
A Quantum Method to Match Vector Boolean
Functions Using Simon’s Solver

Marco Venere, Alessandro Barenghi, and Gerardo Pelosi
Department of Electronics, Information and Bioengineering

Politecnico di Milano
20133 Milano, Italy

marco.venere@polimi.it, alessandro.barenghi@polimi.it, gerardo.pelosi@polimi.it

Abstract—The Boolean Matching Problem is a fundamental
step in modern Electronic Design Automation toolchains, which
allow the efficient design of large classical computers. In par-
ticular, the equivalence under negation-permutation-negation of
two n-to-n vector Boolean functions requires the exploration of
a super- exponential number of possible negations and permuta-
tions of input and output variables, and is widely regarded as a
daunting challenge. Its classical complexity (Opn!22nq, where n
is the number of input and output variables) is rarely tolerated
by EDA tools, which are typically solving small instances of the
Boolean Matching Problem for n-to-1 Boolean functions. In this
work, we present a method to exploit the solver for Simon’s
problem to speed-up the matching of n-to-n vector Boolean
functions, as we show that, despite its higher complexity, it
is friendlier to a quantum solver than matching single-output
Boolean functions. Our solution allows saving a factor 2n in
the overall worst-case computational effort, and is amenable to
combined approaches such as the so-called Grover-meets-Simon,
which have the potential of reducing it below the cost of classical
n-to-1 matching. We provide a fully detailed quantum circuit
implementing our proposal, and compute its cost, both counting
the required amount of qubits and quantum gates. We conducted
an experimental evaluation employing the ISCAS benchmark
suite, a de-facto standard for classical EDA to derive our sample
Boolean functions.

Index Terms—Boolean Matching, NPN Equivalence, Electronic
Design Automation, Quantum Computing

I. INTRODUCTION

Electronic Design Automation (EDA) defines several work-
flows with the goal to synthesize and implement functional
and efficient digital components. Starting from a high-level
description of the circuit, such workflows solve specific op-
timization tasks to produce the schematic diagram of the
physical circuit, so as to maximize the overall performance,
while minimizing power consumption and resource usage.
Among these tasks, the Boolean Matching Problem (BMP)
asks to test the equivalence between a portion of the designed
circuit, in the form of a netlist, and the elements of the avail-
able technology libraries, which offer highly optimized digital
logic components, from single gates to larger elements. This
mapping phase allows the toolchain to exploit the resources
available in the library, if matching ones are present. While
the Boolean Matching Problem (BMP) is computationally
demanding, common EDA toolchains are routinely called to
solve instances of it. The BMP can be described as the
Negation-Permutation-Negation (NPN) Boolean equivalence

problem, which asks to determine if two Boolean functions are
equivalent under the negation and permutation of the inputs
and the negation of the outputs. A classical computing ap-
proach enumerates all the possible negations and permutations
for one of the two Boolean functions and tests exhaustively
for a match.

For n-to-n vector Boolean functions, the worst-case com-
putational cost of this approach requires n! 22n function evalu-
ations, with n being the number of input and output variables.
The said computational complexity is hardly manageable, save
for very small values of n [1], [2], as a consequence, EDA
toolchains usually resort to considering each output of a multi-
output Boolean function as independent from the others, and
solve n BMPs for n-input, single output Boolean Functions,
a task with a classical worst-case complexity of n! 2n. The
state of the art on BMP solvers employs heuristic approaches
that improve the execution time against the exhaustive enu-
meration strategy only in the average-case, i.e., they exhibit a
polynomial number of operations in n to establish a mismatch,
while the time complexity to establish with certainty a match,
given an arbitrary pair of functions (worst-case scenario),
still requires a super-exponential number of operations in n.
Quantum computing provides a different computation model,
carrying out the computation on an exponential amount of
states (derived from a polynomial number of inputs) at once,
at the cost of presenting significant challenges in reading out
(measuring, in quantum computing jargon) the correct result.
While it is commonplace to achieve a square-root reduction
of the computational complexity of solving a problem (e.g.,
via Grover’s algorithmic framework), few quantum algorithms
provide an exponential speedup with respect to their classic
counterparts. Among them, even fewer have a concrete impact
on engineering applications, namely Shor’s factoring algorithm
and Harrow, Hassidim, and Lloyd’s algorithm to solve sets
of simultenous linear equations. By contrast, Simon’s solver
achieves an exponential speedup on a strawman problem, as
its purpose was to show that there exists at least a case where
quantum computers outperform their classical counterpart
with an exponential speedup in computation, i.e., achieving
an Opnq complexity while its classical counterpart requires
Op2nq operations to complete.
Contribution. In this work, we describe a quantum approach
achieving a factor 2n speedup in solving the BMP for n-to-n

vector Boolean functions. In particular, our approach builds
on Simon’s solver to tackle the N equivalence problem in
Opnq, yielding the corresponding exponential speedup. The
key intuition resides in observing that, despite the original
Simon’s solver requires the input Boolean function to have
specific properties (a promise in technical jargon), it is possible
to employ it even when such properties do not hold. We extend
our approach so that it also performs NP-equivalence checking
with the same quantum circuit, in turn allowing its embedding
in more complex solvers. Our proposed quantum algorithm
solves with high probability, the NP equivalence problem in
Opn3 n!q, which is little more than the computational effort
of solving classically the P equivalence problem alone.

