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Abstract—The challenges derived from the data-intensive na-
ture of machine learning in conjunction with technologies that
enable novel paradigms such as V2X and the potential offered
by 5G communication, allow and justify the deployment of
Federated Learning (FL) solutions in the vehicular intrusion
detection domain. In this paper, we investigate the effects
of integrating FL strategies into the machine learning-based
intrusion detection process for on-board vehicular networks.
Accordingly, we propose a FL implementation of a state-of-
the-art Intrusion Detection System (IDS) for Controller Area
Network (CAN), based on LSTM autoencoders. We thoroughly
evaluate its detection efficiency and communication overhead,
comparing it to a centralized version of the same algorithm,
thereby presenting it as a feasible solution.

Index Terms—Controller Area Network, Federated Learning,
Intrusion Detection

I. INTRODUCTION

The shift of the automotive industry towards a more con-

nected and autonomous landscape, while offering increased

functionality and convenience, also makes automotive sys-

tems more susceptible to cyber-attacks. Amongst the security

measures against such threats, Intrusion Detection Systems

(IDSs) for automotive on-board networks are becoming a

popular tool for identifying and addressing unusual activities.

Machine Learning (ML) enhances the performance of such

IDSs by processing and learning from large datasets, but its

data-heavy approach poses challenges in automotive contexts.

Creating effective IDSs models demands extensive data re-

flecting diverse driving conditions and high computational

power for training and deployment, often exceeding in-vehicle

system capabilities. Hence, up to now, training algorithms for

vehicular contexts have mostly relied on Centralized Learning

(CL), which collects and stores data from multiple vehicles in

a centralized location, where the training process takes place.

Emerging technologies like V2X, edge computing, and ad-

vancements in data communication with 5G and upcoming 6G,

have largely addressed the challenges of requiring numerous

vehicles to transmit substantial amounts of data to a centralized

server. However, sending raw vehicle data to a central node

raises privacy issues, as this data can contain personal and

sensitive information that ideally should not be shared with a

central server. Federated Learning (FL) addresses these con-

cerns allowing IDSs to benefit from the collective knowledge

of the entire system without compromising individual privacy,

as the raw information does not need to be shared.

Implementing federated versions of effective Controller

Area Network (CAN) IDSs could be the key to their fea-

sibility in real-world scenarios. This approach addresses the

challenges of limited dataset diversity and the privacy issues

related to transmitting vast amounts of CAN data from vehicles

to a centralized training location. However, implementing a

ML algorithm in a federated manner introduces its own chal-

lenges, particularly in integrating data from various entities.

This paper proposes and assesses the viability of using

FL algorithms for intrusion detection within the automotive

sector. We have developed a federated version of a state-of-

the-art ML-based IDS for CAN, CANdito [1], and examined

its effectiveness by comparing it with a centralized version of

the same algorithm.

Our experimental evaluation focused on the tradeoffs in

terms of detection capabilities and communication overhead

in FL approaches. We found that the volume of data each

participant needs to transmit in a federated setup is greater than

in a corresponding centralized model. However, this increased

data requirement is reasonable, thanks to the potential offered

by advancements in communication technologies. While the

detection capabilities of the federated model are slightly lower

compared to the centralized model, they still demonstrate

robust performance. This slight reduction in detection effec-

tiveness is a reasonable cost to pay for the substantial privacy

benefits that FL offers, addressing one of the key challenges

in modern data-driven applications.

By using a Long Short-Term Memory (LSTM) autoencoder-

based ML algorithm, we address limitations in current liter-

ature, namely the limited use of Recurrent Neural Network

(RNN) in FL for CAN bus anomaly detection. Additionally,

we explore the relatively new area of applying federated

algorithms to LSTM autoencoders.

In short, our contributions are the following:

• We propose a federated approach for intrusion detection

in on-board vehicular networks based on CANdito [1], a

state-of-the-art LSTM autoencoder-based IDS for CAN.

• We extensively evaluate the performances of our approach

against a centralized version of the same IDS, demon-

strating comparable detection capabilities of the federated

version in relation to its centralized counterpart.

