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A Strong Physical Unclonable Function With
Virgin State Embedded Phase Change Memory
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Abstract— Physical unclonable functions (PUFs) have
gained attention in recent years due to the increasing de-
mand for secure, compact, and power-efficient electronic
devices in the Internet of Things (IoT). PUFs can provide a
unique physical fingerprint to each device, which is a valu-
able means of enhancing security through the generation
of unique and volatile cryptographic keys with no need to
store them in non-volatile memory. A major concern regard-
ing PUF solutions for low-cost authentication is achieving
robustness, a large challenge-response pair (CRP) space,
and high reliability against environmental variations at the
same time. In this work, we present a PUF system based
on embedded phase change memory (PCM) in the vir-
gin state with industry-standard one-transistor/one-resistor
(1T1R) cell, exploiting the wide resistance distribution as
an entropy source. The PUF system is validated based
on extensive physics-based simulations of embedded PCM
cells integrated in 90 nm technology, showing raw reliability
in temperature comparable with state-of-the-art solutions
which can be further improved using dedicated schemes
for the selection of reliable CRPs.

Index Terms— physical unclonable function (PUF), phase
change memory (PCM), non-volatile memory (NVM), relia-
bility modeling, hardware security

I. INTRODUCTION

The widespread diffusion of the Internet of Things (IoT)
and the growing need to ensure the secure transfer and
authentication of data have led to the development of reliable
cryptographic solutions and hardware primitives in recent
years [1], [2]. While typical systems rely on keys explicitly
stored in non-volatile memories (NVMs), which is prone to
the risk of physical and side-channeling attacks [3], physical
unclonable functions are gaining interest as low-cost and
energy-efficient alternatives for generating volatile keys on
demand [4].

The physical unclonable function (PUF) is a system that
statistically maps an input digital word (challenge) into an
output response, based on intrinsic and unique properties
acting as entropy sources (Fig. 1). Each challenge-response
pair generated defines a CRP, and depending on the number
of CRPs, different PUF applications can be enabled. One of the
most popular PUF applications is lightweight authentication,
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Fig. 1. Summary of primary properties of a physical unclonable
function. To be effective in enhancing the security of hardware systems,
a PUF must exhibit physical and mathematical unclonability, as well as
unique, unpredictable, and reliable responses.

for which a low-cost protocol consisting of an enrollment and
a verification phase is required. During the initial enrollment
phase, a certain number of CRPs are tested in a trusted
environment and recorded in a database, while during the
verification phase, a set of challenges is provided to the PUF
system in an untrusted environment and the corresponding
responses are compared with the expected ones. PUF systems
suitable for this type of application are called strong PUFs, for
which a large CRP space and robustness to mathematical mod-
eling are required, although they are typically more susceptible
to environmental variations [4]. In this scenario, achieving
high reliability while guaranteeing all other properties is a
complex task, which is increasingly being tackled by resorting
to solutions based on emerging non-volatile memories. One
of the most interesting emerging memory technologies for the
implementation of NVM-based PUF is phase change memory
(PCM), both for its intrinsically stochastic properties [5], [6]
and its already demonstrated scaling to advanced technology
nodes [7], [8].

