
Towards Certifiable Software-Implemented
Hardware Fault Tolerance

Federico Reghenzani
Politecnico di Milano

federico.reghenzani@polimi.it

William Fornaciari
Politecnico di Milano

william.fornaciari@polimi.it

Abstract—Reliability metrics for hardware faults in safety-
/mission-critical systems have been historically based solely on
hardware failure rates, quantitatively ignoring any effect of the
software. Software reliability is usually considered only in terms
of bugs/defects, which is a quantity hard to estimate analytically.
In this article, we explore the problem of quantifying the impact
of software in reliability against Single Event Upsets, highlighting
the limits of the current standards that restrict the use of
Commercial-Off-The-Shelf components for critical scenarios. We
show how to obtain valid software reliability metrics and how this
methodology significantly improves reliability estimation com-
pared to hardware-only estimation. The reliability gain is further
improved when considering real-time metrics. This analysis is the
first step towards a reconciliation between software and hardware
reliability and enables the quantification of reliability introduced
by Software-Implemented Hardware Fault Tolerance approaches.

Index Terms—Software-Implemented Hardware Fault Toler-
ance, Real-time

I. INTRODUCTION

ONE of the major obstacles on the introduction of Com-
mercial Off-The-Shelf (COTS) into critical systems is

the missing of hardware elements to provide fault tolerance
against soft-faults. Single Event Upsets (SEUs) are especially
problematic in aerospace applications, due to the reduced
shielding effect of atmosphere and Earth’s magnetic field at
high altitudes that expose the system to radiation. Acceptable
failure rates are usually achieved via shielding or via hardware
techniques – e.g., by employing multiple redundant processors.
However, such techniques are usually expensive in terms
of financial cost and do not guarantee the same level of
computing performance of COTS [1] [2].

A. Software Fault Tolerance

The resilience techniques to hardware faults can be im-
plemented not only at the hardware-level but also at the
software-level. Such techniques are under the umbrella term
Software-Implemented Hardware Fault Tolerance (SIHFT).
The motivation behind SIHFT is to improve the satisfaction
of the reliability requirements without the need for special-
ized hardware design. SIHFT techniques can perform fault
detection and/or fault recovery. For fault detection, traditional
examples include data and instruction duplication, plausibility
checks of the output values, error detection codes, an external
monitoring device, control flow monitoring, and watchdogs.

This work has received funding by the National Resilience and Recovery
Plan (PNRR) through the National Center for HPC, Big Data and Quantum
Computing.

Fault recovery approaches are further classified in space
redundancy and time redundancy. The first category includes
task replicas and standby tasks that provide redundancy at
software level. The most common examples for the second
group are re-execution (sometimes called retry mechanism),
checkpoint/restart, recovery blocks, code correcting codes, and
forward/backward error recovery.

Moving the problem of the hardware fault tolerance to the
software layer brings many advantages, including the reduction
of design and implementation costs, as well as more flexibility
in the development process [1]. In addition, SIHFT enables the
use of COTS platforms in radiation-hostile environments.

The use of SIHFT has also disadvantages:
1) Increased computational workload: implementing any

SIHFT technique clearly increases the overhead of the
system workload.

2) Inability to cover all faults: the problem of having
single points of failure is exacerbated when we move
from hardware to software because SIHFT techniques
are able to detect most of the faults, but not all of them.

3) Incompatibility with current standards: most of all
safety-critical standards used nowadays in industry for
certification do not allow SIHFT techniques to replace
hardware redundancy.

Problem 1) is linked with the real-time requirements: safety-
critical systems often need to satisfy temporal constraints
in addition to guaranteeing the logical correctness of the
output. However, this issue is compensated by the use of
more powerful COTS computing platforms. The problem 2)
is the main issue that also contributes to the problem 3).
Unfortunately, current standards do not split the concept of
software failure due to a bug or a defect from the concept of
software failure due to a hardware fault. Many of them allow
the use of SIHFT only as an extra safety measure with only a
qualitative analysis of the impact on failure rate. Due to this
limitation, which is detailed in Section II, SIHFT has currently
only a marginal role in the satisfaction of safety requirements.
However, in this article, we show a precise methodology that
can guarantee the safety of SIHFT approaches, with a certain,
well-defined, probability of failure. Such methodology, de-
scribed in Section III, allows the quantification of the increased
reliability introduced by the use of SIHFT approaches, making
their failure rate computable and exact.