• We assess the communication overhead of MQTT over

5G during the training rounds of the federated implemen-

tation.



II. BACKGROUND AND MOTIVATION

A. CAN security

The CAN protocol [2] is the industry standard for intra-

vehicle communication. Its widespread adoption can be at-

tributed to several key features: low cost, high resilience

to interference, robust error detection, and the capability to

handle numerous short messages in a multi-master system,

making it well-suited for real-time applications. A drawback

of the age and simplicity of the CAN protocol is that it lacks

embedded security measures. It uses broadcast communica-

tions without cryptography protection, and identifiers are not

authenticated, which leaves these networks open to packet

injection, deletion, and modification. Attacks against CAN

include: 1) Denial of Service (DoS) attacks that flood the

bus with a vast amount of high-priority messages, resulting

in communication disruption for legitimate Electronic Control

Units (ECUs), impacting vehicle functionalities; 2) Injection

attacks that involve inserting messages into the CAN bus

introducing unauthorized commands or data that could alter

the vehicle’s physical behavior. The stealthiness of attacks

depends on tactics employed such as replaying payloads

from previously observed packets (replay attacks), gradually

adjusting sensor and actuator values to avoid abrupt changes

(seamless change attacks), or modifying the timing of packet

delivery; 3) Drop attacks that delete legitimate packets, dis-

rupting communication flow and potentially resulting in the

loss of critical data essential for the correct functioning of the

vehicle; 4) Masquerade attacks that usually combine drop and

injection tactics to mimic behaviors of legitimate ECU. This

method inserts unauthorized commands or data onto the bus

while maintaining packet arrival frequency, evading detection.

B. CAN Intrusion Detection

Intrusion detection for vehicular systems can be roughly

divided into hardware-, specification-, flow-, and payload-

based detection. Hardware-based detection [3] fingerprints

the ECUs physical characteristics. Since only a specific ECU

is allowed to send a given ID, a mismatch between the packet

ID and the ECU fingerprint may indicate a data injection attack

by an attacker that is spoofing a different ECU’s ID. While

effective in detecting injection attacks, it usually requires extra

hardware to generate the fingerprint and may not recognize

misbehavior if the attacker has direct control of targeted ECU.

Specification-based detection focuses on detecting misbehav-

ior in the use of the CAN protocol, e.g. by monitoring the

network to detect ID conflicts [4] or detecting if an ECU is

disconnected from the CAN network [5]. While effective, it

usually requires to be installed in all ECUs and additional

hardware. Flow-based detection analyzes packet flow on the

network, focusing on the arrival frequency of packets with

identical IDs [6], [7] or the sequence of ID appearances on

the bus [8]. These methods suit the CAN protocol due to

its message flow regularity and predictability. However, they

might not detect advanced masquerade attacks, where the ID

periodicity is maintained but the payload is altered. Payload-

based detection scrutinizes packet contents, studying temporal

relationships within packets [1], [9], examining correlations

between packets with different IDs in the same timeframe [10],

or employing a mix of these methods [11]. They can handle

complex patterns not identifiable through simple rules but

face practical limitations due to high computation and training

demands. For a comprehensive overview of existing solutions

for CAN intrusion detection, we refer the reader to [12].

A vast subset of works in this area focuses on employing

ML techniques to distinguish between normal and anomalous

patterns. Deep learning techniques, especially time-series anal-

ysis with RNNs and LSTM autoencoders, have proven to be

effective recently [1], [12].

C. Collaborative Learning: Centralized vs Federated

Training effective IDSs requires substantial data and com-

putational capabilities difficult to fulfill by single vehicles.

Hence, cooperation between vehicles is required. This co-

operation can follow the different principles of Centralized

Learning (CL) and Federated Learning (FL), which differ in

terms of use cases, system requirements, communication costs,

privacy concerns, and the level of cooperation.

Centralized Learning. The CL strategy involves a central

entity, like a roadside infrastructure or a remote server, that

collects, processes, and coordinates vehicle information. Each

vehicle transmits its raw data to the central entity and then

the central entity performs all the necessary computation

and decision-making processes. However, this approach raises

concerns about vehicle data privacy.