In doing so, we design a quantum permutator circuit that
efficiently applies permutations to the information contained
in a set of qubits. Our approach also allows to build a Grover-
meets-Simon [3] solver for the NPN equivalence problem,
combining our exponential gain with a further square-root
gain to obtain an overall Op

?
2nn!q complexity in the worst

case, i.e. below the cost for the classic solution to the BMP
problem on n inputs, single output Boolean functions, which is
routinely tackled by common EDA toolchains. Our approach
can also be easily combined with the signature-based Boolean
matching heuristics that are commonly employed to tackle the
BMP on a classic computer. Finally, we validate the correct-
ness of our approach on employing the Boolean functions that
describe the circuits in the ISCAS benchmark suite as elements
to be matched for N- and NP-equivalence, where the resource
constraints of the current quantum computer simulators allow
us to validate our exponential speedup.

II. PRELIMINARIES

In the following, we recall the definition of the NPN-
equivalence between two n-to-n vector Boolean functions, and
the structure of Simon’s solver.

We consider completely specified n-to-n vector Boolean
functions, f : t0, 1un Ñ t0, 1un, y “ fpxq, where
x “ px1, x2, . . . xnq denotes the sequence of n binary input
variables, xi P t0, 1u, 1 ď i ď n, while y “ py1, y2, . . . ynq

with yi P t0, 1u, 1 ď i ď n denotes the sequence of n
outputs. The complement of a binary variable xi is denoted as
xi “ 1‘xi, 1 ď i ď n, where ‘ is the exclusive-or operator.
The truth table of a n-to-n vector Boolean function f , T pfq, is
a vector with length 2n, where each element is an n bit long
bit string, corresponding to the output of the function on a
specific n bit input value. In particular, assuming the bits taken
as input are the natural binary encoding of an integer number
m P t0, 1, 2, . . . , 2n ´ 1u, denoted as xpmq, the table lists
each input configuration paired to the corresponding output
bitstring, fpxpmqq, in increasing order of m, i.e.: T pfq “

x pxp0q, fpxp0qqq, pxp1q, fpxp1qqq, . . . , pxp2n´1q, fpxp2n´1qqq y.

Definition 1 (NPN-transformation). Given a Boolean func-
tion f : t0, 1un Ñ t0, 1un such that y “ fpxq, with
x “ px1, . . . , xnq, y “ py1, y2, . . . ynq, xi, yi P t0, 1u,
1 ď i ď n, and n ě 1, an NPN-transformation τ is defined

as a triple τ “ pπ, s, oq composed by a permutation map
π : px1, . . . , xnq Ñ pxπp1q, . . . , xπpnqq, and two binary strings
s P t0, 1un and o P t0, 1un. The application of an NPN-
transformation τ to the function f , yields a Boolean function
g “ f ˝ τ such that: for all x P t0, 1un its input/output
mappings are derived as gpxq “ fpπpx ‘ sqq ‘ o.

As an example, let fpx1, x2, x3q “ rx1x2‘x2x3, x2x3, x1‘

x3s be a Boolean function with n “ 3 inputs and out-
puts, where the multiplication and addition of two terms
correspond to the Boolean ^ (and) and ‘ (xor) opera-
tions, respectively. The application of the NPN transformation
τ “ pπ : px1, x2, x3q Ñ px2, x3, x1q, s “ 010, o “ 100q to the
function f , g “ f ˝ τ , results in the replacement of x2

with x2 (i.e., fpx ‘ sq), the application of a permutation
that replaces x1 with x2, x2 with x3, and x3 with x1 (i.e.,
fpπpx ‘ sqq), and to the application of the negation mask
o to the result (i.e., fpπpx ‘ sqq ‘ o), allowing to yield
gpx1, x2, x3q “ rx2x3 ‘ x3x1, x3x1, x2 ‘ x1s.

Definition 2 (NPN-equivalence). Two n-to-n vector Boolean
functions, fpxq and gpxq, with x “ px1, . . . , xnq, y “

py1, y2, . . . ynq, xi, yi P t0, 1u, 1 ď i ď n, and n ě 1,
are NPN-equivalent if there exists an NPN transformation
τ “ pπ, s, oq, such that gpxq “ fpxq ˝ τpxq “ fpπpx‘sqq‘o.

Definition 3 (Decision Boolean Matching Problem). Given
two n-to-n, n ą 1, vector Boolean functions, f and g,
determine if there exists at least one NPN-transformation τ
such that f ˝ τ is equal to g.

The decision BMP is a well-known computationally hard
problem. Indeed, the problem can be shown to be complement-
non deterministic polynomial time hard (or co-NP hard, em-
ploying the lexicon of complexity theory). This can be seen
since, if it is possible to determine whether a generic Boolean
function is a tautology (i.e., true for all of its possible input
values), then it is also possible to determine the Boolean
Matching between two functions and vice-versa. While the
former reduction is immediate, as checking for the unsatis-
fiability of miter formulae are the common way to test for
Boolean equivalence of two functions (i.e., checking if the
formula f ‘ g is such that f ‘ g “ 0 for all possible input
values, where the functions are denoted as f and g), the
latter reduction is obtained extending the candidate single-
output Boolean function of which it must be tested if it is
a tautology, with n ´ 1 constant outputs, and call the oracle
solving the n-to-n BMP asking whether the said extended
function matches the constant one gpxq “ r0, 0 . . . , 1s with
s “ o “ r0, . . . , 0s and π being the identity permutation.
Determining if a Boolean function is a tautology is a co-NP
complete problem, i.e., solving it allows to solve any problem
in co-NP, the set of complementary problems to the ones
admitting a solving algorithm which resides in the complexity
class of non-deterministic polynomial time (NP) problems.
Problems in co-NP-complete (co-NP-C) are in close relation
to the ones in the NP-complete class (NP-C), and therefore it is
widely believed that co-NP-C‰P, that is, no polynomial time

algorithm solving them on a deterministic machine (which
would put the problem in Pq, is possible [4]. Since BMP is at
least as hard as any co-NP problem (indeed, solving it, also
solves any co-NP problem by virtue of solving the tautology
problem), any classical polynomial time solver for BMP is
extremely unlikely to exist.

