra-
ditional optimization methods mainly include genetic algorithms
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based on bionic phenomena [26], ant colony algorithms [27], and
other heuristic algorithms. Genetic algorithms are one of the com-
monly used methods to solve the optimal programming problems
for EV battery disassembly optimization, which can be used to gen-
erate the optimal disassembly sequences for the entire disassembly
process [28]. The ant colony algorithm can be used to find the pos-
sible optimal disassembly sequences for complex disassembled
products, which finally achieves the selection of optimal disassem-
bly sequences [29]. Recently, some new ideas are also used to find
out the optimization of disassembly sequences based on dynamic
Bayesian networks that can achieve the optimization of dynamic
disassembly operations with uncertain conditions [30]. However,
it should be a good method to consider reinforcement learning
(RL) models that can be used to determine the disassembly
sequence of complex retired products [31]. It is possible to
achieve the decision-making of disassembly sequences based on
deep reinforcement learning (DRL) architecture that can obtain
the optimal disassembly sequence by considering the HRC disas-
sembly tasks [32].
For the disassembly of retired EV batteries, the basic dis-

assembly process can be used to acquire the stereoscopic visual
positioning technology by machine vision to obtain the 3D posi-
tions of each disassembly component in the physical coordinate.
The target recognition algorithm can complete the extraction of
disassembled object features, which can finally synthesize the
identification results to obtain the disassembly task allocation
for each component of the battery [33]. At the module disassem-
bly stage, because the average quality of the module after disas-
sembly into a single body is higher, the disassembly object
recognition is better than the battery pack. Therefore, by analyz-
ing the disassembly module, it is found that the robot might better
accomplish the high-speed cutting and other dangerous work,
while a human can cooperate with to disassemble based on a
HRC algorithm [34]. EV battery disassembly can be established
by optimizing the working mode of the HRC disassembly plat-
form, which can select the robot fully as an assistant that can
be positioned by machine vision with efficient and non-
destructive disassembly that can further select the robot disas-
sembly tools [35].

However, there are many research points for EV battery disassem-
bly based on the HRC disassembly process, including disassembly
tool selection, disassembly task assignment, path optimization, and
disassembly safety evaluations. Disassembly safety is a vital part of
massive EV battery recycling that robot-assisted disassembly
should change its machining speed with the disassembly operation
action under the safety of HRC disassembly. The workstation of dis-
assembly operation should have the ability to ensure the trajectory of
the robot and the position of the human under a safe distance [34].
However, the disassembly operation environment through traditional
industrial robots can be realized by security measures strictly to
protect human actions. The safety of HRC disassembly can be used
to consider the common data through cameras or other sensors,
which should also be combined with hardware improvements. In
summary, the optimization of HRC disassembly operations can be
decomposed into multiple components in the real-time monitoring
and control, disassembly working force, and specific disassembly
operations based on disassembly robots.
By combining the current disassembly problem for automotive

retired EV batteries, there are two main challenges for HRC disas-
sembly methods as follows:

• Due to the complexity of the battery pack structure, various
EV battery types and the various disassembly tools need to
be determined for the variety of retired EV batteries. There-
fore, it is necessary to find out the disassembly strategy by
optimizing the appropriate disassembly sequence and tool
selection according to their disassembly conditions such as
collision protection, path optimization and human–robot
making decisions.

• The recycling of EV battery is different from general retired
products that EV battery pack may cause uncertain structure
deformation due to impact, wear and tear. The uncertain struc-
ture might cause the complex disassembly process and unfixed
disassembly sequence for each disassembled product. There-
fore, it is difficult to meet the actual disassembly requirements
to determine the entire disassembly strategy that can optimize
the disassembly process based on HRC disassembly for
massive EV battery.

Table 1 Research works on disassembly sequence issues

Ref.
Disassembly optimization

method Research descriptions and contents

Xiao et al. [30] DBN • To propose a dynamic disassembly Bayesian network approach
• To deduce the optimal disassembly sequences of EVB model using the forward–backward algorithm

and the Viterbi decoding algorithm
McGovern et al.
[36]

ACO(DLBP) • To use ant colony algorithms to solve the balance problem between disassembly lines
• To combine reasonable plans by the number of disassembly workstations
• To improve the efficiency of disassembly line

Tripathi et al. [37] ASGA • To propose a fuzzy disassembly optimization model and Self-Guided Ants algorithms
• To calculate the optimal disassembly strategy and optimal disassembly depth

Xia et al. [38] STLBO • To proposes a STLBO algorithm (teaching and learning) to optimize DSP issues
• To ensure the characteristics of fast convergence speed and strong adaptability

Tseng et al. [39] PSO • To create a closed-loop model to optimize the disassembly sequences with PSO method
• To reduce the lowest cost of disassembly

Zhao et al. [31] DRL • To propose the DQN algorithm based on the RL framework to solve the SDSP problem
• To obtain the optimal disassembly sequence with the shortest disassembly time