Federated Learning. The FL approach addresses some draw-

backs of CL. In FL applied to the automotive sector, each ve-

hicle in the network has its processing capabilities and shares

summarized or aggregated data with the remote server, instead

of the entire dataset. This ensures that sensitive information

remains localized within each vehicle, thus reducing the risk

of privacy breaches. A FL strategy is usually composed of

several communication rounds. At each round, a group of

vehicles independently trains a ML model using their local

data. Then, rather than sharing the entire model or data, each

vehicle exchanges only model updates with a central server.

The central server strategically combines the received model

updates to create a global model, which is then shared back

with each vehicle. This process is iteratively repeated.

III. APPROACH

Our approach, as illustrated in Figure 1, comprises three

primary components: a detection algorithm, a communication

infrastructure, and a federated aggregation strategy. It incor-

porates an LSTM autoencoder-based IDS for CAN, deployed

across a vehicle fleet and trained using FL. In each round

of federated training, detection systems transmit their local

model weights to a designated Message Queuing Telemetry

Transport (MQTT) topic via their vehicle’s 5G connection.

The Global Server, which subscribes to this topic, collects

this data. It computes the global weights for the round using

a federated aggregation algorithm, such as FedAvg [13] or
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Fig. 1. Overview of our system. From the left, the intrusion detection process shows the detection steps of CANdito [1], which - in the training phase - feed
the local weights through the 5G communication of the vehicle to the MQTT broker, which provides them to the Global Server. The server computes the
global weights for the round, decides whether early stopping is necessary, and provides the weights to the vehicles.

FedProx [14]. Subsequently, the Global Server distributes

these global weights back to the vehicles by posting them to a

different MQTT topic, to which all vehicles are subscribed.

Additionally, in each round, the Global Server determines

whether to continue or halt the training process based on early

stopping criteria.

A. Detection Algorithm

We identified CANdito [1] as the best candidate for our ap-

proach, given the results demonstrated both in detection perfor-

mances and in computation time, which–especially combined–

outperform current state-of-the-art detection systems for CAN.

CANdito relies on LSTM-autoencoders, which has shown to

be an effective detection method for CAN [12], and is based

on the assumption that a vehicle’s behavior can be seen as

a sequence of finite events where each event depends on

the previous ones. At training time, the autoencoder analyzes

legitimate data streams from the CAN bus and builds a

latent representation of the CAN traffic data without requiring

knowledge of data semantics. At runtime, the autoencoder

attempts to reconstruct the CAN traffic in the sequence. It then

computes the reconstruction error as the difference between

the forecasted packets and the actual packets in the sequence.

If the reconstruction error is above a certain threshold, attacks

or anomalies are detected.

Preprocessing and data acquisition. Feeding the raw CAN

stream to CANdito requires specifying the location and type

of signals within the payload for each CAN ID. This step has

to be coherent for all vehicles participating in the FL process.

Following the preprocessing steps of the previous work [1], we

employed READ [15] to identify signals and their categories

by analyzing the frequency of bit changes in CAN payloads.

While this process would not be necessary for a carmaker,

which has access to the signal definitions, it has already

been used multiple times as an effective alternative [1], [9],

[16]. Once this segmentation and categorization are known,

the CANdito algorithm requires to be fed time series of 40

sequential packets with the same ID to detect an intrusion.

Threshold in the federated algorithm. We assessed different

configurations for calculating the optimal model threshold

for the reconstruction error, involving different levels of

decentralization. In these setups, each vehicle computes its

optimal model threshold using a small, local dataset not

previously used, after receiving the final model from the

Global Server. These individual thresholds are then sent to

the Global Server, which aggregates them to determine the

final threshold. However, this method resulted in significant

performance degradation due to the model’s high sensitivity

to threshold accuracy. We also found that the threshold com-

putation is a relatively lightweight operation compared to the

whole training process. Therefore, in our final implementation,

the threshold is computed by a single vehicle, which then

shares the computed value with others. This designated vehicle

could be one that has already participated in the training

process, possessing sufficient data and resources, or it could

be an additional vehicle specifically tasked with threshold

computation, rather than participating in training.