This work proposes an extension of the strong PUF concept
based on industry-standard one-transistor/one-resistor (1T1R)
embedded PCM in the virgin state presented in [9]. The
main novel contributions consist of: (i) a description of the
compact modeling of the 1T1R cell, (ii) an analysis of the
effects of the array’s physical dimensions over the entropy,
(iii) an analysis of the effects of VREAD and VGS over
entropy, current distributions and power consumption, and (iv)
a detailed analysis on the impact of temperature and voltage
variations on the architecture.
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Fig. 2. (a) Resistance distribution of Ge-rich PCM cells in the virgin state, fabricated in the 90 nm technology node. Model fitting covers 3 decades,
according to [11]. Measured at 0.4 V. (b) Measured I-V characteristics from 72 virgin PCM cells. (c) 200 randomly generated I-V curves based
on our model. (d) Distribution of I0 parameters, extracted from 72 experimentally measured curves, and from 1k simulated I-V characteristics.
(e) Distribution of EA0 parameters, extracted from 72 experimentally measured curves, and from 1k simulated I-V characteristics. (f) Distribution
of α parameters, extracted from 72 experimentally measured curves, and from 1k simulated I-V characteristics. (g) Experimental and simulated
correlation plot between the activation energy EA and resistance R at 0.4V of PCM cells, where R is measured at 30°C. (h) Temperature variability.
Arrhenius of 20 PCM cells experimentally measured at different temperatures. When the Arrhenius behaviors of two cells cross each other, a bit-flip
may occur from that temperature onwards [11]. (i) I-V characteristic of a simulated PCM cell for T = -30, 0, 30, 90, 150 °C based on the proposed
model. The dots represent the expected currents based on the Arrhenius law in Eq. 6 considering the same resistance value R at 0.4 V and the
same activation energy value EA at 0.4 V used to extract the entire I-V curve.

II. MODELING OF VIRGIN-STATE PCM DEVICES

The use of embedded memory devices in the virgin state
has already been proposed to simplify the peripheral circuitry
of PUF systems, avoiding the overhead necessary for pro-
gramming [10]. In this scenario, embedded PCM with Ge-
rich Ge2Sb2Te5 (GST) in the pristine state appears an optimal
candidate for PUF implementations thanks to its intrinsic wide
conductance variability and robustness to invasive Scanning
Transmission Electron Microscopy (STEM) analysis [9], [11].
Another crucial feature is the absence of temporal drift, since
after deposition the GST is exposed to very high-temperature
treatments during BEOL integration such as metal and oxide

deposition [12]. During these treatments the eventual complete
crystallization takes place, reaching a fully-evolved state that
makes it immune to further changes for any subsequent bake.
On the other hand, the temperature-dependent conductivity
of the PCM cells makes the current-based responses easily
affected by environmental variations [11], affecting the relia-
bility of the PUF.

The modeling of virgin-state PCM devices for this study
is based on the experimental data of I-V curves and the
temperature behavior of a subset of cells measured within the
same array. Fig. 2a shows the wide resistance distribution of
the virgin state measured at 0.4 V and T = 30 °C, due to
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Fig. 3. (a) Array pair and comparison principle. In each array, an input challenge selects N wordlines and one bitline, generating a current Ij given
by the sum of N cells. The selection of each WL is managed by a dedicated row decoder, addressed by the portion Wi of the input challenge, with
i from 1 to N. The two currents of the two arrays are compared to generate a response bit. In the figure, an example map of cell’s resistances (a.u.)
in a 64x64 array measured at 0.4 V is proposed. (b) Challenge-response pair (CRP) space and corresponding active area per array required for
implementation, considering m

N
= 128 and 32 bitlines (n = 32).

the presence of Ge grains as a result of segregation in the
poly-crystalline material [11]. The I-V curves of the virgin
state PCM shown in Fig. 2b were modeled assuming a Poole-
Frenkel model [13]:

I = I0 exp
(
−EA0

kT

)
sinh

(
α
qV

kT

)
(1)

Fig. 2c shows the simulated I-V curves for 90 nm embedded
virgin state PCM devices, showing good accordance between
data and our model. To generate an I-V curve, a random
resistance value R read at 0.4 V is firstly extracted from
the lognormal distribution that best fits the experimental data
in Fig. 2a, at T = 30°C. Then, the parameters a and b are
computed for the simplified curve expression:

I = sinh (a · V ) exp (b) (2)

where the computation is based on the experimental corre-
lations between a, b, and R. The parameters I0, EA0 and α of
Eq. (1) in Fig. 2d-f are then derived from the parameters a,
b, and the activation energy EA measured at 0.4 V correlated
with R in Fig. 2g, using the following equations [13]–[15]:

a = α
q

kBT
(3)

EA = EA0 − qV α · coth
(
α

qV

kBT

)
(4)

b = log (I0)−
EA0

kBT
(5)

The temperature dependence of the I-V curves is extracted
based on the temperature dependence of the parameters a and
b. As reported in [11] and shown in Fig. 2h, the pristine PCM
cell resistance shows an Arrhenius behavior for the reading
voltage 0.4 V:

R = R0 exp
(
EA

kT

)
(6)

The expected behavior is well represented by our model, as
shown in Fig. 2i.