Kheder et al. [40] GA • To propose a genetic algorithm to solve DSP problem
• To optimize disassembly tools and disassembly process of disassembled parts

Liu et al. [41] DRL • To use DQN method to optimize the Human-machine collaboration operation and task allocation in
real industrial production

Tian et al. [42] DDA • To propose a dual-objective discrete artificial bee colony to solve the dual-objective DSP problem
(economical and energy)

• To propose the disassembly uncertainties that need to be presented in practice

Note: DBN, Dynamic Bayesian network; ACO, Ant colony optimization; DLBP, disassembly line-balancing problem; ASGA, Algorithm of Self-Guided
Ants; STLBO, Simplified Teaching-learning-based optimization; PSO, Particle swarm optimization; GA, Genetic Algorithm; DRL, Deep Reinforcement
learning; DDA, Dual-objective discrete artificial bee colony.
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3 Dynamic Human–Robot Collaboration Disassembly
Model
As discussed earlier, the dynamic HRC disassembly model needs

a certain learning ability and efficient reasoning ability for disas-
sembly tool selection, disassembly path optimization, and
human–robot decision-making in the entire disassembly process,
which should take into account the disassembly sequence optimiza-
tion and disassembly tasks allocation in HRC disassembly process.
After optimizing the disassembly sequence of the retired EV
battery, a dynamic disassembly task planning model can be pro-
posed to determine the disassembly task assignment and the disas-
sembly operations according to disassembly features and retired
product structure. However, an optimal disassembly sequence can
be generated in real-time uncertain disassembly process according
to a specific optimization algorithm for the retired disassembly
object structure as shown in Fig. 1. The left part of Fig. 1 shows
the procedure of the disassembly process for retired EV batteries
based on multi-agent reinforcement learning for humans and
robots, including disassembly object structure, disassembly
sequence optimization, disassembly task assignment, multi-agent
disassembly operations, and disassembly trajectory. The right part
of Fig. 1 presents multi-agent disassembly path optimization
through disassembly tasks in 2D disassembly planar. The disassem-
bly operation and optimization trajectory for dynamic disassembly
sequence can be accomplished by a deep reinforcement learning
approach to match the optimal disassembly trajectory by combining

the optimal disassembly sequence and disassembly tasks based on
HRC disassembly. It is necessary to monitor the implementation
of the disassembly system according to the specific disassembly
process and disassembly paths to ensure disassembly operations.
The novel multi-agent reinforcement learning approach based on
HRC disassembly will be used to assign specific disassembly
tasks based on the optimal disassembly sequence for the specific
EV battery.

3.1 Disassembly Structure Graph Representation. Because
the internal structure of a retired EV battery is relatively complex
and there are more constraints between various components, it is
more appropriate to represent the product disassembly graph that
combines the directed graph and the undirected graph. As shown
in Fig. 2, a retired product can be decomposed into component a
and subassembly bcd, which indicates that the two subassemblies
do not have priority in the actual disassembly process through
direct contact and interference operations. The different disassem-
bly operations have various disassembly priorities in the actual dis-
assembly process. The composition of a disassembled hybrid
diagram consists of three elements, represented by the diagram
G = {V, E, DE}, where G represents the hybrid diagram, V refers
to the node in the diagram, in the disassembly scenario refers to
the individual parts that need to be disassembled, and E represents
the undirected edge, which represents the contact constraint for the
disassembled product. DE represents the direction edge, which

Fig. 2 (a) Disassembly Tree and (b) Disassembly operation graph

Fig. 1 The framework of disassembly task planning based on HRC disassembly
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represents the priority constraint between the parts. The related
mathematical symbol abbreviation has also been defined as listed
in Table 2.
According to the representation of the disassembly graph model,

we can generate a priority constraint matrix and an association con-
straint matrix, which can be used to visually represent the priority
constraint between any two components, let i and j be one of the
components as shown in the following:

PMij =
1 Part i has a priority constraint with part j
0 Otherwise

{
(1)

The association matrix visually represents the association con-
straints between any two components and can be generated as
follows:

CMij =
1 Part i is connected with part j
0 Otherwise

{
(2)

The goal of the disassembly sequence can be used to optimize the
disassembly time and costs in the complex disassembly process.
The target of EV battery disassembly should be disassembled for
some fasteners, which can be regarded as various disassembly
tasks and operations to separate the assembly into subassembly or
components. According to the connection types in the EV battery
assembly structure, the specific connection for retired EV battery
needs to be accomplished by the specific operations, which can
define the total number of operations as OA, the sum of the
number of operations OH completed by human, and the sum of
the number of operations OT completed by the robot. However,
we define the disassembly operations for humans as DH and the
operation for the robot as DR that can be used to analyze the disas-
sembly operations for different disassembly tasks. According to the
difficulty of disassembly tasks between the operation DH completed
by a human alone and the operation DR completed by the robot
alone, the time of independent disassembly operation by the robot
can be defined as the time of disassembly task TR. The disassembly
time as an optimization goal can be used to acquire the optimal dis-
assembly structure graph. Therefore, we can know that the optimal
disassembly sequence can be calculated by the related constraints
and disassembly requirements according to the specific disassembly
structure for certain retired EV batteries.