Similarly, it is largely believed that the complexity class
of bounded-error quantum polynomial time (BQP) algorithms,
i.e., the class of computational problems that can be solved in
polynomial time by a quantum computer with bounded error
in the answers, has null intersection with the co-NP-C problem
set [4]. As a consequence, it is also extremely unlikely that
a quantum polynomial time solver for BMP exists. Therefore,
the best expectations which can be set for a quantum speedup
in the solution of the BMP are improvements over its classical
computational complexity, currently rated to be Opn! 22nq,
which do not yield a polynomial time (in n) algorithm.

Furthermore, no polynomial time search-to-decision reduc-
tion is known for the BMP. Indeed, assuming the existence
of a fast solver for the decision BMP applied to two NPN-
equivalent functions, there is no general algorithm able to
exhibit the corresponding NPN-transformation, i.e., solve the
search BMP for the given functions. Indeed, the current state
of the art approaches to solving the decision BMP in the worst
case do not help the user in solving the corresponding search
BMP. Indeed, they still require the user to find on his own
which one is the NPN-transformation making the equivalence
hold, with a computational cost of Opn! 22nq bit operations.

We note that, even restricting the output of the Boolean
functions being matched to a single output bit, the BMP does
not have a subexponential classical complexity. Indeed, classi-
cal approaches based on canonical forms retain a complexity
which is significantly higher than exponential. For instance,
in [5] the computational complexity is OpN2 ` Nn3q, where
N is the number of nodes of the Boolean Decision Diagram
representing the function, which, in the worst-case is 2n,
resulting in an overall complexity of Op22n`2nn3q. Similarly,
recent SAT based approaches also exhibit a superexponential
complexity, as, for instance [6], which solves the BMP as
an incremental Boolean function learning problem, obtaining
a worst-case complexity of Op22n

2
`nq. Finally, we point

out that [7] introduces a quantum approach to solve NP-
equivalence, yet with the strong assumption that it is a-priori
known whether the circuits are equivalent or not.

A. Simon’s quantum solver

In the following, we recall the structure of Simon’s prob-
lem and its details, together with its corresponding quantum
solver [8].

Definition 4 (Simon’s Problem). Consider x, y P t0, 1un,
with n ě 1, a Boolean function f : t0, 1un Ñ t0, 1un, and
the promise that there is a binary string s P t0, 1un such that
fpxq “ fpyq if and only if x ‘ y P t0n, su; find s.

A different way of stating Simon’s problem promise is:
whenever f has collisions among its outputs, these are pair-

wise and the corresponding preimages are x and x ‘ s for
all x P t0, 1un (where s P t0, 1un is obviously unique).
A triple (or more) collision cannot take place. Indeed, as-
suming a Boolean function f as per the Simon’s problem,
if x, y, z P t0, 1un, n ě 1 are such that fpxq “ fpyq “ fpzq,
then this chain of equalities implies x “ y ‘ s and x “ z ‘ s,
for a proper s P t0, 1un. Applying a bitwise xor between the
right sides and left sides of the latter equalities, respectively,
it can be easily derived that y “ z, proving the impossibility
of a triple collision for the given Simon’s function. As a
consequence, in the worst case a deterministic classical solver
for Simon’s problem must evaluate the given function for
half of all possible input configurations plus one, and in
case of collisions, check if the input pairs have the same
xor difference. Consequently, the corresponding worst-case
computational cost is 2n´1 ` 1 evaluations of the function f
(also referred to as queries to the oracle f). A probabilistic
classical solver can apply a birthday paradox based approach
yielding the solution with a probability of at least 3

4 employing
Ωp2n{2q oracle queries [9]. By contrast, Simon’s quantum
algorithm finds the value s (promised to exist) employing
Opnq evaluations of the circuit implementing function f , i.e.,
employing Opnq queries to the quantum oracle Of , in the
worst case. Figure 1 provides an example of the quantum
circuit for Simon’s Algorithm with n “ 3.

The n-qubit Hadamard gate applied to a quantum state |xy,

with xPt0, 1un, yields Hbn|xy “
1

?
2n

ÿ

yPt0,1un

p´1qx¨y |yy,

where x ¨ y denotes the inner product between
x and y interpreted as vectors in Zn

2 , i.e., given
x “ px1, . . . , xnq P Zn

2 , y “ py1, . . . , ynq P Zn
2 , with

xi, yi P t0, 1u, 1 ď i ď n, their inner product is computed
as x ¨ y “

Àn
i“1 xiyi. The quantum solver for Simon’s

problem [8] operates in five steps:

(i) Initialize a 2n qubit register as |0yn|0yn and apply Hbn

to the first n qubits obtaining 1
?
2n

ÿ

xPt0,1un

|xy|0y;

(ii) query the oracle Of employing the first n qubits as the
inputs of the function, yielding 1

?
2n

ÿ

xPt0,1un

|xy|fpxqy;

(iii) Apply another Hbn to the first n qubits to obtain the

state 1
?
2n

ÿ

xPt0,1un

¨

˝

1
?
2n

ÿ

yPt0,1un

p´1q
x¨y|yy

˛

‚|fpxqy “

ÿ

yPt0,1un

|yy

¨

˝

1

2n

ÿ

xPt0,1un

p´1q
x¨y|fpxqy

˛

‚;

(iv) measure the first n qubits (in the computational basis).
The probability of getting a specific state |yy is computed
summing up all the probabilities of possible measurements of
the second n qubits that must have the first ones in the state
|yy, i.e.:

py “ Prob rmeasure state ys “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