III. PCM-BASED STRONG PUF CONCEPT

The wide and random resistance distribution of the virgin
state can be exploited as an entropy source to generate unique
fingerprints from each array. Fig. 3a shows the basic block for
the strong PUF architecture, consisting of two 1T1R arrays of
size m × n addressed in parallel by an input challenge. The
challenge is split into two segments: the first one encodes the
addresses of N rows, which are provided to N row decoders
responsible for the selection of one row (wordline, WL) out of
m
N each, while the second one encodes the addresses of two
columns (bitlines, BLs), one per array. Two bitline currents
Ij =

∑N
i=1 Gi,jVj are generated according to the vector-

vector multiplication (VVM) concept [16], where Gi,j are the
conductances at the jth bitline and Vj the applied voltage,
and compared to yield a random response bit. The PUF thus
requires L = N × log2

(
m
N

)
+ 2 × log2 (n) challenge bits to

generate a single-bit response. Fig. 3b shows the number of
CRPs and the active area of one array as a function of the
number N of selected WLs: modifying N affects the length
of the challenge, ensuring an exponential increase of the CRP
space equal to 2L with the linear increase of the active area
and enabling strong PUF [4].

Fig. 4a shows the average Shannon’s entropy of bitstreams
created concatenating several responses to sequential input
challenges as a function of the physical dimensions of the
array (the number of BLs) and the number of selected WLs.
To maximize entropy the number of physical BLs should be
maximized, with only a few selected WLs to prevent excessive
averaging and power consumption. At the same time, the
number of WLs should not be too low to avoid falling into a
simple bias-inducing cell-wise comparison. Fig. 4b compares
the robustness against machine learning (ML) attacks encod-
ing the challenge in two different ways, namely (i) directly
applying the challenge’s bits as electrical signals to rows
and columns as done in [17], and (ii) using the proposed
approach. The latter ensures a more uniform challenge in
terms of balance between 0s and 1s enhancing robustness due
to a more complex mapping. On the other hand, the simple
implementation of Fig. 3a cannot provide sufficient entropy,
as evidenced by the insufficient resilience to ML attacks in
Fig. 4b and NIST Test failure in Fig. 4c.



4

(a) (b)

80

100

60

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 [
%

]

40

20

0
108

Training set size
0

x104

2 4 6

(c)
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Frequency (F) 0/55 Fail

Block Frequency (BF) 51/55 Fail

Runs 0/55 Fail

Longest Run (LR) 21/55 Fail

Fast Frequency Trans (FFT) 55/55 Pass
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Fig. 4. (a) Average Shannon’s entropy of the bitstream obtained concatenating responses generated by the array pair architecture, considering
m = 32. Shannon’s entropy is used to measure the ratio of ‘0’ bits to ‘1’ bits. A Shannon’s entropy equal to 1 indicates a random bitstream with
50% probability that each selected bit is ’0’ or ’1’, while a Shannon’s entropy of less than 1 indicates a bias towards ’0’ or ’1’. (b) Comparison of
resilience against a machine learning attack using two different challenge encodings with equal challenge length and number of selected cells.
Traditional encoding directly applies the challenge as electrical signals to WLs and BLs for selection. Here, the proposed encoding is more robust,
but accuracy still increases with training set size. (c) NIST Test result based on 55 bitstreams of 232k-bit each. Since more than one statistical test
failed, the NIST Test as a whole gives a negative result.
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Fig. 5. (a) PUF architecture. Two pairs of m × n arrays are addressed in parallel with the same challenge, which selects N WLs through N
row decoders and a combination of two active BLs, the same for both pairs. The resulting bits (Y1 and Y2) serve as input to an XOR gate, which
generates the response. The architecture allows the separate reading of the two voltage differences ∆V1 and ∆V2 at the input of the comparators
to manage the CRP selection scheme. When the scheme is enabled, a challenge is discarded if either voltage difference is below a certain threshold,
chosen according to the expected noise and offset contributions. (b) Circuitry for the reading of the voltage difference between two voltages v1 and
v2. An offset-compensated analog buffer is used after each TIA stage to read the voltage values at the comparator’s inputs. The input-referred
offset of the comparator and the noise superimposed on the signal could affect the comparison.