3.2 Multi-Agent Reinforcement Learning. Reinforcement
learning can accomplish the interaction between the individual
and the environment to continuously acquire feedback data,
which can finally obtain the desired results based on the input
data. The method can be used to find out the optimal disassembly
paths for the disassembly EV battery structure. The whole learning
process can be discretized for each different moment, and the indi-
vidual will interact with the environment that will trigger the envi-
ronment a certain action. The environment will feedback to the
individual state parameters under the activity and the reward gener-
ated by the previous activity in the discrete moment T. Each
moment will allow the individual to receive the state St from the
environment. The individual will choose an action At and the envi-
ronment receives this action signal. The environment will feedback
on the state St+1 at the next moment t+1 and reward Rt+1. The
framework of multi-agent reinforcement learning for HRC can be
used to describe two agents’ application optimization to represent
the specific operations of humans and robots. For the total benefit
of the continuous disassembly process, Gt should present an atten-
uation rate γ (0 < γ< 1)) calculated as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∑∞
k=0

γkRt+k+1 (3)

The final result of reinforcement learning provides an optimal
strategy for action that can guide the agent to take the next
action. The probability of making the action at state St described
in π(a|s). Through continuous iteration, the total benefit will con-
tinue to increase and the strategy will become better and better to
achieve the final optimization effect. The reinforcement learning
model will focus on the Markov Decision Model (MDP) to deter-
mine the optimal strategy, which includes five parameters in the
optimization process, namely (S, A, P, R, γ). The parameter S rep-
resents the state space, because the model in this scenario belongs
to the finite Markov model, so the parameter in the state space col-
lection is also limited. The parameter A represents the feasible space
of action in the S state. The parameter P(s′|s, a) indicates the prob-
ability that the agent will take the action a to the next action s′ in the
S state

P(s′|s, a) = Pr [St+1 = s′|St = s, At = a] =
∑
r∈R

p(s′, r|s, a) (4)

where R(s′, s, a) represents the real-time reward that is immediately
received when the agent takes action to move to status s′ under the
state S. In this model, the agent can choose different actions accord-
ing to different states, and the probability of state transfer can be
also changed. There are two functions that follow the strategy to
obtain the expected benefit based on reinforcement learning
method, involving the state value function Vπ(s) and the action
value function Qπ(s, a). Vπ(s) indicates that the strategy does not
change to harvest the expected return in the state S, and Qπ(s, a)
indicates that the desired return is harvested according to the strate-
gic action after adopting action a in state S as follows:

Vπ(s) = Eπ[G0|S0 = s] = E
∑T
t=0

γtRt+1|S0 = s

[ ]
(5)

Qπ(s, a) = Eπ[G0|S0 = s, A0 = a] = E
∑T
t=0

γtRt+1|S0 = s, A0 = a

[ ]

(6)

The state value function Vπ(s) and the action value function
Qπ(s, a) are recursively expanded to obtain the Bellman equation,
which represents the recursive relationship between the function

Table 2 Related symbol abbreviation definitions

Symbol abbreviations Definition

PM Priority constraint matrix
CM Association constraint matrix
G Total system benefit of the continuous process
S State space of the environment
A Action space of the agent
P Agent action probability
R Reward space
γ Attenuation rate
SH State of the Agent-Human
SR State of the Agent-Robot
aH Action of the Agent-Human
aR Action of the Agent-Robot
OA The total number of operations
OH The number of operations completed by human
OT The number of operations completed by robot
DH The difficulty of operations completed by human
DR The difficulty of operations completed by robot
TR The time of completion by robot
π The policy of the agent
π∗ Optimal policy
ε − greedy Greedy probability
V State value function
Q Action value function
N The number of disassembly targets
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in the current state and the function in the subsequent state.

Vπ(s) =
∑
a

π(a|s)
∑
s′ ,r

p(s′, r|s, a)[r + γVπ(s
′)] (7)

Qπ(s, a) =
∑
s′ ,r

p(s′, r|s, a) r + γ
∑
a′

π(a′|s′)Qπ(s
′, a′)

[ ]
(8)

The optimal strategy is to find the maximum value of the two
functions when the strategy π, and the optimal strategy is expressed
as follows:

V∗(s) =max
π

Vπ(s) (9)

Q∗(s, a) =max
π

Qπ(s, a) (10)

V∗(s) =max
a

Q∗(s, a) (11)

The best strategy requires finding the strategy used by the optimal
value function. You can take the way of maximizingQ∗(s, a) to find
the optimal strategy π

π∗(a|s) = 1 if a = argmaxQ∗(s, a)
0 otherwise

{
(12)

However, we can get the Bellman equation in the optimal case:

V∗(s) =max
a∈A

∑
s′ ,r

p(s′, r|s, a)[r + γV∗(s′)] (13)

Q∗(s, a) =
∑
s′ ,r

p(s′, r|s, a) r + γmax
a′

Q∗(s′, a′)
[ ]

(14)

However, there are many ways to solve Bellman’s equations:
Value Iteration and Policy Iteration. According to the proposed
Multi-Agent reinforcement learning framework, the traditional two-
dimensional grid world is used as the environment to establish the
disassembly task sequence representation different from the tradi-
tional optimization method to calculate the disassembly task time.