ÿ

xPt0,1un

p´1q
x¨y|fpxqy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

We now analyze the effects of being either in the s “ 0n or
in the s ‰ 0n cases of Simon’s promise.
Case s “ 0n. In this case the fpxq is a one-to-one function,
therefore iterating over all the possible input bitstrings x,
yields all possible bitstrings as the range of fpxq. Thus, the
corresponding kets are all mutually orthogonal. As a conse-

quence py “ 2n
´

p´1q
x¨y

2n

¯2

“ 1
2n , i.e., the value measured

from the first register, which ranges from 0 to 2n ´ 1, is
modeled as a uniformly distributed random variable.
Case s ‰ 0n. For each xPt0, 1un it is promised that
fpxq“fpx ‘ sq“z P rangepfq, therefore

py “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

ÿ

zPrangepfq

´

p´1q
x¨y

` p´1q
px‘sq¨y

¯

|zy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

ÿ

zPrangepfq

p´1q
x¨y

p1 ` p´1q
s¨y

q |zy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

This latter expression allows to easily observe that pypxq “ 0,
when the internal product of the measured state value y is
such that s ¨y “ 1, since the 1` p´1qs¨y factor vanishes. This
in turn implies that only y values such that s ¨ y “ 0 can be
measured. We now determine the probability distribution of
measuring one such y value. The 1 ` p´1qs¨y factor is then
equal to 2, therefore

py “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2n

ÿ

zPrangepfq

p´1q
x¨y|zy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

As it can be noted, the term p´1qx¨y is equal to 1 in case
x P t0, su, while it takes values 1 and ´1 the same number
of times in case x R t0, su, as they represent the parity of
the bits in y P t0, 1un, when considering only the positions
where they are also set in x. As a consequence, when s ‰ 0n,
the probability of observing the measured value y P t0, 1un is
py “

`

1
2n ` 0 ` . . . ` 1

2n ` 0 ` . . . ` 0
˘2

“ 1
2n´1 and s¨y “ 0.

(v) Running the quantum part of the Simon’s solver n ` c
times (see steps (i)-(iv)), with c ě 0, allow us to collect the
bitstrings yp1q, yp2q, . . . , ypn`cq P t0, 1un, which in turn can
be employed to establish the following set of equations in Zn

2 ,
i.e.: s ¨ ypiq “ 0 ô

Àn
j“1 sjy

piq
j “ 0, 1 ď i ď n ` c, where

sjy
piq
j denotes the multiplication modulo 2 of the binary values

sj and y
piq
j .

Noting that n ´ 1 linearly independent equations would al-
low to derive a unique non-null value for the unknown bitstring
s, the probability that some subset of n ´ 1 equations of the
pc ´ 1qn ` 1 collected ones are actually linearly independent
can be derived as follows. Let us proceed by randomly picking
a sequence of n ´ 1 equations out of the cn available ones,
and by placing the vector of coefficients of the equation at
hand as a column vector of a pc ` nq ˆ pn ´ 1q matrix.

|0y H

Of

H y0

|0y H H y1

|0y H H y2

|0y f2pxq

|0y f1pxq

|0y f0pxq

Fig. 1: Quantum circuit solving Simon’s problem for a f :
t0, 1u3 Ñ t0, 1u3 function. Of is a quantum oracle for f

The chances for the first column to be linearly independent
coincide with the probability of observing a non-zero vector,
i.e., 1 ´ 1

2n`c . The chances for the second column to be
linearly independent from the first column are 1´ 1

2n`c´1 ; the
chances for the third column to be linearly independent from
the first and the second column are 1 ´ 1

2n`c´2 . Continuing
in this way, the probability q of having n ´ 1 columns being
linearly independent is q “ p1´ 1

2n`c qp1´ 1
2n`c´1 q ¨ ¨ ¨ p1´ 1

2c q.
Observing that q ą 1 ´

řc
i“0

1
2n`c´i ą 1 ´ 1

2c`1 , it is easy
to determine the constant c such that the chance of failing
to derive s is less than 10´6 « 2´20. Indeed, the disequality

1
2c`1 ă 2´20 is equivalent c ą 19, which in turn points toward
the choice of collecting a number of equations n ` c, with
c “ 20.

Once a system of n ´ 1 linearly independent equations has
been successfully solved, a candidate bit-mask s1 ‰ 0n is
found, and it is possible to confirm it checking if fp0nq “

fps1q is true. If this is the case the Simon bitmask is s “ s1,
otherwise s “ 0n.

III. QUANTUM NPN-EQUIVALENCE SOLVER

In this section, we describe our quantum approach to
the BMP on n-inputs, n-outputs Boolean funcctions by first
tackling input negations (N-equivalence), and subsequently
augmenting our quantum algorithm to tackle input permuta-
tions (NP-equivalence).

A. Quantum Solver for N-equivalence

We solve the N-equivalence problem exploiting the quantum
solver for the Simon’s Problem, which benefits from an
exponential speedup w.r.t. a classical solver [8], taking care
of the fact that the promise in the statement of the Simon’s
problem does not hold in our case.

Given two generic n-input, n-output Boolean functions
f : t0, 1un Ñ t0, 1un and g : t0, 1un Ñ t0, 1un, n ě 2,
functionally representing the two digital components to
compare for N-equivalence, we design a vectorial function
h : t0, 1un`1 Ñ t0, 1un`1 with an additional auxiliary input
variable x0 P t0, 1u and an additional output, constant with
respect to f and g. Such a function can be specified as a
sequence of n ` 1 single-output functions hi, 0 ď i ď n,
each of which is defined over the same domain t0, 1un`1.