The focus of this paper is limited to SIHFT approaches
against soft-faults, in particular SEUs.

1



B. Intersection with the timing problem

Most of all safety-critical systems are also hard real-time
systems because need to perform their function within well-
defined timing constraints. Hard real-time systems must meet
these timing constraints all the times and even a violation of a
single one is considered a failure of the system. Guaranteeing
such constraints requires an extensive verification of both
software and hardware, including the Worst-Case Execution
Time (WCET) estimation and the scheduling analysis.

The overhead introduced by SIHFT makes the satisfaction
of the timing constraints harder, creating a conflict between
the reliability and timing goals. However, the availability of
timing metrics provided by the scheduling analysis can be also
exploited to improve the reliability analysis by quantifying the
software failure rates, as explained in this article.

C. Related Works

SIHFT techniques are not a novel approach to increase
fault resilience and their proposal dates back to 1978 with the
seminal paper by Wensley et al. [3]. The book by Goloubeva
et al. [1] describes the traditional SIHFT techniques. Several
state-of-the-art works assessed the SIHFT capabilities in tol-
erating faults, e.g., Eghbal et al. [4] measured the number of
faults in a PIC 16C5x microcontroller equipped with a SIHFT
technique. Baroffio et al. [5] [6] presented a compiler-injected
SIHFT mechanism for the FreeRTOS operating system and
tested the resulting code on a real STM32 microcontroller. A
similar approach has been proposed by Sharif et al. [7] for
RISC-V processors. In 2015, Schirmeier et al. [8] presented
FAIL*, a fault-injection framework that can also evaluate the
fault tolerance improvement achieved by SIHFT techniques.
The framework is able to identify critical software parts that
need a dedicated fault-tolerance design.

Regarding real scenarios, the satellite ARGOS launched in
1999 used SIHFT as additional safety measure against SEUs.
Lovellette et al. [9] observed that SIHFT was able to detect
and correct 98.7% of the SEUs during the mission.

However, all the aforementioned works, even if measuring
the ability of SIHFT mechanisms to detect and tolerate SEUs,
lack of a clear and systematic methodology to compute the
improvement in the system-level reliability metrics by consid-
ering both memory and timing properties of the software.

II. THE ANALYSIS OF CURRENT STANDARDS

To provide an overview of the status of the current stan-
dards, we analyzed the following safety-critical standards
from different fields: ISO-26262 [10] for automotive software,
EN50128 [11] for railways software, DO-178B [12] for avion-
ics, and the ECSS handbooks and standards [13] for space
applications. We analyzed each standard to check whether they
allow the software to have a well-defined probability of failure,
if SIHFT mechanisms are mentioned, and which are their role.

A. ISO-26262 - Automotive

The ISO-26262 standard allows a software to be a safety
mechanism [10, Part 1, §1.142, §1.41] (i.e., a fault tolerance

mechanism) but the compliance with the failure requirements
of the safety mechanism must be “derived from the hardware
architectural metrics” [10, Part 5, §8.4.6], implicitly disal-
lowing software metrics from the safety goal quantification
standpoint. “The quantitative analysis methods only address
random hardware failures. These analysis methods are not
applied to systematic failures.” [10, Part 9, §8.2] “Due to
the specific nature of software (e.g. no random faults due to
wear out or ageing and lack of a mature probabilistic method),
methods established (...) at the system or hardware level often
cannot be transferred to software without modifications” [10,
Part 6, §E.3.3] Quantitative analyses are then possible only for
hardware components [10, Part 5].

The use of SIHFT is recommended and the following
mechanisms mentioned:

• Fault detection: range checks, plausibility checks, error
detecting codes, external monitor, temporal monitor, di-
verse redundancy, access violation control [10, Part 6,
§7.4.12]

• Fault recovery: recovery blocks, backward/forward recov-
ery, re-execution, graceful degradation, replicas, diverse
programming, error correcting codes [10, Part 6, §7.4.12]

B. EN 50128 - Railway

Probabilistic quantification for software faults are described
in the probabilistic testing section [11, §D.41]. However, the
use of probabilistic testing is not intended to be used to
provide evidence of the failure rate safety goals, not even
at low criticality levels [11, §Tab. A.5, Tab. A.7]. Event
trees are described [11, §D.22], including the standard says
that they “can be used to compute the probability of the
various consequences based on the probability and number of
conditions in the sequence.” [11, §D.22]. However, how the
probabilities of the single components are computed is not
specified. Similarly to the other standards, the event trees are
only recommended and intended to be used as an additional
measure without a quantification of the fault rate.