The comprehensive negative return value in this framework evalu-
ates the actions completed by different roles, which can be
expressed as the statistics of three factors, the calculation formula
is as follows:

Reward = α∗operating time + β∗difficulty + γ∗quality impact

(15)

However, the negative return of tasks that are difficult for robots
to complete independently is defined as −99, and the return value in
other cases is calculated according to the comprehensive negative
return. Specifically, the current proposed reinforcement learning
method for multi-agent human and robot operations can be used
to determine the optimal disassembly path, which optimizes the
maximum reward of the multi-agent disassembly task to specify
the disassembly paths. The disassembly task planning based on
multi-agent reinforcement learning can be divided into the follow-
ing two disassembly ways. The first one is to optimize the specific
disassembly sequential tasks based on the disassembly graph model
for the specific retired EV battery, which will be completed by one
operator or multiple operators cooperatively. As known, the next
disassembly tasks cannot be completed before the task has not
been completed. The other one is to execute a parallel disassembly
task, which means that the same level of disassembly tasks can be
carried out by two operators at the same time without interfering
with each other in the process of parallel disassembly tasks. By opti-
mizing the disassembly task planning for the retired EC battery, the
value of the combined negative return will be reduced by 40% due
to the reduction of disassembly operation time. The same level of
disassembly tasks can only be completed by one or two operators,
which need to cooperatively complete the specific operation step of
the disassembly sequential task as shown in Fig. 3. The entire rein-
forcement learning environment is composed of 5 ×N grids that can
be determined by the disassembly task goal. According to different
disassembly object structures and disassembly task lists, the rein-
forcement environment has also huge differences. The first row of
white grids is the start state where the agents start a single round
of search tasks from the start point. The rightmost red grid row is
the endpoint, when the agent reaches the endpoint, it can be consid-
ered to have completed the current round of search tasks. The
bottom is to achieve the proper disassembly depth. The same pair
of white grids in the middle and the starting point is the adjustment

Fig. 3 Disassembly sequential operations and parallel operations based on multiple-agent
reinforcement learning algorithm
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selection area, and the rest of the areas are task areas. In the disas-
sembly task area, each row represents a task selection. Two agents
cannot appear in the same row, and the agents cannot change ranks
in the task area. The grids of different colors represent different neg-
ative feedback values. The dark blue grids represent that the task
cannot be completed independently by the robot–agent. The white
grids indicate that the agent waits for another task to be completed
and does not take any action itself. The total value of the black grids
in the environment represents the cost required by the agent to com-
plete the entire task. In this environment, the agent’s exploration
direction can only be right, up, or down.
In the disassembly task searching area, the exploration direction

of the agent can only go to the right from the starting point to the
adjustment selection area, and the exploration direction of the
agent can only be up, down, or right. For the HRC disassembly
environment, dual agents can select at most two tasks to accomplish
simultaneously according to the order of disassembly priorities. The
disassembly sequential task can be only completed by a single
agent, and the other agent needs to wait for the completion of the
disassembly task to quit the sequential task area after the disassem-
bly task accomplishment. The adjustment selection area will rese-
lect the agent for the next task. The execution of the parallel task
is completed by two agents at the same time. The dual-agent
decides who will complete the two parallel tasks (task A and task
B): human for task A or robot for task B. The robot for task A
can be accomplished by continuous exploration and matching of
agents that the optimal task matching can be found based on a rein-
forcement learning environment. Even if the total negative income
is the smallest, it is considered that the total cost (including disas-
sembly time and disassembly difficulty) is the least in the real envi-
ronment to reach the minimum value of disassembly time and
disassembly difficulty.

3.3 Disassembly Task Planning and Tool Selection. In order
to acquire the optimization of disassembly task planning for the
real-time disassembly sequence, the entire disassembly operations
need to be assigned to different operators, such as human or robot
agents. After obtaining the related disassembly tasks for various
agents, the specific operator can select the specific disassembly
tool according to the disassembly task assignment. The disassembly
process will consider two ways to improve the intelligent disassem-
bly of complex EV batteries. The first is to visually identify the dis-
assembly tools required for the related disassembly task, such as
selecting the related series of sleeves according to various screw
sizes. The second is to consider the related disassembly operations
through the disassembly sequential task lists in the disassembly
system. Because the flexibility of the disassembly robot is difficult
to select suitable disassembly tools and the switching of the disas-
sembly tools are different according to the complex disassembly
objects. However, the frequent switching process will also lower
the disassembly efficiency for multi-agent disassembly operations
in the more accurate control system. In the previous disassembly
sequence optimization, the switching process of disassembly tools
can be optimized in actual production to determine the disassembly
tool selection that can be used to change the entire disassembly
process.
In order to implement the disassembly tasks, the initial assign-