Specifically, hipx0, x1, . . . , xnq “

“

#

x0 ‘ x0, i “ 0

x0 fipx1, . . . , xnq ‘ x0 gipx1, . . . , xnq, i P t1, . . . , nu

It is worth noting that each hi can be interpreted also as a
Shannon cofactor decomposition of a generic Boolean function
as f , g are two generic functions.

If f and g are N-equivalent, i.e., there is an n-bit binary
string s1 P t0, 1un such that for all x1 P t0, 1un it holds that
fpx1q “ gpx1 ‘ s1q, then also for all x “ x0||x1, with x0 P

t0, 1u, it holds that hpx ‘ 1||s1q “ hpxq, where || denotes a
binary string concatenation. As a consequence, if f and g are
N-equivalent, there are 2n colliding pairs among the output
bitstrings of h, each of which corresponding to a pair of pre-
images fulfilling the promise of Simon’s problem with s“1||s1.
This in turn implies that, if it were the case that no other
binary string t P t0, 1un`1 were such that hpxq “ hpx ‘

tq, Simon’s solver applied to h would yield with certainty
the string s. Contrarywise, if f and g were not N-equivalent,
Simon’s solver would never yield any non null s.

However, for random choices of f and g, regardless of
the fact that f and g are N-equivalent or not, it may be the
case that h exhibits collisions on an arbitrary subset of input
configurations, i.e.:

D t P t0, 1un`1, Dx P S Ď t0, 1un`1 s.t.hpxq “ hpx ‘ tq.

This condition corresponds to a generalization of Simon’s
problem known as Simon’s problem with approximate
promise, which matches the one tackled in [10], Theorem
1, where the purpose of the generalization was to break the
security of authenticated modes of operation for block ciphers.

In the case of Simon’s problem with approximate promise,
the function h is such that there might be more than one input
difference causing collisions on some or every output values.
If the number additional collisions is too high, measuring
the outputs of the quantum circuit in Simon’s solver will not
yield equation coefficients allowing to build a full-rank linear
system from which the correct value of the binary string s is
derived. The authors in [10] prove that it is still possible to
employ Simon’s solver even in this case of the approximate
promise, tolerating the fact that the retrieved bitmask t may
be different from the one matching the Simon’s promise,
with some probability. Indeed, to quantify the number of
measurements, required by Simon’s solver to obtain the
bitmask s for the h function, instead of another t ‰ s, they
introduced the following definition of error probability

εph, sq “ max
tPt0,1un`1zt0n`1,su

Pr
x

rhpxq“hpx ‘ tqs, xPt0, 1un`1

which captures the maximum probability of an output collision
being induced by an input difference t not equal to the one
promised in the statement of Simon’s problem, s. In all cases
where the probability p “ εph, sq is such that 0 ă p ă 1,
the authors of [10] prove that one execution of Simon’s solver
returns the correct value of s after cn queries, with probability

|0y H X X H y0

|0y H

Og Of

H y1

|0y H H y2

|0y h2pxq

|0y h1pxq

|0y X X h0pxq

(a) search-N-equivalence

|0y H X X H y0

|0y H

Og

Π

Of

Π:

H y1

|0y H H y2

|0y h2pxq

|0y h1pxq

|0y X X h0pxq

|0y H cπ

(b) search-NP-equivalence

Fig. 2: Quantum circuits for Simon’s solver employed for the
search-N-equivalence (a) and the search-NP-equivalence (b).

ě 1´2np
1`p
2 qcn. This allows us to state that applying Simon’s

solver will indeed yield the correct solution of the problem
with a probability which converges to 1 exponentially fast
in the number of the inputs of h, as long as the value of
the multiplicative factor c on the number of Simon’s solver
measurements is at least 4. Concretely, this states that, with
4n or more measurements from Simon’s solver, our approach
will provide the correct negation bitmask s1 which makes f N-
equivalent to g with an error probability which is exponentially
decreasing in the number of function inputs.

Concerning a quantitative evaluation of εph, sq, we note that
its expected value, assuming a uniform random pick for both
h and s, is Θp n

2n q, as proved in [11]. This in turn states that,
in the average case (over all possible function pairs f, g :
t0, 1un Ñ t0, 1un, constituting h) εph, sq is significantly far
from 1. While practical cases for f and g are not uniformly
randomly sampled, the experimental results we provide show
that the obtained results match the aforementioned probability.

Summing up, applying Simon’s solver to h, whenever f, g
are N-equivalent functions, will yield the correct value of the
input difference with exponentially low error probability in n.

We therefore employ Simon’s solver, to search for an input
string s for the h function we defined, which in turn will,
whenever equal to 1.s1, s1 P t0, 1u yield the negation trans-
formation mapping f into g. The quantum circuit employed
by Simon’s solver in this case embeds the oracle for h,
implementing |xyn`1|0yn`1 ÞÑ |xyn`1|hpxqyn`1, which in
turn embeds the oracles Of and Og , implementing |xyn|0yn ÞÑ

|xyn|fpxqyn and |xyn|0yn ÞÑ |xyn|gpxqyn, respectively. Fig-

in0

in1

in2

in3

π0 “ |0y H

π1 “ |0y H

π2 “ |0y H

π3 “ |0y H

π4 “ |0y H

π5 “ |0y H

Fig. 3: Quantum permutation network computing the superpo-
sition of all permutations of n “ 4 input qubits

ure 2a shows an example circuit where n “ 2. The first
qubit from the top, encoding the value of the first input
bit x0, selectively enables Of and Og , and determines the
constant output of h0pxq “ x0 ‘ x0, as defined previously.
The following two qubits, representing the remaining part of
the input to h, x P t0, 1u2`1, are input to the oracles. The
n ` 1 “ 3 qubits starting from the bottom are the ones on
which the output of the h function is computed. Such an
approach has a computational complexity of 2pcnq P Opnq

(with c ě 4 as stated before) queries to the oracle for h (i.e.,
2pcnq calls to the oracles Of and Og), plus 2pn`1q Hadamard
gates. This computation is in turn followed by a Opn3q

classical computation to solve sets of simultaneous Boolean
linear equations, yielding s. Overall, this corresponds to a
polynomial computation effort in the time taken to compute f
and g, plus a polynomial time in the input size. Compared to
classical heuristics from Section II, such a solver has stronger
correctness guarantees, together with an exponential speedup.