Specific documents and tests regarding software/hardware
integration should show “that the software can handle hard-
ware faults as required” [11, §7.3.4.36]. “Fault detection is
(...) mainly to detect hardware faults” [11, §D.26], including
software fault detection mechanisms. Table A.3 [11] includes
many of the previously described fault recovery mechanisms as
possible techniques to be selected for implementation accord-
ing to the safety integrity levels. They include re-execution,
recovery blocks, diverse programming, forwards/backward
recovery. However, while recommended as extra measures,
none of them (with the exception of diverse programming)
is mandatory to demonstrate the safety requirements.

C. DO-178B/C - Aviation

“This document does not provide guidance for software
error rates.” [12, §12.3.4]. However, it also leaves open the
possibility to provide a rationale, agreed by the authority, to
quantifies failure rates of software. However, it also makes
explicit that “software levels or software reliability rates

2



based on software levels cannot be used by the system safety
assessment process as can hardware failure rates.” [12, §2.2.3]

The aviation standard does not provide specific guidance on
SIHFT mechanisms, limiting to mentioning that fault tolerance
functions can be implemented in software [12, §11.1.b].

D. ECSS-Q-* - Space (ESA)

Regarding the ECSS standards ecosystem, we must distin-
guish between handbooks (-HB-) and pure standards (-ST-).
The former group includes only recommendations, while the
second includes mandatory rules.

Handbooks discourage the use of software failure rates: “the
use of software reliability models to justify compliance with
applicable reliability requirements is not advisable.” [13, Q-
HB-80-03A §4.1.2] and the standard makes clear to consider
them only qualitative: “As it is not possible to quantitatively
assess the software functions, only a qualitative assessment
can be made as the dependability of software is influenced by
the software development process.” [13, Q-ST-30C §6.4.1].

Interestingly, the handbook [13, Q-HB-60-02A] has an
entire chapter on the SIHFT mechanisms, emphasizing the
importance of SIFT in the context of COTS hardware. Var-
ious software redundancy approach are proposed, as well as
system-level protections, such as watchdogs, error correcting
codes, and other techniques.

E. Discussion

Despite the aforementioned standards disallow to quantify
the software failure metrics, it should be noted that SIHFT is
already encouraged by all of them as an extra mechanism to
improve fault tolerance.

The non-quantifiability of the software failures metrics
expressed by all the standards is due to the fact that software
failures are considered as bugs or defects introduced during
the development phase. Indeed, the current knowledge and
software models do not allow to estimate a precise probability
of failure due to a software bug or defect. This limitation,
however, implicitly prevents the quantification of the reliability
improvement provided by SIHFT, even if the source of the
failure is not a bug/defect but a quantifiable physical quantity.
In this article, we would like to change this standard mindset,
showing that it is possible to quantify the improvement by
analyzing software metrics and using SIHFT.

III. FAILURE RATES AND TIMING INFORMATION

The non-quantifiability of software fault rates mentioned in
the standards refer to systematic faults, such as bugs or error
during the software development process for which, indeed,
there is no reliable methods to estimate the probability of a
bug to be present or to cause an error. However, it is possible
to mathematically derive the probability that a software failure
is caused by a hardware fault. In a first rough approximation,
we can consider that each hardware fault directly causes a
software failure, thus their rate is equivalent. This is the
implicit approach followed by standards, where each hardware
fault (including SEU) is potentially considered to be a cause of

a failure (if no hardware fault tolerance exists). This approach
is, however, very pessimistic, due to spatial and temporal
reasons: a task does not fully utilize all computing resources.
For instance, not all the memory areas are used by tasks and
each task is not running in all time instants.

A. Terminology and Assumptions

We use the following widely-accepted terminology [14]: a
fault is a defect in the functioning of a hardware component, an
error is a discrepancy between a computed value or condition
and the theoretically correct value or condition, while a failure
is the inability of the system to perform the required function
according to the original requirements. A fault may or may not
cause an error, and an error may or may not cause a failure.