ments should be prioritized by operation types. For example, the
robot is more efficient than the human to complete some operations
such as loosening. The specific type of disassembly operations
involving the loosening operation can consider the robot operation
to complete the disassembly task. The efficiency of disassembling a
wire harness by manual removal is much higher than that of robots
that will consider more manual disassembly tasks involving flexible
disassembly. However, in the actual disassembly process, it is pos-
sible to consider humans to accomplish some loosening disassem-
bly tasks because of the damaged disassembly objects and the
efficiency problem of robot switching disassembly tools. Therefore,
it is necessary to combine the disassembly sequence planning to

optimize the actual disassembly tool and the final disassembly
task allocation. Owing to the uncertainty of the internal and external
complex conditions of the retired EV battery pack, the actual disas-
sembly task may dynamically optimize the final assignment of
entire disassembly tasks.
By considering a retired EV battery module as an example, it is

necessary to make a detailed representation of the basic disassembly
tasks for an automotive EV battery module. Although the disassem-
bly task for a retired EV battery is complex to determine the disas-
sembly operations, the disassembly structure can be represented by
separating the general structures, including decomposing the battery
internally into a single module and the module into a single cell.
According to the actual disassembly situation, the disassembly
task can be specifically decomposed into the robot operations and
the human operations, which can be mathematically optimized to
determine the robot and the human according to the different diffi-
culty coefficients based on various agents for the appropriate alloca-
tion of disassembly tasks. However, it is important to generate the
disassembly path that can be used to accomplish the disassembly
task from three stages. The first stage is to identify the disassembly
target by the machine vision method, which can be usually achieved
using the target recognition algorithm in the vision system. The
second stage is that a related disassembly path can be generated
according to the disassembly target in the disassembly process.
The third stage is to optimize the disassembly path by perceiving
the surrounding environment to achieve the optimization of the dis-
assembly paths and allocate the specific disassembly tasks. In
general, the selection of the optimal disassembly path mainly con-
siders the comprehensive disassembly time and the complexity of
the disassembly operations based on various disassembly tasks.
By considering the Q-learning algorithm based on reinforcement

learning, we can also solve the disassembly path optimization
problem for complex disassembly operations. Because retired EV
batteries have the characteristics of multi-operation targets in the
same plane, the coordinated action of the entire disassembly robot
can be discretized in a two-dimensional plane. The area needs to
be first meshed that can be used to capture the disassembly features
and entire images can be also divided into feature and non-feature
areas. The target grid to be disassembled is dyed black, while the
network to be disassembly in other processes will be dyed gray,
which can simplify the robot disassembly trajectory and its disas-
sembly strategy is similar to the artificial intelligence decision to
generate the retired EV battery disassembly path. We can assume
that the robot starts from any black square, and the next step can
fall on the other 8 squares adjacent to it. The probability of each
square is 0.125, and the return of the white square is −0.01, the
income of the black square is 100. We define n as the number of
disassembly targets, and the optimization goal is to stop when the
total return reaches (n−1) * 100 or more. In order to prevent the
same black grid from being accessed repeatedly, the robot will
reset the grid to a white grid with a return of −0.01 every time it
passes through the grid. The optimal strategy will be selected for
the maximum total return. As the number of iterations increases,
the reward value will converge more and more to the maximum
reward value based on the Q-learning algorithm as shown in Fig. 4.
In the actual battery recycling process, because the battery pack

has generally huge differences for retired EV battery quality, it is
difficult to identify the battery shapes and structures such as defor-
mation and rust that might affect the variations of the entire disas-
sembly process. Based on the template matching method, a new
recognition can be proposed to compare the existing recognition
results according to disassembly sequences, which can be used to
complete more efficient disassembly task assignments. Yolo and
other pattern recognition algorithms can perceive the disassembly
depth for the specific EV battery structure by comparing the differ-
ence between screws and their holes. But it is difficult to accomplish
the disassembly task planning that considers the real-time genera-
tion of the disassembly sequence for each disassembly operation.
According to all kinds of battery packs in the retired EV battery
recycling, a fundamental EV battery structure and its graph model
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should be considered to determine the final disassembly strategy
and operations. By combining the image capture of 3D camera in
the actual disassembly process, the similarity of the existing struc-
ture should be first matched based on the external structure features.
The related battery pack can be screened to match the disassembly
planning with the optimal disassembly path. However, it is neces-
sary to solve the problems of the actual disassembly tasks and
give some specific marks for all the problem points that can be
used to assign to disassembly operations for humans in the disas-
sembly task. The human can use special disassembly tools to man-
ually disassembly EV battery structure and finally interact with the
system to determine the final disassembly strategy.
However, the implementation of retired EV battery disassembly