B. Solving NP-equivalence

To extend the proposed approach to tackle N-equivalence to
a Grover-meets-Simon solver for NP and NPN equivalence, it
is needed to have a single quantum circuit tackling both NP
and NPN equivalences. To this end, we start by augmenting
our N-equivalence solving strategy to cope with permutations
of the input bits. Indeed, solving the NP-equivalence is equiv-
alent to solving the N-equivalence between f and g, while
applying to g any possible permutation of the input bits.

In order to allow the application of a Grover-meets-Simon
approach, we need to adopt our solver so that it computes the
solution to Simon’s problem on all possible permutations on
the inputs in superposition. To do so, we modify the oracle for
function h to apply all the possible permutations to the input
qubits of function g, before evaluating Og . We compute this
employing a quantum permutation network [12], obtained re-
purposing the non-quantum sorting network proposed in [13],
a parallel structure able to sort an array of n integer values. A
classic sorting network is built with compare-and-swap units
that act on two variables, and swap their values according to
which one is bigger. In the design by Beneš [13], the network
is built placing pn{2qp2logpnq ´ 1q compare-and-swap units
in a circuit with logarithmic depth (in the number of elements

to be sorted n). To build our quantum permutation circuit,
we replace each classical compare-and-swap component in a
Beneš sorting network with a controlled-swap gate, having its
control qubit prepared as H|0y. In this fashion, the control
qubits of the entire network, which drive whether a given
swap is made or not, will be in a uniform superposition of all
their basis states. This, in turn, induces an essentially uniform
superposition of all the possible permutations of the input
qubits corresponding to the elements to be sorted. Figure 3
provides an example of a quantum permutator.

The quantum NP-equivalence circuit is built by inserting
a Beneš-based quantum permutation network Π right be-
fore the component computing the oracle Of , acting on the
qubits representing the inputs of f , and a second network
Π: right after Of for uncomputation, which is required by
the quantum circuit of Simon’s solver. This design requires
2n`2`pn{2qp2logpnq´1q qubits, of which 2n`2 are needed
for the computation of the oracle for h (namely, n` 1 for the
inputs of h and and n`1 its outputs), plus pn{2qp2logpnq´1q

control qubits for the quantum permutation network. Figure 2b
depicts the quantum circuit to establish the NP-equivalence
between 2-inputs 2-outputs Boolean functions f and g.

This circuit can be employed in Simon’s solver by measur-
ing the Boolean function outputs hipxq, for 0 ď i ď n ´ 1
in Figure 2b) on a random x, and the control qubits of the
n-bit permutator π (a single control qubit denoted as cπ
in our case). This measurement collapses the states of the
remaining qubits, |y3y2y0y, so that a measure will yield a
bit-vector y such that its internal product with the unknown
bit-vector s of the Simon’s problem on h equals zero (i.e.,
y ¨ s “ 0), i.e., the negation mask, if existing, that makes
f equivalent to π ˝ g. To derive the value of the bit-vector
s, it is necessary to collect at least pc nq measurements,
with c ě 4, for each possible permutation applied to the
inputs of g. If the described approach is employed as a
standalone solution, such a collection is an instance of the
coupon collector’s problem, it is therefore necessary to collect
at least n! logpn!q c n “ n! pc logpnqqn, measurements, and
classify them according to which permutation they pertain.
The classification can be easily performed as we measure
the cπ permutation network control qubits, which uniquely
identify the applied permutation. Once this is done, we solve
the equation sets according to Simon’s Algorithm, and find
whether f and g are NP-equivalent under a given permutation
π and an input negation string s, or not. In this approach, we
exaustively explore the whole permutation space. This results
in a Opn!n3q overall worst-case running time, with a factor
2n

n3 on the classical worst-case computation time of n! 2n for
NP equivalence checking.

We note that it is possible to start solving one of the
simultaneous equations sets as soon as c n equations are
gathered and, as soon as a single NP-equivalence is found,
terminate the procedure earlier. We also point out that the
execution of the quantum circuit can be parallelized, thus
benefiting from a linear performance scaling, by subdividing
the permutation space to be explored across different quantum

TABLE I: Number of qubits and depth of the NP-equivalence circuits for n “ 4 and N-equivalent circuits for n “ 8. We
show depth both with and without oracles. Output bits marked with : denote custom modifications required for testing. Marked
output bits with the same name may generally denote different random components.