IV. PUF DESIGN AND RESULT DISCUSSION

A. PUF architecture and CRP selection scheme
Fig. 5a shows the entire PUF architecture, consisting of

two pairs of 1T1R arrays of size m × n each similar to the
core in Fig. 3a. The input challenge is presented to both pairs
according to the same principle explained in Section III thus
generating two random bits Y1 and Y2. A transimpedance
amplifier (TIA) with gain Rf converts each current to a
voltage value, while the comparison is performed by a rail-
to-rail voltage comparator. The final response is generated by
XORing the output bits to increase the entropy of the bitstream
[18]. The voltages at the input of the comparators can be
separately read using offset-compensated analog buffers, to
enable the proposed CRP selection scheme. In particular, if
a challenge yields a voltage difference |∆V1,2| < ε, then the
challenge is discarded. The threshold value ε is defined based
on the expected contributions of noise at the input nodes of the
comparators and offset of the comparator. These contributions
are extracted from simulations performed on readout chain
design implemented in Cadence Virtuoso, using a 90 nm

technology commercial PDK. To evaluate the impact of the
expected noise at the output of the TIA, several Monte Carlo
simulations were performed over a set of transient noise runs
in a real-case scenario, to define the distribution of the root
mean square (RMS) noise contribution, which represents the
standard deviation of the noise superimposed on the signal.
On the other hand, to assess the value of the offset referred to
the input of the comparators, which is modeled in series with
the non-inverting input, several Monte Carlo simulations were
performed under different conditions of the inverting input to
extract systematic and statistical contributions.

As shown in Fig. 5b, similar currents could lead on one
side to biased comparisons affected by the offset of the
comparator, and on the other to unreliable responses affected
by the noise superimposed on the signal. Thus, discarding
CRPs associated with comparisons of similar currents helps to
improve the uniformity, and to reduce the overall probability of
bit-flip events [9]. The number of CRPs discarded at a certain
threshold value ε depends on the distribution of the compared
currents and the gain Rf of the TIA stage.
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Fig. 6. (a) I-V curve of a simulated 1T1R cell, varying the gate voltage VGS . The x-axis represents the voltage VREAD imposed on the top
electrode. (b) NIST Test passing and power consumption of the active area for N = 5 as a function of VGS and VREAD . Evaluated based on the
tests shown in Fig. 4c for 55 bitstreams of 23k-bit each. The NIST Test is passed if none of its statistical tests fail. (c) Current distributions for 5
selected cells, considering the minimum and maximum VGS allowed at various VREAD .