mainly relies on the initial matching of the outer profile or other fea-
tures to obtain a rough battery pack structure model and to generate
the subsequent disassembly tasks and disassembly operations as
shown in Fig. 5 The EV battery disassembly needs to capture as
many characteristics as possible to distinguish different retired EV
batteries in the disassembly operations, which also need to rely on
the operator to determine the specific EV battery disassembly strategy
that helps HRC disassembly achieve the disassembly flexibility in
complex retired EV battery recycling. Due to the uncertainty of
battery structure and quality in the actual disassembly identification
process, the disassembly trajectory for retired EV batteries is also
crucial to determine the optimal disassembly strategy based on the
basic structure of the battery pack. Due to the uncertainty of battery
pack quality, the battery pack size and shape are also difficult to guar-
antee consistency with the normal battery pack structure with any
possible damages in the actual identification process. Because

humans and robots share a common disassembly operation space in
the actual disassembly workstation for the retired EV battery pack,
it is important to ensure the disassembly safety by considering
more human–robot interactions in the actual disassembly process.
The robot-assisted disassembly operation will present an anti-
collision design method to protect the robot and human from accident
events based on HRC disassembly by the robot sensors.

4 Case Study
By considering the MS372P5s Samsung battery module as an

example, it can be roughly divided into the following subassembly
or components: (1) Upper End Cover; (2) Module Circuit Board; (3)
Structure Frame; (4) Pole Head; (5) Pole Piece; (6) Insulating
Plates; (7) Battery Cell; (8) Thick Side Shell. As known, it is nec-
essary to optimize the disassembly process that accomplishes
optimal disassembly planning by determining the disassembly
sequences and the specific disassembly operations for each disas-
sembly task. However, various subassemblies or components
have some complex relationships between their connections that
might make the difficulty of disassembly operations without any
disassembly tools or assistant devices. The battery module can be
finally divided into eight components that can be used to effectively
recycle the components by HRC disassembly. The disassembly
sequences can be represented by the disassembly graph model as
shown in Fig. 6, which can be used to optimize the disassembly
operations and disassembly sequences based on various disassem-
bly parameters for EV battery structure.

Fig. 6 Disassembly object 3D model and disassembly graph structure

Fig. 4 The flowchart of Q-learning reinforcement learning for
disassembly process

Fig. 5 Disassembly optimization based on multi-agent rein-
forcement learning
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Furthermore, EV battery disassembly is to acquire the fundamen-
tal components or the valuable subassembly to re-utilize its values
or its functions through EV battery recycling. The case study can be
used to demonstrate the entire disassembly process of the EV
battery module from the original structure to each component,
which can be described by a series of disassembly operations
based on the optimal disassembly sequences in the actual disassem-
bly process. However, it is necessary to discuss the disassembly
sequences based on HRC disassembly that needs to specify the dis-
assembly steps. The original manual disassembly sequence is to
remove the upper end cover first, and the step has no fasteners to
remove because the traditional manual operation is less difficult
to accomplish the removal without any robot operations. The
second step requires loosening the M4 Phillips screws that fix the
Module circuit board in six installation places, which is difficult
to operate by traditional manual operation. Therefore, the robot-
assisted disassembly operation should be considered to accomplish
repeatable disassembly tasks. The third step is to remove the
Module circuit board from the EV battery module by separating
the fastener connectors with manual disassembly operations. The
fourth step requires loosening the M6 Phillips screw that holds
the Pole head in a connection place that is generally difficult to man-
ually disassembly operations with huge repeatable actions. The
operations might cause low disassembly efficiency when facing a
load of EV battery recycling. The fifth step is to remove the
battery module structure frame and the pole head in the actual dis-
assembly operations. However, the disassembly process mainly
includes the specific flexible disassembly operations that will be
accomplished by manually disassemble rather than robot actions.
The sixth step is to separate the EV battery pole pieces from the
battery module by manual disassembly operations. The seventh
step is to remove the side plate and the battery cell, which normally
requires the cutting disassembly operations to remove the outer
shell or side plates as shown in Fig. 7.
However, the disassembly sequential task can be represented by a

disassembly graph structure with various disassembly constraints in
the actual disassembly process from the EV battery module to
battery cells. The disassembly graph for the EV battery module
case can be represented by related association and priority relation-
ships for the actual disassembly sequences for each disassembly
subassembly or component. As shown in Fig. 7, MS372P5s
Samsung battery module can be represented by the disassembly
graph structure into eight components, including (1) upper end
cover, (2) module circuit board, (3) structure frame, (4) pole
head, (5) pole pieces, (6) insulation plates, (7) battery cells, and
(8) thick side shell. As known, component (1) has the priority for
the specific disassembly operations, which directly links to compo-
nent (8). The component (2) has more priority than components