Federated Early Stopping. To mitigate the risk of overfitting

and optimize the number of training rounds, we implemented a

decentralized early stopping strategy. After each global model

update, every vehicle evaluates the model’s performance using

the Mean Squared Error (MSE) loss on a small local validation

set. The vehicles then share their individual validation losses

to the Global Server, which computes an average to obtain

a global loss. This method is similar to centralized early

stopping: training ceases if the global loss does not show

improvement for a number of consecutive rounds, as specified

by the ‘patience’ parameter. The minimum magnitude of

improvement between rounds is quantified by the δ parameter.



B. Communication Infrastructure

For update sharing, we implemented a publish-subscribe

system via the MQTT 5.0 over TCP protocol. We enabled TLS

encryption and authentication to ensure update confidentiality

and prevent unauthorized vehicles from submitting updates.

We chose Eclipse Mosquitto [17], an open-source message

broker, in its latest version as of January 2024. To ensure

accurate update delivery, we set the Quality of Service (QoS)

level to ‘exactly once delivery’ (QoS 2) [18]. The infrastruc-

ture we designed includes two distinct topics. The first topic,

or the ’local’ topic, is used by each vehicle to publish its local

updates, primarily consisting of weight updates resulting from

local training. The second topic, or the ’global’ topic, is des-

ignated for the Global Server, which publishes global updates

after aggregating and averaging vehicle updates. This setup

ensures an efficient and organized exchange of information

between the vehicles and the Global Server.

C. Aggregation Strategy

We focused on Federated Averaging (FedAvg) [13] and

Federated Proximal (FedProx) [14], two FL algorithms, which

differ primarily in the local objective function employed.

FedAvg [13]. Each node in the network downloads an initial

global model and locally improves it by training on a local

dataset over a specified number of epochs. After this, each

node sends its model updates to a global server. The server ag-

gregates these updates to produce a new global model, which is

then redistributed to the nodes for further local training epochs.

This cycle of local training and aggregation continues until

the global model attains the targeted accuracy or meets other

predefined criteria. The two principal parameters of FedAvg

are the number of epochs E and the number of communication

rounds R. The number of epochs refers to the iterations of

training each node performs before transmitting its weights to

the global server in a round. The number of communication

rounds indicates how often the nodes interact with the global

server sending their locally trained model weights. FedAvg is

efficient and helps address privacy concerns since raw data

remains within its original node. Nonetheless, it demands

careful management of aspects like network bandwidth, het-

erogeneous data distributions, and the handling of non-i.i.d.

(independent and identically distributed) data across nodes.

FedProx [14]. It extends the principles of FedAvg introducing

a proximal term µ to the local objective function, which

ensures local updates align closely with the global model.

This enhances stability in non-i.i.d. environments with high

heterogeneity. On the other hand, FedProx adds complexity

due to the need for careful tuning of the proximal term,

balancing between local and global model accuracy.

IV. EXPERIMENTAL EVALUATION

Previous studies [13], [19] have highlighted the challenges

associated with the selection of hyperparameters for FedAvg

and FedProx, noting that improper choices can lead to di-

vergence and suboptimal outcomes. Hence, our experimental

evaluation aims to optimize local training epochs per round

(E) for FedAvg and FedProx, optimize the proximal term

(µ) for FedProx, evaluate decentralization’s effect on model

convergence across different vehicle counts (V ), and compare

the federated CANdito’s efficiency and communication costs

to its centralized version, trained on the same dataset.

A. Dataset Overview

For our experiments, we used the ReCAN C-1 dataset [20],

a real-world CAN traffic dataset recorded in an Alfa Romeo

Giulia Veloce during both city and highway driving. The

dataset is divided into 9 driving sessions, totaling 25,082,275

packets. For our experiments, we used data from driving

session numbers 1, 2, 6, 8, and 9 for the training stage,

data from driving session number 5 for the validation stage,

and data from driving session number 7 for the test stage.