The following assumptions are assumed by the subsequent
analysis:
(A1) Hardware components are non-repairable
(A2) The hardware fault event probability is exponentially

distributed
(A3) Hardware fault events are independent and identically

distributed (i.i.d.)
In critical systems, components are considered non-repairable
(A1) because in most of the situation is not possible to replace
the failed components until the risky scenario terminates. This
is, in any case, a pessimistic assumption and does not pose
any safety risk. Regarding (A2) and (A3), an exponentially
distributed probability means that the failure rate is constant,
while the i.i.d. assumption can be split in two sub-hypotheses:
the identically distributed, which is included in (A2), and
the independence. Both (A2) and (A3) are generally true
when considering SEUs, because the occurrence of each single
event has no relation with others. These assumptions are also
common in industrial applications [15] [16]. If a system is
exposed to different conditions during its life, the worst-case
one is assumed so that (A3) remains valid (for instance, the
worst-case condition in a space mission is considered in ESA
reliability analyses [13, E-ST-10-12C, §5.5.3.1]).

B. Task model

The system (Γ,H) is composed of n software tasks
Γ = {τ1, τ2, ..., τn} and m hardware resources H =
{H1, H2, ...,Hm}. Each task performs a prescribed function
multiple times (periodically or sporadically) and each unit of
computation that performs the function is called job. The task
is characterized by the tuple τi = (Ci, Ti, Di), where Ci is the
WCET, Ti the period or minimum inter-arrival time, and Di

the relative deadline. Each resource can be a CPU, a memory,
a disk, or any other hardware device, and has a given failure
rate λi. For simplicity, we assume that each task performs one
single function at system-level. We call Λ∗

i the target failure
rate, usually expressed in probability of failure per hour.

The set ∆ = {δ1, δ2, ...} represents the resource assignment
relations, where each relation is: δi = ⟨τj , Hk, sm, ϵn⟩, where
τj is the task and Hk is the resource, as previously defined.
The values sm and ϵn are, respectively, the space share and
the exposure time. In particular:

3



 failure

...

OR

Fig. 1. Fault tree schema of a generic task.

• The space share sm ∈ [0; 1] defines the usage, in
percentage, of the resource Hk by the task τj .

• The exposure time ϵn ∈ [0; 1] defines the rate of time
that a task τj uses a resource Hk. The task is therefore
subject to faults in that specific resource for the period
of time specified by ϵn. How to precisely compute ϵn is
discussed later in Section III-D.

The tuples in ∆ are not necessarily unique, i.e., there can be
multiple items with the same task and resource. The reason is
that a task can use the resource for different share and portion
of time; for instance, a task can use 0.5 of the memory while
a job is running, and 0.1 of the memory from the finishing
time of one job and the arrival of the next.

Example 1. Let us consider a system having a single-memory
H1 of 32 kB and a single-processor H2, running a single-task
τ1. The task runs for 10 time units and sleeps for 40 time
units. During the idle time the task maintains a state of 1 kB
and during the run-time it uses 16 kB of the memory. Thus:
∆ = {⟨τ1, H1, 1/32, 1⟩, ⟨τ1, H1, 0.5, 0.2⟩, ⟨τ1, H2, 1, 0.2⟩}

C. Task base failure rate
In order to compute the task failure rate – which is the

probability that a job fails to provide the correct output over a
defined period of time (usually per-hour) – we proceed by
building the fault tree depicted in Figure 1. Assuming no
software fault tolerance method in place, the failure rate of
the task is the combination in OR of the basic event failure
rates, i.e., the failure rate of each resource λi multiplied by the
space and time share. This trivial multiplication is valid thanks
to the failure rate properties [17], and improves previous works
which used direct probabilities and had to resort to more
complex analyses [18]. The top-event failure rate of the fault
tree of Figure 1, given the assumption of Section III-A, is
calculated as the sum of the individual rates [19, Eq. (4.40)]:

Λi =
∑

∀⟨τj ,Hk,sm,ϵn⟩∈∆

λk · sm · ϵn (1)

The symbol Λi is the task basic failure rate, i.e., the failure
rate of the task τi in absence of fault tolerant mechanisms.
If Λi ≤ Λ∗

i , then no fault tolerant mechanism in necessary
because the task already satisfies the reliability requirement.