(4) and (5). The disassembly sequence for the disassembly case
for component (3), component (2), component (4), and components
(5) has a direct association relationship in the actual disassembly
process. Component (3) has more priority than component (6)
and component (7). And component (6) has more priority than com-
ponent (7). Therefore, the association and precedent relationship
between disassembly processes can be described as shown in Fig. 8.
In order to accomplish the optimal disassembly sequence and dis-

assembly tasks based on HRC disassembly, it is necessary to deter-
mine the disassembly operations for the specific EV battery. The
specific disassembly operations have been discussed for related
steps for one human as an agent or one robot as another agent in
the actual disassembly process. However, all disassembly opera-
tions are scored on the difficulty of the disassembly task, and any
of the disassembly operations are scored according to the different
working characteristics of humans and robots. We define the score
of easy completion of characters as 0.25, the score of disassembly
operations that are not easy to complete is 0.75, and the average
degree of disassembly operation is 0.5. Therefore, we can obtain
the evaluation scores of EV battery disassembly tasks based on
HRC as shown in Table 3.
The multi-agent reinforcement learning can be used to optimize

the disassembly sequences and operations for EV batteries in the
actual disassembly process. By disassembling the specific EV
battery structure based on human and robot agents as disassembly
operators, the optimization of the disassembly process can be
obtained by defining many parameters for the specific algorithm.
The total number of disassembly operations (OA) can define as
8. The total disassembly target is eight components and two fasten-
ers to build the grid world based on the disassembly graph structure.
We define the experience rate as 0.2, learn rate as 0.8, and the
reward discount rate as 0.98. However, the optimization results of
the disassembly process for the different teardown paths can be

Fig. 7 The procedure of battery module separation into battery cells

Fig. 8 Constraint matrix (1) and association matrix (2) for EV
battery module
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obtained as follows in Fig. 9. We know that the disassembly tree
graph can be divided into two kinds of disassembly sequences for
the specific EV battery. The optimization results for the two disas-
sembly sequences can be used to explain the final convergence after
the iterations of about 150 times or over 160 times, respectively.
Finally, the optimal disassembly sequence can be determined by
the minimum rewards based on the optimization algorithm.
By optimizing the disassembly sequential tasks for the specific

EV battery, the multi-agent disassembly operations can be accom-
plished to acquire the optimal disassembly strategy for the specific
disassembly battery. The robot–agent disassembly process mainly
focuses on repeatable and simple disassembly operations that can
be accomplished by the specific disassembly step with the disas-
sembly tools. The human–agent disassembly process might solve
the flexible disassembly tasks with uncertain disassembly situations
that the process is difficult to be accomplished by robot operations.
Therefore, it is necessary to adopt the HRC disassembly to allocate
the specific disassembly operations for the disassembly tasks. As
shown in Fig. 10, each disassembly task can allocate a specific dis-
assembly operation by determining the specific human–agent or
robot–agent operators to accomplish the disassembly process
based on the optimization method. According to the actual disas-
sembly requirements and constraints, the disassembly steps can
be regularized by defining the disassembly waiting steps and replac-
ing the disassembly tool steps in the actual disassembly process.
The entire disassembly process will be executed by the disassembly
operations to acquire the final disassembly components or subas-
sembly for retired EV battery.

In order to further discuss the disassembly trajectory based on
robot agents, it is important to find out the optimal disassembly
path for the disassembly tasks in the disassembly process. It is nec-
essary to select the robot–agent disassembly task as an optimization
example to demonstrate the disassembly path optimization for the
retired EV battery module based on the reinforcement learning
method. The disassembly task for loosening the M4 screws can
be used to optimize the robot–agent disassembly trajectory for the
final disassembly strategy. The disassembly planar can be divided
into discrete grids that provide the disassembly optimization envi-
ronment with respect to the optimization conditions. The recogni-
tion of disassembly screws can be accomplished by image vision
as the initial optimization conditions, which can acquire the
optimal disassembly paths by the reinforcement learning method.
As shown in Fig. 11, by defining the second step of robot disassem-
bly recognition for the M4 screw as the disassembly path on the
two-dimensional planar, it can be set the target reward value to
500, and the robot traverses six points as an iteration. The experi-
ence rate can be defined as 0.2, learn rate as 0.01, and the reward
discount rate as 0.95. However, the final optimization results can
be demonstrated as the disassembly paths for the specific disassem-
bly task, such as the 4M screws disassembly task.

5 Discussion
The optimization of disassembly task planning based on rein-

forcement learning is proposed in this paper to combine the

Fig. 9 The optimization results for two different disassembly tree graphs (a and b) based on the MS372P5s Samsung battery
module (see Fig. 7).