The presence of data from different driving sessions makes

the setting non-i.i.d., potentially influencing the convergence

capabilities of the employed federated algorithms. On the other

hand, this setting makes the experiments more representative

of real-world scenarios and hence more relevant. We evaluated

the performance of our approach on 13 selected CAN IDs,

chosen based on their use in CANdito [1] and CANova [16].

Attack generation. We injected attacks into both the vali-

dation and test datasets using the CANtack tool, already pro-

posed and used in the literature [1], [16] and available online1.

The tool allows for the simulation and injection of a wide

range of attacks in the ReCAN datasets. Our methodology

aims to challenge the IDS’s effectiveness against both basic

and sophisticated attackers. To this end, we created injection

attacks by introducing a sequence of 25 packets into the

datasets. For masquerade attacks, which simulate an advanced

adversary taking control of a CAN node and transmitting on its

behalf, we altered the payload of existing packets. The attack

strategies include signal data fuzzing, which avoids obvious

detection by not changing bits that are static in authentic

payloads, executing replay attacks, and avoiding unrealistic

changes subtly shifting signal values to their extreme limits

from the last genuine packet’s value. Additionally, we con-

ducted drop attacks by removing a sequence of 25 consecutive

packets with the targeted ID from the dataset.

B. Experimental Results

Federated Algorithm Convergence. We validated the per-

formance of both FedAvg and FedProx using the validation

dataset containing the injected attacks. For both FedAvg and

FedProx, we distributed the training data across 5, 10, 20, and

50 vehicles (V ) and conducted training with local epochs (E)

set at 1, 3, and 5. For FedProx, we tested four proximal term

(µ) values: 1, 0.1, 0.01, and 0.001. Table I displays the training

data size for the CL case and for different values of V .

For FedAvg, we trained each configuration over 200 com-

munication rounds (R). Figure 2 depicts the average perfor-

mance in terms of Detection Rate (DR), varying the values of

1https://bitbucket.org/necst/attack tool code



TABLE I
DATASET SIZE (IN NUMBER OF PACKETS) FOR EACH VEHICLE FOR

DIFFERENT LEVELS OF DECENTRALIZATION. V REPRESENTS THE NUMBER

OF VEHICLES PARTICIPATING IN THE LEARNING PROCESS.

ID CL V = 5 V = 10 V = 20 V = 50

0DE 722000 144400 72200 36100 14440
0EE 724830 144966 72483 36241 14496
0FB 721331 144266 72133 36066 14426
0FC 721330 144266 72133 36066 14426
0FE 724830 144966 72483 36241 14496
0FF 721333 144266 72133 36066 14426
1F7 363168 72633 36316 18158 7263
1FB 360922 72184 36092 18046 7218
11C 724827 144965 72482 36241 14496
100 721333 144266 72133 36066 14426
104 726338 145267 72633 36316 14526
116 724828 144965 72482 36241 14496
192 724350 144870 72435 36217 14487

Fig. 2. FedAvg Detection Rate convergence results for different levels of
decentralization. V represents the number of vehicles participating in the
learning process and E denotes the number of local epochs that each vehicle
trains during each round.

E and V , specifically focusing on CAN ID 192. To more ef-

fectively highlight the differences in convergence speed among

the various settings, the figure only displays the first 130

rounds. Beyond 130 rounds, the performance trend becomes

almost stationary around the same value for all the model

settings. Increasing the value of E marginally accelerates the

convergence, whereas increasing the number of vehicles V

results in a delayed convergence point in terms of rounds R.

This outcome aligns with expectations, as higher values of E

and lower values of V more closely resemble a CL setup.

For the FedProx algorithm, we extended the training to 500

communication rounds for each configuration. This decision is

based on a slower convergence speed observed during the vali-

dation process (omitted due to space constraints), compared to

FedAvg. While the results across different settings of E and V

are in line with those observed for FedAvg, the introduction of

the proximal term µ in FedProx does not result in performance

improvements. Conversely, increasing the value of µ appears

to further slow down the convergence process.

Performance Overhead. This test aims to assess the federated

CANdito IDS’s effectiveness in detecting CAN bus attacks,

focusing on performance trade-offs caused by decentralization.