Assembled Component Number Number Depth Depth
of inputs (n) of qubits With Oracles W/O Oracles

(74182-PBo, 74182-CNx, 74283-S0, 74181-F2:) 4 16 1, 614 2

(74182-PBo, 74283-S0, 74182-CNy:, 74283-S1:) 4 16 1, 154 2

(74182-GBo:, 74182-CNy:, 74182-CNz:, 74283-S1:) 4 16 665 4

(74182-CNx, 74181-F2:, 74182-GBo:, 74182-CNz:) 4 16 1, 268 2

(74182-PBo, 74182-CNx, 74283-PBo:, 74181-F2:) 4 16 2, 181 4

(74283-S2:, 74181-F0, 74182-GBo:, 74182-CNz:, 8 18 206, 749 ´1
74182-CNy:, 74182-GBo:, 74283-S1:, 74283-S1:),

(74182-GBo:, 74182-CNy:, 74182-CNz:, 74283-S1:, 8 18 266, 802 3
74182-GBo:, 74182-CNy:, 74182-CNz:, 74283-S1:),

(74283-S1:, 74283-S2:, 74182-CNy:, 74182-GBo:, 8 18 206, 676 ´2
74181-F0, 74283-S1:, 74182-CNz:, 74182-GBo:),

computers. This can be done by fixing some of the swap
gates control qubits to a fixed value, instead of initializing
them to H|0y. Each quantum circuit may even consider only
one specific permutation. Such approach reduces the number
of required measurements to n! ¨ cn. Yet, the logarithmic
improvement is negligible, if compared to the cost required
to synthesize n! quantum circuits. Analogously, our method
can be paired with classical heuristics that reduce the number
of admissible permutations beforehand.

In the case of employing a Grover-meets-Simon approach to
solve the NP-equivalence problem, the presented circuit will
represent Grover’s oracle. We defer the full investigation of a
Grover-meets-Simon approach to further works.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of our experimental
campaign considering realistic Boolean functions.

We employed the IBM Qiskit quantum programming and
simulation toolkit [14] version 1.0.2 on a server with two
AMD Epyc 7551 32-Core CPUs and 512 GiB of RAM, as our
testing environment, and the Qiskit ClassicalFunction
utility for the synthesis of the Boolean oracles required in
III, based on Tweedledum library [15]. We ran all our tests
on Qiskit Aer version 0.14.1, the software quantum circuit
simulation backend of Qiskit. Being a simulator, it is free
from geometric neighbourhood constraints among qubits, thus
producing architecture-independent results. We compiled our
circuits with the maximum available optimization level.

Our approach using Simon’s solver may yield, with a
probability growing exponentially small in the number of
inputs n, a solution t which is unrelated to f and g being
equivalent. We are able to obtain reliable results observing
that i) if f and g are N-equivalent, spurious solution(s) t will
be obtained with a significantly lower probability than the
correct one s and, ii) if f and g are not N-equivalent, Simon’s

solver will provide spurious t solution(s) with essentially the
same probability. This implies that, in case of equivalence,
multiple executions of Simon’s solver will yield an essentially
deterministic bitmask s, plus some rare spurious values, i.e.,
it will output strings with a skew statistical distribution;
otherwise, the output s will exhibit essentially a uniformly
random statistical distribution. As a consequence,we filter the
solution of the N- and NP-equivalence checks by evaluating
the empirical Boolean metric MODEpHq ě

ř

sPH vpsq, which
proved to discriminate the skewness of Simon’s solver output
distribution in practice. Here, H is the measured histogram of
the distribution of s, vpsq denotes the value of a column of
the histogram, and MODEpHq denotes the desired result as the
mode of the histogram.

To validate our approach, we selected our Boolean function
benchmarks from the 74X-Series belonging to the ISCAS
Circuits benchmark suite [16]. In particular, we considered
3 components: 74181, a 4-bit ALU; 74182, the circuit for
the carry-generation signals of a 4-bit carry-look-ahead adder;
and 74283, a 4-bit adder. In order to increase the number
of comparisons to test, we built n-input, n-output Boolean
functions f and g out of these components as follows. First of
all, we split the components considering each of their output
bits as a separate n-to-1 Boolean function. Subsequently, we
assemble the obtained functions in fresh n-input, n-output
components to test for NP-equivalence. To obtain a test set
acting as a ground truth for NP-equivalence, we generated, for
each of these components, additional NP-equivalent versions,
by randomly applying input negations and permutations. To
further augment our dataset, we also apply small modifica-
tions to the obtained functions.Through these procedures, we
obtained a total of 200 different components with n P t4, 8u.
To obtain the quantum oracles required for Simon’s solver
for all the components, we quantum synthesized each one of
them providing the n Boolean functions with n-inputs and 1-

output independently onto quantum circuits. This choice was
dictated by limits of the ClassicalFunction method in
Qiskit. Furthermore, since Qiskit Aer 0.14.1 only supports
the simulation of up to 34 qubits on our configuration, we
tested NP-equivalence for components with n “ 4, and N-
equivalence with components with n “ 8. For the same
reasons, we cannot simulate higher values of n. Regarding
correctness, we observed an equivalence detection rate of
98.5%, which is lower than the error probability n

2n derived
in Section III. We ascribe such improvement to the MODE
heuristic, which selects the result coming from the highest
amount of linear systems, thus improving robustness to errors.

Willing to evaluate the quantum circuit complexity of our
solver, we report in Table I the number of qubits and circuit
depth required to realize the NP-equivalence testing circuit for
8 pairs of compared Boolean components. In particular, the
first component of the pairs is produced from the benchmark
as previously described, and referred to as Assembled Compo-
nent in the table. The second one is instead obtained from the
first through random negations and permutation of input bits,
for positive cases, while it is a different assembled component
for negative cases. Due to the limits of classical simulators, we
do not consider execution time. We note that the number of
qubits required for the solver circuit does only depend on the
number of inputs n, and grows as 2n`2` n

2 p2 log2pnq´1q for
the NP-case (n “ 4) and as 2n`2 for the N-case (n “ 8). The
depth of the implemented circuits is essentially dominated by
the one of the implemented Boolean functions. To provide an
estimation of the circuit complexity required by the algorithm,
independently from the size of the oracles, we report both
the depth of the whole quantum circuit and its depth after
subtracting the depth of the used oracles, transpiled for the
same backend and with the same optimization level. We can
observe that the complexity of the circuit, save for the oracles,
is negligible. The reported differences are affected by small
variations: compiler optimizations may produce a final circuit
whose depth is less than the sum of the depth of the transpiled
components. This also justifies the presence of negative depths.