B. Entropy-power trade-off

The MOSFET selector in a 1T1R cell adds a degree of
freedom to the PUF operation, namely the gate voltage VGS

modulation. Fig. 6a shows the I-V characteristic of a simulated
1T1R cell as a function of the applied top electrode and gate
voltage, highlighting a significant modification of the curve
depending on the applied VGS at higher voltages. These results
show that relatively small VGS can still ensure enough entropy
for the generation of the response while allowing reduced
power consumption. This is shown in Fig. 6b, where the
entropy and the power consumption for N = 5 selected cells
are reported as a function of the applied VREAD and VGS . In
particular, to quantify the entropy of the bitstream obtained by
the concatenation of responses to various challenges we used
the NIST SP 800-22 Test Suite [19], considering the outcome
valid only in case each one of its statistical tests is passed. For
this study, the applied VREAD was limited to 0.4 V to avoid
possible unwanted programming of the virgin-state cell during
the reading phase. The results show that specific combinations
of VREAD and VGS are enough to guarantee sufficient entropy
thus reducing energy consumption. Fig. 6c shows the modu-
lation of the current distributions for the minimum and max-
imum allowed VGS at various VREAD, with N = 5 selected
cells. If VGS is further reduced, the voltage drop across the
PCM resistance decreases in the 1T1R structure, thus resulting
in narrower current distributions and a decrease of the PUF
entropy. In order to enable the comparison of currents that
may vary significantly depending on the chosen combination
of VREAD and VGS , the gain Rf of the TIA stage must be
calibrated accordingly to match the comparator’s rail-to-rail
input range, also considering the modulations of the current
distribution due to temperature. Considering VREAD = 0.4 V,
VGS = 1.2 V and a gain Rf = 20kΩ, our PUF shows nearly
ideal statistical properties in terms of diffuseness (µ = 50.00%,
σ = 4.42%), uniqueness (µ = 50.00%, σ = 4.41%), and
uniformity (µ = 49.99%, σ = 4.42%) for 128-bit keys.

C. Reliability against environmental variations

Referring to temperature variations, the current dependence
of PCM cells and MOSFETs on temperature could lead to
an error when environmental conditions change since the

response is generated based on a current comparison (Fig. 2h).
This effect can be quantified with the bit error rate (BER),
namely the percentage of bit-flips occurring within a key
by changing the operating temperature. Solutions already
proposed to mitigate the impact of temperature variations
consist of (i) dismissing unstable bits [10] and (ii) adopting
key-booking schemes [20]. In particular, key-booking means
that one or multiple enrollments are carried out at various
reference temperatures, and the response obtained on the field
is compared with the corresponding CRP of the dataset at the
closest temperature to the chip. Our solution combines these
two approaches by adapting the CRP selection scheme to the
chosen reference temperatures.

Two different contributions can influence BER, namely
(i) the noise and (ii) the read current dependence on the
temperature. The first is relevant whenever the compared
currents are similar, while the second is relevant in case
the different T-dependent variations of the currents yield an
opposite response. Fig. 7a shows the average BER at T = 85°C
and the percentage of discarded CRPs as a function of the
chosen threshold ε for VREAD = 0.4 V and two different VGS

conditions. For ε = 0, we find the raw BER since no selection
of CRPs is applied, whereas increasing ε means reducing BER
at the cost of more discarded CRPs. Interestingly, the raw
BER appears slightly better for smaller VGS . Avoiding the
comparison of similar currents at Tref results in both the
mitigation of the noise effect around the reference and the
reduction of the overall probability of crossing currents at
different temperatures. The latter depends on the PCM and
MOSFET technology parameters and can be quantified.

Given two different temperatures Tref and Tread with
Tref < Tread, each current of an array pair generated by
the same input challenge is characterized by a ratio greater
than one equal to GI = ITread

/ITref
. The current compar-

ison I1 − I2 at Tref thus becomes the current comparison
GI1I1 −GI2I2 at Tread. A bitflip event takes place when the
two comparisons hold opposite results. Since each current is
transformed into an associated voltage through the TIA stage,
the bitflip event takes place when:

V2 >

∣∣∣∣ ∆V

GV1
−GV2

∣∣∣∣ ·GV1
(7)
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Fig. 7. (a) Bit error rate (BER) at 85°C using a reference at 25°C based on 128-bit keys, and percentage of discarded CRPs as a function of ε, with
N = 5 and VREAD = 0.4 V. Using VGS = 0.5 V improves the raw reliability of the solution at the cost of a lower percentage of CRPs recognized as
unreliable due to the higher TIA gain (Rf = 60kΩ). Thus, the CRP selection scheme is less effective for lower VGS . (b) Gain distribution of current
operating points between 85°C and 25°C for VGS = 0.5 V and VGS = 1.2 V.