We compare DR and False Positive Rate (FPR) of the feder-

ated CANdito against its centralized version, trained on the

same dataset. We focused on the FedAvg algorithm due to its

superior convergence performance, which reduces the number

of rounds needed for the federated process while maintaining

or improving performance compared to FedProx. To better

evaluate decentralization’s effect on CANdito’s attack detec-

tion capabilities, we selected the most decentralized scenario

from Section IV-B, involving 50 vehicles (V = 50) and one

local training epoch per vehicle in each round (E = 1). We

applied federated early stopping with a patience setting of 10

rounds and a dynamic minimum δ of 3% of the loss value. Our

validation tests (omitted for brevity) indicated that different

values for the patience and δ parameters result in either poorer

performance or stalling during the training process.

Figure 3 shows the comparative results between the central-

ized and federated versions of the CANdito IDS. Overall, the

federated model exhibits good detection capabilities, though it

does not reach the performance of its centralized counterpart.

This result aligns with our expectations, as the difference in

performance can be ascribed to the approximations introduced

in the learning process by the federated settings. The boxplot

depicting the FPR reveals for the federated CANdito model a

marginally greater spread of FPR values around 0.1 compared

to the centralized model. Both models exhibit FPR outliers, but

the federated version tends to have outliers with slightly higher

absolute values. Conversely, the federated model demonstrates

a lower median FPR, suggesting that it maintains low FPR

across a broader range of IDs than its centralized counterpart.

Communication Overhead. We consider the communication

overhead caused by the decentralization of CANdito IDS.

Each test was conducted over a 5G network in a crowded

university area of Milan for a few hours. To simulate a realistic

scenario where the server is rarely close to the vehicles, the

MQTT broker was placed on a remote server in London. We

assessed the latency involved in a vehicle publishing a new

model update to the ‘local’ topic and in receiving a global

update from the ‘global’ topic by the Global Server. In this

discussion, we do not account for the communication resources

used to transmit the local validation loss to the Global Server

for federated early stopping. This decision is based on the

negligible size of the payload associated with these loss values

when compared to the size of the model updates.

Our tests showed model updates to be highly homogeneous,

with an average update size of 372,893 bytes and a standard

deviation of 8 bytes. The largest and smallest payloads were

372,898 bytes and 372,862 bytes, respectively. We further

evaluated latency by simulating 10,000 local and 7,500 global

updates, with the average latency detailed in Table II. From

these findings, Table III estimates the average communication

overhead from the perspective of a single vehicle, using the

most decentralized settings in Section IV-B. For each model

trained on an ID, we consider the number of rounds R required

before the federated early stopping mechanism terminates the

learning process. The metrics evaluated include the download

time for global model updates (DL Time), the time needed

to publish local updates (UL Time), the total raw data size

downloaded for global updates (DL Data), and the total raw

data size uploaded for local updates (UL Data). Additionally,

the metric δData measures the difference in the amount of raw

data exchanged (both download and upload) by each vehicle



Fig. 3. Average Detection Rate on all attacks for each CAN ID and average False Positive Rate on all attacks and all CAN IDs for centralized (CL) and
50-vehicle federated (FL) models, computed across attacks on the test set.

TABLE II
LATENCY RESULTS FOR MQTT PUBLISH AND RECEIVE TEST.

Average Std Median Min Max

Subscriber 0.180s 0.040s 0.169s 0.066s 0.726s
Publisher 0.411s 0.149s 0.365s 0.229s 2.990s

TABLE III
COMMUNICATION OVERHEAD OF THE FEDERATED LEARNING PROCESS.