D. Exploiting real-time metrics to estimate ϵn

The knowledge of the real-time metrics allows us to cal-
culate the value of the ϵn or at least upper-bound it. The

Start

Activation Preemption

t

Fig. 2. Faults in many resources are effective only in the time interval in
which the job is active, i.e., Cj + Ij every Ti time units. Other jobs present
in the system are not depicted in the figure.

exposure time ϵn depends on the resource acquisition and
resource release time. Frequently, most of the resources are
acquired at the beginning of the job and released at the end,
first and foremost the memory used for local variables or stack
in general. In such a case, the exposure time of a resource
assignment ⟨τj , Hk, sm, ϵn⟩ is:

ϵn =
Cj + Ij

Tj
(2)

where Ij is the worst-case interference time, i.e., the time that
the task is preempted or suspended (e.g., to allow tasks with
higher priority to run). This case, exemplified in Figure 2, is
the simplest form of timing modeling of ϵn but highlights
how OS-level decisions, such as the scheduling algorithm
can impact the reliability metrics: a scheduling algorithm
privileging the reduction of Ij would increase the reliability
but it reduces the optimality from a real-time standpoint,
creating a challenging trade-off to explore.

IV. A METHODOLOGY TO ANALYZE A COMPLETE
SIHFT-BASED SYSTEM

From the quantification of the basic failure rate described
above, we show how it is possible to exploit more information
to improve the analysis, i.e., introducing SIHFT, operating
systems, and splitting memory elements. We focus on the
analysis of the memory elements of a generic microcontroller.

A. System Components

In first approximation, we can categorize the memory of
most of microcontrollers in the following resources:

• HP : the memory containing the program code
• HD: the memory containing the data
• HG: the General Purpose Registers (GPRs) of the CPU,

used by the tasks to perform the computation. In this
definition, we include the accessory registers, such as the
program counter, the stack pointer, the register file, etc.

• HS : the Special Function Registers (SFRs) of the CPU,
used to configure peripherals and other hardware settings.

Correspondingly, λP , λD, λG, λS are the respective SEU fail-
ure rates of the memories. These failure rates are usually
expressed per bit-hour, thus having the following measurement
unit: [1/(bit ·h)]. For this reason, we replace the ratio sm with
the memory usage:

4



Data memory
fault

Prog. memory
fault

GPR
fault

Cold memory
fault

Hot memory
fault

Software
component

failure

Fig. 3. Fault tree for the calculation of a generic software component.

• MP
i : number of bits used in the program memory

• MG
i : number of bits used in the GPRs

• MS
i : number of bits used in the SFRs

• MDC
i : number of bits used in the cold data memory

• MDH
i : number of bits used in the hot data memory

The cold data memory represents the data segment used by
the tasks that persists across job executions. Instead, the hot
data memory represents the data segment used by the tasks
only within a job execution and released at the termination of
the job (for instance, the local variables in the stack).

B. Software component failure

The sub-tree of Figure 3 represents the chain of faults that
may cause a software component to fail. We use the term
software component to identify any task and the operating
system itself. The sub-tree is constructed as follows: a software
component can fail if there is a fault in the program memory
(

↱

), if there is a fault in any GPR (

↰

), or if there is a fault in
the data memory (↓). The data memory branch is split in cold
and hot cases. Consequently, the failure rate of the top event
is computed by applying Eq. (1):

Λi = λPM
P
i + λDMDC

i + ϵi

(
λGM

G
i + λDMDH

i

)
(3)

C. Function failure

The failure is the termination of the ability of the system,
and by extension of the software, to perform a function [14].
The safety requirements are therefore expressed on the func-
tion itself, rather than on the software component performing
it. For this reason, the fault tree of Figure 4 has the function
failure as top-event, which is the one that must be compared
against the requirements. The function failure can be caused
by the failure of the task performing that function (

↱

) or a
failure in the system (

↰

). The system failure can be caused by a
problem in the operating system or by an error inside the SFRs.
The task failure is modeled with the fault tree of Figure 3, as
well as the operating system, that can be considered like a task
(in subsequent notation τOS) for the sake of the fault analysis.
SFR failure is represented as an undeveloped event because it
could potentially be further refined: not all SFRs are actually

Function 
failure

Task 
failure System failure

OS failure SFR failure

Software
component

failure

Software
component

failure

Fig. 4. The extension of the task failure rate to the function failure rate,
including system software failures.

used or generate an error if a SEU occurs, and they are often
protected by extra techniques. The top-event has, therefore,
the following failure rate:

Λ̂i = Λi + ΛOS + λSMS (4)