ref = 55°Cref = 25°C ref 1 = 40°C ref 2 = 65°C
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Fig. 8. Temperature reliability for VGS = 1.2 V. (a) Average BER versus temperature for 128-bit keys, with a single enrollment @25°C at 0.4 V.
To enable CRP selection with a threshold of 3 mV, the percentage of discarded CRPs is 5.45%. (b) Average BER versus temperature for 128-bit
keys, with a single enrollment @55°C at 0.4 V. To enable CRP selection with a threshold of 3 mV, the percentage of discarded CRPs is 4.95%. (c)
Average BER versus temperature for 128-bit keys, with double enrollment @40,65°C at 0.4 V. In this scenario, the CRP selection scheme considers
a CRP unreliable if during any of its enrollments it does not meet the threshold condition. To enable CRP selection with a threshold of 3 mV, the
percentage of discarded CRPs is 7.73%.

where V1, V2 are the compared voltages at the output of the
TIA stages at Tref , |∆V | = |V1 − V2|, and GV1

, GV2
are the

linear transformations of GI1 , GI2 in the voltage domain. The
probability of satisfying Eq. (7) decreases at increasing mean
value and at decreasing spread of the distribution of G.

A lower VGS requires a higher TIA gain Rf , resulting in
a lower number of CRPs identified as unreliable and thus
discarded for the same ε, but also in a distribution of G with
a higher mean value. This is possible due to the variation of
the I-V curves of the PCM and MOSFET in weak inversion in
the same direction with temperature. Fig. 7b shows the com-
parison between the distributions of the T-dependent current
gain GI = I85◦C/I25◦C evaluated between Tread = 85°C and
Tref = 25°C, for the same 1T1R cells read at VREAD = 0.4 V
using VGS = 0.5 V and VGS = 1.2 V, justifying the lower raw
BER observed for VGS = 0.5 V.

Fig. 8a shows a comparison between the raw BER and
the BER obtained by applying the CRP selection scheme for
the room temperature reference Tref = 25°C and considering

VREAD = 0.4 V, VGS = 1.2 V, Rf = 20kΩ and ε = 3 mV.
Discarding unreliable CRPs with this margin guarantees near-
zero BER in the proximity of the reference temperature, and an
overall benefit in terms of performance, with a percentage of
discarded CRPs equal to 5.45% of the total. Fig. 8b shows the
same analysis using as reference temperature Tref = 55°C,
discarding the 4.95% of the CRP space. Finally, Fig. 8c
highlights the significant gain that can be achieved using two
separate reference temperatures (Tref,1 = 40°C, Tref,2 = 65°C)
and discarding each CRP that does not satisfy the condition
|∆V1,2| > ε for any of the two temperatures during the
respective enrollments. In this case, the amount of discarded
CRPs is only slightly increased (7.73%).

The same considerations can be applied regarding vari-
ations of power supply with respect to the nominal case.
For this study, different conditions of bias deviation around
VREAD = 0.4 V were considered assuming two fixed gate-
source voltages, namely VGS = 0.5 V and VGS = 1.2 V. Again,
the bit-flip event can be described using Eq. 7, where GV
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Fig. 9. Reliability against power supply variation. (a) Gain distribution of current operating points between +10% of bias voltage deviation and
nominal condition, for VGS = 0.5 V and VGS = 1.2 V. (b) Average BER versus power supply deviation for 128-bit keys, with a single enrollment
@0% at 0.4 V, for both VGS = 0.5 V and VGS = 1.2 V.(c) Average masked BER versus power supply deviation with CRP selection for 128-bit keys,
with a single enrollment @0% at 0.4 V, for both VGS = 0.5 V and VGS = 1.2 V. To enable CRP selection with a threshold of 3 mV, the percentage
of discarded CRPs is 3.58% for VGS = 0.5 V (Rf = 60kΩ) and 5.45% for VGS = 1.2 V (Rf = 20kΩ).
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Test set = 50k CRPs
Max Training set = 200k CRPs