ID R DL Time UL Time DL Data UL Data δData

(s) (s) (MiB) (MiB) (MiB)

0DE 104 18.72 42.74 37.34 36.98 +72.56
0EE 42 7.56 17.26 15.29 14.94 +28.17
0FB 79 14.22 32.47 28.45 28.09 +54.49
0FC 83 14.94 34.11 29.87 29.52 +57.34
0FE 183 32.94 75.21 65.43 65.08 +128.45
0FF 23 4.14 9.45 8.53 8.18 +14.66
1F7 117 21.06 48.09 41.96 41.61 +82.36
1FB 135 24.3 55.48 48.36 48.01 +95.17
11C 58 10.44 23.84 20.98 20.63 +39.55
100 101 18.18 41.51 36.27 35.92 +70.14
104 175 31.5 71.92 62.59 62.23 +122.76
116 37 6.66 15.21 13.51 13.16 +24.61
192 118 21.24 48.5 42.32 41.96 +82.66

to complete the FL process, compared to a CL scenario where

vehicles only upload their CAN raw data to a remote server

and download the final model. As shown by Table III, the FL

process incurs a significant overhead in terms of the amount of

raw data exchanged compared to CL. This increase is due to

several factors: the number of rounds needed for convergence,

the size of the model updates, the nature of CAN data that

makes them lightweight w.r.t. other types of data used in ML,

and the relatively small amount of data possessed by each

vehicle in a highly federated setting involving 50 vehicles.

C. Discussion

The results presented for the centralized version of CANdito

are based on the assumption that all data, which in the

federated setting are distributed among vehicles and always

kept local, are instead aggregated by a central server. While

we demonstrated that a decentralized approach might be rel-

atively disadvantageous in terms of communication overhead

and detection capabilities, it also avoids sending potentially

sensitive local CAN bus data to a central remote server. Given

that underestimating privacy and security concerns is not an

option in real-world applications, a centralized model becomes

less viable, especially when extensive data are required for

training a ML model.

Our analysis indicates that in a federated setting, each

contributor transmits more data than it would by simply

sending its local dataset to a remote server and then receiving

the final model directly. Nevertheless, this increase in data

exchange is sustainable and aligns with advancements in data

communication technologies like 5G and the forthcoming 6G.

The slight reduction in detection capabilities of the federated

CANdito compared to the centralized model, while still main-

taining robust performance, represents a reasonable trade-off.

This represents the cost of the significantly enhanced security

and privacy that the federated approach offers, making it well-

suited for real-world scenarios.

V. RELATED WORKS

FL has emerged as a prominent distributed ML paradigm

that facilitates training models on decentralized data sources

while preserving data privacy. McMahan et al. introduced the

concept of FL [13], enabling collaborative model training

across mobile devices without transmitting raw data to a

central server. Secure multi-party computation techniques are

proposed by Bonawitz et al. [21] to achieve secure aggregation

of model updates while safeguarding individual data privacy.

Optimization techniques leveraging stochastic gradient descent

are explored to enhance the efficiency and convergence speed

of FL, as FedAvg [13] and FedProx [14]. The application of

FL in healthcare [22]–[24] and IoT [25], [26] domains has

demonstrated the feasibility of training models on distributed

data while ensuring data privacy. Scalability and communi-

cation efficiency are critical considerations as FL scales to

more participants and more complex models. Approaches such

as hierarchical aggregation schemes [27] have been proposed

to reduce communication overhead in large-scale federated

settings. Additionally, model compression techniques, includ-

ing knowledge distillation and quantization [28], are explored

to mitigate the communication costs associated with FL. In

the vehicular context, studies have examined the feasibility

of FL for ML-based vehicular applications [29], investigating

object detection using image-based datasets as a case study.

For in-vehicle networks, a practical privacy-preserving IDS

approach called ImageFed is proposed [30], utilizing federated

Convolutional Neural Network (CNN). The robustness of



ImageFed is evaluated in scenarios such as non-i.i.d. clients

and limited training data availability during the FL process.

Another work focuses on developing a CAN bus anomaly

detection system using Graph Neural Networks (GNN) [31] to

address the vulnerability of the CAN bus to various attacks.

VI. CONCLUSION

In this paper, we explored the use of FL algorithms for

intrusion detection in the automotive industry. Our work

involved developing a federated version of the state-of-the-art

ML-based IDS for CAN known as CANdito and evaluating

its performance against a centralized version of the same

algorithm. The results of our experiments, which focus on

detection capabilities and communication overhead, suggest

that FL could be a suitable approach in real-world scenarios

where ignoring data privacy and security is not an option.
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