V. CONCLUDING REMARKS

We presented a quantum circuit to solve the Boolean
Matching Problem. Our approach relies on reducing the
N-equivalence problem to Simon’s problem on a specifi-
cally crafted Boolean function, while it deals with the NP-
equivalence case by making use of a quantum sorting-network.
We provide a super-polynomial speedup compared to classical
worst-case complexity, moving a step towards the efficient
matching of large n-input n-output Boolean circuits. The
approach can either be integrated with classical ones, acting
as a pre-filter to reduce the search space or working on a
permutation subspace, or embedded in a full-quantum Grover-
meets-Simon approach, while retaining the same speedup. We
tested our approach employing functions from the widely
adopted ISCAS circuit benchmark [16] on the Qiskit Aer
simulator, and provide the main key performance indicators
for the synthesis of the quantum circuit.

ACKNOWLEDGEMENTS

This work has been partially supported by the ICSC - Italian
“National Research Center in High Performance Computing,
Big Data and Quantum Computing”, and the SERICS project
(PE000014) in the Italian NRRP MUR program funded by the
EU - NGEU.

REFERENCES

[1] C. Lai, J. R. Jiang, and K. Wang, “Boolean matching of
function vectors with strengthened learning,” in 2010 International
Conference on Computer-Aided Design, ICCAD 2010, San Jose,
CA, USA, November 7-11, 2010, L. Scheffer, J. R. Phillips, and
A. J. Hu, Eds. IEEE, 2010, pp. 596–601. [Online]. Available:
https://doi.org/10.1109/ICCAD.2010.5654215

[2] H. Katebi and I. L. Markov, “Large-scale Boolean matching,” in Design,
Automation and Test in Europe, DATE 2010, Dresden, Germany, March
8-12, 2010, G. D. Micheli, B. M. Al-Hashimi, W. Müller, and E. Macii,
Eds. IEEE Computer Society, 2010, pp. 771–776. [Online]. Available:
https://doi.org/10.1109/DATE.2010.5456949

[3] G. Leander and A. May, “Grover Meets Simon - Quantumly Attacking
the FX-construction,” in Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part II, ser. Lecture Notes in Computer Science,
T. Takagi and T. Peyrin, Eds., vol. 10625. Springer, 2017, pp. 161–178.
[Online]. Available: https://doi.org/10.1007/978-3-319-70697-9z 6

[4] S. Arora and B. Barak, Computational Complexity - A Modern
Approach. Cambridge University Press, 2009. [Online]. Available: http:
//www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264

[5] J. R. Burch and D. E. Long, “Efficient Boolean function matching,”
in IEEE/ACM ICCAD 1992, 1992, pp. 408–411. [Online]. Available:
https://doi.org/10.1109/ICCAD.1992.279337

[6] C. Lai, J. R. Jiang, and K. Wang, “BooM: a decision procedure
for boolean matching with abstraction and dynamic learning,” in
Proceedings of the 47th Design Automation Conference, DAC 2010,
Anaheim, California, USA, July 13-18, 2010, S. S. Sapatnekar, Ed.
ACM, 2010, pp. 499–504. [Online]. Available: https://doi.org/10.1145/
1837274.1837398

[7] T.-F. Chen and J.-H. R. Jiang, “Boolean matching reversible circuits:
Algorithm and complexity,” arXiv preprint arXiv:2404.12184, 2024.

[8] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum
Computing. Oxford University Press, 2006.

[9] R. Cleve, “Quantum Information Processing - Quantum Algorithms (I),”
Lecture Notes - Institute for Quantum Computing and Cheriton School
of Computer Science University of Waterloo. https://cleve.iqc.uwaterloo.
ca/resources/QIC-710-F21/Qic710QuantumAlgorithmsPart1.pdf, 2021.

[10] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, “Breaking
Symmetric Cryptosystems Using Quantum Period Finding,” in CRYPTO
2016, vol. 9815. Springer, 2016, pp. 207–237. [Online]. Available:
https://doi.org/10.1007/978-3-662-53008-5z 8

[11] J. Daemen and V. Rijmen, “Probability distributions of correlation and
differentials in block ciphers,” J. Math. Cryptol., vol. 1, no. 3, pp. 221–
242, 2007. [Online]. Available: https://doi.org/10.1515/JMC.2007.011

[12] S. Perriello, A. Barenghi, and G. Pelosi, “Improving the Efficiency of
Quantum Circuits for Information Set Decoding,” ACM Transactions
on Quantum Computing, Jul. 2023. [Online]. Available: https:
//doi.org/10.1145/3607256

[13] V. E. Beneš, “On rearrangeable three-stage connecting networks,” The
Bell System Technical Journal, vol. 41, no. 5, pp. 1481–1492, 1962.

[14] Qiskit contributors, “Qiskit: An Open-source Framework for Quantum
Computing,” https://qiskit.org/, 2023.

[15] B. Schmitt and G. De Micheli, “tweedledum: A compiler companion
for quantum computing,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2022, Antwerp, Belgium,
March 14-23, 2022. IEEE, 2022. [Online]. Available: https:
//doi.org/10.23919/DATE54114.2022.9774510

[16] M. Hansen, H. Yalcin, and J. P. Hayes, “ISCAS High-Level Models,”
http://web.eecs.umich.edu/„jhayes/iscas.restore/benchmark.html, 1999,
accessed: May.’24.