D. Function failure with SIHFT

When SIHFT is employed, the fault tree must be accord-
ingly updated. The fault tree is, in general, different for each
SIHFT mechanism and may require numerical solvers. We
provide the analysis of a SIHFT approach with re-execution
mechanism and data replication for the cold memory. We
assume that the scheduling analysis allocated sufficient free
CPU utilization to run the re-execution mechanism with all of
its associated overhead. The new fault tree for a generic task
is depicted in Figure 5. The task failure can be caused by a
fault in the program memory (

↱

), at least two faults in the cold
memory (↓), or the failure of all sub-tasks (

↰

). The sub-tasks
represent the re-execution retries. Each sub-task can fail due
to a GPR fault (

↱

) or an hot memory fault (

↰

). Moreover, all
sub-tasks are considered failed if the detection fails to detect
the presence of a fault (failure rate λDET). In such a case,
an undetected error is present in the system and can cause a
failure.

Differently from the previous sections, we cannot proceed
analytically computing the failure rates by using the ones
of each sub-block, due to the non-linearity of the voter and
standby nodes. We then proceed by computing the resulting
reliability function as a function of time t as follows:

Ri(t) = RP (t) ·RDC
(t) ·RST (t) (5)

where the multiplication is the operation to apply in presence
of an OR gate in the fault tree (the top-level OR gate of
Figure 5), and:

• RP (t) is the reliability of the program memory (

↱

):

RP (t) = e−λP ·MP ·t (6)

• RDC
(t) is the reliability of the cold memory (↓) (defined

later in Section IV-E).

5



Task 
failure

Prog. memory
fault

Cold memory
fault

2/3

All sub-tasks
failure

...

Sub-task
failure

Sub-task
failure

stdby

Task 
failure

Detection
failure

Sub-task
failure

GPR
fault

Hot memory
fault

Fig. 5. A complete fault tree for a task τi including SIHFT mechanisms.

• RST (t) is reliability of the sub tasks (

↰

):

RST (t) =

[
ρi∑
i=0

(λST t)
i · e−λST t

i!

]
· e−λDETt (7)

where ρi is the allowed maximum number of re-
executions for the task, and:

λST = ϵi

(
λGM

G
i + λDMDH

i

)
(8)

The previous formulas have been derived by applying the
standard reliability analysis and composition [19].

To verify the requirement, i.e. Λi ≤ Λ∗
i , we need to integrate

the reliability function to obtain the Mean Time To Failure
(MTTF): MTTF =

∫∞
0

Ri(t). Assuming a constant failure
rate of fault tree components1, the total failure rate of the τi
function is then Λi = 1/MTTF.

E. Computation of the k-out-of-n cold memory branch

This branch and the computation of RDC
need a special

attention, because of the following problem. Normally, a k-
out-of-n gate has the following reliability formula:

RDC
(t) =

n∑
i=k

(
n

i

)
zi(1− z)n−i (9)

where k = 2, n = 3 and z = e−λDC
M

DC
i t. However, this

formula is very pessimistic for the software case: it considers
the resource as a whole, while we can check (and correct) the
single bits. An fault to be effective must hit two bits in the

1Due to the standby operator, the failure rate is not constant. However, the
failed component is a job which has to be considered immediately repaired,
thus not creating any sort of dependencies between task re-executions.

TABLE I
TASK PARAMETERS OF THE EXPERIMENTAL SIMULATION.

Task Ti = Di [ms] Ci [ms] M
DC
i [B] M

DH
i [B]

τ1 500 73.0 1024 202
τ2 100 0.3 4 184
τ3 5000 610.9 5124 240
τ4 5 0.7 201 201

same address and the same position of two different memory
areas, which has a much lower probability. Taking into account
this consideration, we can optimize Equation (10) as follows:

RDC
(t) =

[
n∑

i=k

(
n

i

)
z′i(1− z′)n−i

]M
DC
i

(10)

where z′ = e−λDC
t

V. NUMERICAL ANALYSIS OF A SPACECRAFT USE-CASE

To verify the reliability improvement, we exploit the previ-
ous analytical formulation to derive the function failure rate
of a realistic use-case.