Table 3 The evaluation of EV battery disassembly task based on reinforcement learning for human–robot agents

Specific disassembly operation step Operator Tool Difficulty of operation Comprehensive negative reward

To remove the upper end cover Human Hand 0.25 −2
Robot Fixture 0.5 −4

To loosen the M4 screws Human Screw driver 0.5 −5
Robot Screw driver 0.25 −3

To remove the module circuit board Human Hand 0.25 −2
Robot Fixture 0.75 −4

To loosen the M6 screws Human Screw driver 0.5 −5
Robot Screw driver 0.25 −3

To remove the structure frame and pole pieces Human Hand 0.25 −3
Robot Fixture 1.0 −99

To separate pole pieces from the structure frame Human Hand 0.25 −3
Robot Fixture 1.0 −99

To fetch the battery cell Human Hand or Special tools 0.25 −3
Robot Fixture 1.0 −99

To separate insulating plate Human Hand 0.25 −3
Robot Fixture 1.0 −99
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necessary disassembly conditions for HRC disassembly such as dis-
assembly trajectory, disassembly task assignment, and disassembly
tool selection, which can be used to solve the specific two problems
for retired EV battery:

• Owing to the complexity and uncertainty of EB battery disas-
sembly, the optimization of disassembly sequences is still a
huge challenge for better solving the problem. However, it is

difficult to acquire the optimal disassembly sequences based
on the dynamic disassembly process, which might cause
changes of the optimal disassembly sequence owing to the
real-time disassembly status and condition alterations [43].
However, dynamic disassembly sequence optimization is nec-
essary to solve the real-time optimization of the disassembly
process for the EV battery packs or modules in a complex
and changeable environment. The intelligent optimization

Fig. 10 The optimal disassembly sequence for human–robot collaboration disassembly

Fig. 11 The optimization procedure of disassembly paths for 4M screws
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algorithms provide a possible way to solve the complex and
uncertain disassembly process. Multi-agent deep reinforce-
ment learning can dynamically optimize the entire disassembly
sequential tasks in a complex and changeable environment. By
defining human–robot agent disassembly tasks, EV battery
disassembly interaction with the complex disassembly envi-
ronment can be accomplished to combine with dual network
parameter optimization by Actor-based and Critic-based rein-
forcement learning methods, which plays a more effective role
in solving disassembly sequence optimization than traditional
heuristics algorithms.

• Owing to the complexity of the dynamic disassembly trajec-
tory for the specific disassembly task in the actual EV
battery disassembly, it is necessary to explore the optimal dis-
assembly paths based on intelligent optimization algorithms.
The disassembly task will involve various disassembly opera-
tions to determine the human or robot disassembly execution
in the actual disassembly process [44]. The disassembly opti-
mization process will generate the suspected fault point after
the analysis of the disassembly trajectory or the disassembly
obstacle caused by the uncertain EB battery quality.
However, it is important to solve the problems of the
re-optimization based on the obstacle point. At present, in
the entire disassembly process, human disassembly operations
have more flexibility to solve the fault points in a more reliable
way. However, it is possible to combine the new digital twin
technology with efficient data mining and optimization identi-
fication that can cope with special situations to further reduce
human fatigue.

By reviewing many recent literature studies, the disassembly
process optimization based on deep learning is gradually replacing
many traditional optimization methods to provide a greater potential
for disassembly tasks in complex scenarios. However, there are
many perspectives in future research as follows:

• However, it is possible to explore the further disassembly opti-
mization of EV battery packs, the standard structure of the
battery should be further classified to reduce the difficulty of
the recycling and disassembly process by HRC disassembly.
The robot-assisted disassembly process has higher efficiency
for repeatable disassembly operations. Similarly, the selection
of disassembly tools can also be more concise to accomplish
the specific disassembly tasks, which not only helps to
further improve the existing disassembly speed but also
makes the entire disassembly process more secure and stable.

• In terms of disassembly safety, because the EV battery is a
retired product with certain dangers, it cannot be directly sep-
arated without the full release of its internal power in the entire
disassembly process. However, infrared and other temperature
sensors can use neural network algorithms to predict the
battery health states to avoid the occurrence of undesired acci-
dents. With the evolution of disassembly optimization for EV
batteries, the battery disassembly path will be smarter to
reduce the possibility of disassembly risks. In addition, the pre-
dictive algorithm can also identify the human action intention
in time before the collision and dynamically adjust the disas-
sembly trajectory of the robot.

6 Summary
In this paper, an HRC disassembly optimization method for the

recycling of EV batteries has been proposed based on multi-agent
reinforcement learning. The disassembly structure of an EV
battery has been represented by a disassembly graph model and
by combining reinforcement learning algorithms to specify the dis-
assembly tasks for certain EV batteries. For the specific disassembly
task assignment, disassembly operations based on the HRC disas-
sembly method have been demonstrated to dynamically optimize
2D disassembly operation paths on the disassembly planar. Then,
the disassembly trajectory has provided a dynamic planning

method to achieve the adjustment of the optimal disassembly
paths. Finally, we discussed the current disassembly of EV
battery and its potential research directions by combining with intel-
ligent algorithms to achieve a more efficient and safer way in the
entire disassembly process.
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