MLP # epoches = 30
MLP learning-rate = 0.001 
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Fig. 10. ML-attack simulation. (a) Structure of the used MLP, for L-bit input challenges, 3 hidden layers with 200 nodes each and 1-bit response. (b)
Modeling attack by MLP network, tested on 2k test set, as a function of training set size and number of selected cells (N). With only a few selected
cells, the ease of mathematical modeling reflects the low entropy of the responses. (c) Average prediction accuracy for 40-bit challenges (N = 5),
using three different machine learning models, as a function of training set size.

represents the voltage gain greater than one between the output
of the TIA measured at VREAD ± ∆Vsupply and at VREAD.
Fig. 9a shows the corresponding GI distributions considering
a voltage deviation of +10%, suggesting a worse BER ver-
sus voltage supply variations for small gate-source voltages.
This behavior is due to the limited variation of the working
point of the 1T1R cell when VREAD varies considering the
MOSFET selector in weak inversion versus strong inversion.
Furthermore, the increasing nonlinearity with the bias of the
PCM I-V curve makes this variation more pronounced for
positive ∆Vsupply. Fig. 9b shows the BER as a function of
the bias voltage deviation for the two gate-source voltage
conditions without CRP selection, confirming the expected
results. Fig. 9c shows the BER with CRP selection considering
ε = 3 mV, requiring a percentage of discarded CRPs equal to
3.58% for VGS = 0.5 V using Rf = 60kΩ. As in the previous
case, the BER can be further mitigated by combining the
CRP selection scheme with multiple enrollments at different
VREAD, paying for a higher percentage of discarded CRPs.

D. Robustness to ML attacks

The security of strong PUFs is also measured in terms
of resilience against mathematical clonability using modeling
attacks, such as machine learning (ML) tools, when the adver-
sary has access to a certain number of CRPs [4]. To evaluate
machine-learning resilience, several ML techniques such as
logistic regression (LR), support vector machines (SVM), and
neural networks (NN) are widely applied in the literature due
to their simplicity and effectiveness [21]. We used the online
packages LIBLINEAR and LIBSVM to test the robustness of
our PUF system against LR and SVM algorithms, respectively
[20]. We also used a multi-layer perceptron (MLP) of size
40 × 200 × 200 × 200 × 1 with rectified linear unit (ReLu)
function as activation function for each layer as shown in
Fig. 10a. For each algorithm, the size of the training set
was increased from 2x104 to 2x105, using a subset of CRP
exclusive to the test, equal to a quarter of the training set.
Fig. 10b shows the prediction accuracy of the MLP as a
function of the training set size and number N of selected
WLs. The results show that selecting too few cells produces a
more easily predictable response due to less entropy. Finally,
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Fig. 10c shows the average prediction accuracy of the three
machine-learning algorithms for N = 5 selected cells, which
approaches the ideal 50% regardless of the size of the training
dataset, supporting the robustness of the PUF system.

V. CONCLUSION

We presented a strong PUF based on embedded PCM
cells in the virgin state, integrated in the 90 nm technology
node. The pristine state shows promising properties for the
implementation of PUF systems with enough entropy, mod-
erate power consumption, and resilience against noise and
environmental variations, thanks to the broad distribution of
conductance and detailed CRP selection schemes. The PUF
performance is fully supported by Monte Carlo simulations
based on accurate modeling of the 1T1R PCM cell and array,
integrated with parameters extracted from the design of the
architecture implemented using a 90 nm commercial PDK.
These results support PCM-based strong PUFs as a potential
candidate for securing systems in IoT applications.
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