A. Reference - Hardware

As a reference COTS computing platform for this experi-
mental evaluation, we selected the microcontroller Microchip
PIC24FJ256GA110 for the following reasons: 1) It has been
used in several CubeSAT missions; 2) A study on the SEU rate
of this specific device is available [20]; 3) It is simple enough
to be carefully analyzed. In order to match the available data
on reliability, the device is assumed to be clocked at 8 MHz.
The PIC microcontroller has a Harvard architecture with a total
of 16 384 B of data memory, 261 876 B of program memory
and 305 bits of general purpose registers (GPRs), 4 148 bits
of Special Function Registers (SFRs). The program memory
is stored in a flash, while the data memory is implemented
as a SRAM. Flash memories are, in general, very resilient to
radiations, indeed, Guertin et al. [20] did not identify any SEU
in the flash memory during their experiments and the cross-
section must therefore be several order of magnitude lower
than the SRAM. For this reason, we voluntarily omitted the
analysis of the flash program memory, focusing on the critical
component, which is the SRAM.

Thanks to the use of the SPENVIS tool by the ESA, we
calculated the exact rate of SEUs per-bit in this microcontroller
for a small satellites in a Polar-LEO trajectory in unfavorable
conditions (South Atlantic Anomaly trajectory and maximum
solar activity): λbit = 3.0264 · 10−12/(bit · s).

B. Reference - Software

We selected four benchmarks representative of typical
workload on previous spacecraft computers: τ1 (CRC-32),
representing a very common hash function used by many
space communication tasks; τ2 (LatNAV) representing the
control task of the satellite; τ3 (Edge Detector) runs an image
processing algorithm, which represents a star tracking algo-
rithm for navigation; τ4 (binary search) representing the access

6



TABLE II
RESULTS OF THE EXPERIMENTAL SIMULATION.

A: BASELINE, I.E., STANDARD COARSE GRAIN EVALUATION
B: WITH SOFTWARE INFORMATION
C: WITH SOFTWARE AND TIMING INFORMATION (PREEMPTIVE)
D: WITH SOFTWARE AND TIMING INFORMATION (NON-PREEMPTIVE)
E: D + SIHFT
F: E + UNPROTECTED OPERATING SYSTEM AND SFRS

Task A B C D E F
τ1

1.5e−3

1.1e−4 9.4e−5 9.2e−5 2.2e−6 5.7e−5

τ2 1.6e−5 2.6e−6 4.1e−7 1.1e−7 5.5e−5

τ3 4.9e−4 4.8e−4 4.7e−4 4.5e−6 5.9e−5

τ4 3.5e−5 2.0e−5 2.0e−5 1.3e−6 5.6e−5

to one of the many message queues used to perform inter-
task communication. These benchmarks are simple but are a
good representative considering the target microcontroller. The
selected real-time operating system is FreeRTOS.

The source code has been compiled with the official Mi-
crochip XC16 compiler version 2.00 (based on gcc version
4.5.1), obtaining memory usage metrics. The task WCETs are
reported in Table I approximated at the 100th micro-seconds
with a round-up policy, so that the numbers are pessimistic but
safe. The total utilization of the task set, without considering
SIHFT, is U = 0.412.

C. Results.

The results are presented in Table II. The baseline, given by
considering only hardware metrics, has a very high failure rate,
that cannot even satisfy the lowest criticality level for DO-
178C (DAL D is Λ∗

i = 10−3/hour). The first improvement
of the analysis (A→B) was given by the use of software
information (Figure 3 with ϵ = 0) and was significant: the
tasks reduced their failure rate of 1-2 order of magnitudes.
Then, we considered a Rate Monotonic preemptive scheduler
(Figure 3 with computed ϵ) and the failure rates reduced
(B→C) of another order of magnitude. The use of a non-
preemptive scheduling algorithm (implying Ii = 0), further
reduced (C→D) the failure rate, with a strong impact on
τ2. Then, the introduction of SIHFT via re-execution pattern
(Figure 5) made all the tasks to have a failure rate lower than
10−5/hour. Such failure rates satisfy the levels DAL D and C
of DO-178C. Finally, we added the OS and SFRs (Figure 4),
and the results are shown in column F. As expected, they
clearly brought up the failure rate because we considered
unprotected OS and SFRs, for which a SIHFT analysis is left
for future works.

VI. CONCLUSIONS

We analyzed the current standards and identified that they
do not consider the possibility of integrating the software
properties in the failure analysis because they consider a
software failure only as a bug or defect. We then presented an
analytical analysis to show how to mathematically calculate
the failure rate improvement given by the software. The nu-
merical results showed that, with software information, timing

information, and the introduction of SIHFT, it is possible to
reduce the failure rate against SEUs by several orders of
magnitude. Timing information plays an important role and
different scheduling policies lead to different reliability results.
The numerical simulation also highlighted that the introduction
of SIHFT to the tasks must be associated with the protection
of the operating system and SFRs to avoid jeopardizing the
SIHFT improvements.

REFERENCES

[1] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance, Springer, Ed. Mor-
gan Kaufmann, 2006.

[2] F. Reghenzani, “Enabling software technologies for critical cots-based
spacecraft systems,” in Proceedings of the 20th ACM International
Conference on Computing Frontiers, ser. CF ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 236–242.

[3] J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-
Smith, R. Shostak, and C. Weinstock, “Sift: Design and analysis of a
fault-tolerant computer for aircraft control,” Proceedings of the IEEE,
vol. 66, no. 10, pp. 1240–1255, 1978.

[4] A. Eghbal, H. R. Zarandi, and P. M. Yaghini, “Fault tolerance assessment
of pic microcontroller based on fault injection,” in 2009 10th Latin
American Test Workshop, 2009, pp. 1–6.

[5] D. Baroffio and F. Reghenzani, “Compiler-injected sihft for embedded
operating systems,” in 20th ACM International Conference on Comput-
ing Frontiers (CF’23). ACM, 2009, pp. 1–7.

[6] D. Baroffio, F. Reghenzani, and W. Fornaciari, “Enhanced compiler
technology for software-based hardware fault detection,” ACM Trans.
Des. Autom. Electron. Syst., apr 2024.

[7] U. Sharif, D. Mueller-Gritschneder, and U. Schlichtmann, “Compas:
Compiler-assisted software-implemented hardware fault tolerance for
risc-v,” in 2022 11th Mediterranean Conference on Embedded Com-
puting (MECO), 2022, pp. 1–4.

[8] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and
O. Spinczyk, “Fail*: An open and versatile fault-injection framework
for the assessment of software-implemented hardware fault tolerance,”
in European Dependable Computing Conference, 2015, pp. 245–255.

[9] M. Lovellette, K. Wood, D. Wood, J. Beall, P. Shirvani, N. Oh,
and E. McCluskey, “Strategies for fault-tolerant, space-based comput-
ing: Lessons learned from the argos testbed,” in Proceedings, IEEE
Aerospace Conference, vol. 5, 2002, pp. 5–5.

[10] International Standard Organization, “Road vehicles – functional safety,”
ISO, Standard ISO-26262, 2018.

[11] European Committee for Electrotechnical Standardization, “Railway ap-
plications - communication, signalling and processing systems - software
for railway control and protection systems,” jun 2011.

[12] RTCA/EUROCAE, “DO-178B - Software Considerations in Airborne
Systems and Equipment Certification,” Standard, dec 1992.

[13] ESA. ECSS standards and handbooks. https://ecss.nl/.
[14] T. Arbel-Newman, J. Athavale, R. Bhattacharya, R. Bongiwar, W.-

R. Chen, M. Diaz, L. Di Mauro, C. Di Napoli, D. Galpin, S. Kas-
rung, V. Kleeberger, S. Lorenzini, R. Mariani, A. Patel, H. Ptackova,
F. Reghenzani, R. Schaaf, M. Turner, and B. Vignasse, “The functional
safety terminology landscape,” pp. 1–35, 2023.

[15] Jedec Solid State Technology Association, “Methods for calculating
failure rates in units of fits,” JEDEC, Standard, 2001.

[16] Jedec Solid State Technology Association , “Measurement and reporting
of alpha particle and terrestrial cosmic ray-induced soft errors in
semiconductor devices,” JEDEC, Standard, 2006.

[17] R. L. Fleurence and C. S. Hollenbeak, “Rates and probabilities in
economic modelling,” PharmacoEconomics, vol. 25, no. 1, 2007.

[18] F. Reghenzani, Z. Guo, L. Santinelli, and W. Fornaciari, “A mixed-
criticality approach to fault tolerance: Integrating schedulability and
failure requirements,” in 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2022, pp. 1–30.

[19] B. Dhillon and C. Singh, Engineering Reliability: New Techniques and
Applications, ser. A Wiley-Interscience publication. Wiley, 1981.

[20] S. M. Guertin, M. Amrbar, and S. Vartanian, “Radiation test results for
common cubesat microcontrollers and microprocessors,” in 2015 IEEE
Radiation Effects Data Workshop (REDW), 2015, pp. 1–9.

7


