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A B S T R A C T   

The Piezoelectric Shunting Vibration Absorber (PSVA) has garnered attention for its effectiveness 
in vibration control. This paper aims to propose a novel PSVA capable of simultaneously 
amplitude reduction and vibration isolation under various conditions. The PSVA consists of a 
butterfly-shaped link component and a piezoelectric stack, connected to the structure to be 
damped via bolts. Subsequently, an equivalent schematic diagram of the PSVA is established, and 
its equivalent stiffness is determined. Taking a single-degree-of-freedom structure as an example, 
considering the dynamic stiffness of the shunting circuit, a dynamic model of the electrome-
chanical coupled system is developed, obtaining the system’s acceleration response and force 
transmissibility frequency response functions. Following this, experimental equipment is 
designed and fabricated, and the performance of the PSVA is tested under various excitation 
conditions. Finally, inspired by the experimental results, a segmented inductance circuit is 
designed and tested for its capability to broaden the vibration control bandwidth.   

1. Introduction 

With the advancement of science and technology, the demands on the stability of engineering structures have become increasingly 
stringent. Unfortunately, inevitably strong vibrations often lead to structural damage, compromising the stability of the structure 
[1–3]. Traditional vibration control techniques, such as rubber dampers [4–6], while simple in construction and effective in energy 
absorption, suffer from limitations such as low stiffness, which can lead to frequency shifts in the main structure. Moreover, they are 
non-tunable and unsuitable for complex working environments, often prone to damage. 

Subsequently, the concept of dynamic vibration absorbers, also known as tuned mass dampers (TMD), was proposed by Frahm [7], 
comprising mass-spring subsystems. The principle behind this approach is to tune the natural frequency of the subsystem to match that 
of the main structure, thereby utilizing the vibration of the subsystem to suppress vibrations in the main structure during resonance. 
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Both Ikago et al. [8] and Garrido et al. [9] introduced a technique that integrates an inertial mass with a viscous mass damper, resulting 
in a tuned viscous mass damper (TVMD). The research of Hu [10,11] has demonstrated superior control effectiveness compared to 
conventional viscous dampers (VDs). They focus on optimizing the H2 and H∞ performance for inerter-based dynamic vibration ab-
sorbers (IDVAs). The IDVAs proposed herein replace the damper in traditional dynamic vibration absorbers (TDVAs) with inerter- 
based mechanical networks. However, traditional TMDs also have drawbacks. For instance, they involve significant additional 
mass, which can cause frequency shifts in the main structure. While they offer tunability, practical implementation is complex, 
requiring adjustments to the mass of the subsystem. Furthermore, they impose high demands on installation environments. Some 
researchers have also made improvements on the TMDs. Manzoni et al [12] introduces the Shape Memory Alloy Tuned Mass Damper 
(SMA-TMD). The SMA-TMD system performs better in comparison to the TMD system. They developed the models of the two layouts 
(wire-based and beam-based) to compare these two main layouts in terms of adaptation capability, exerted force and electrical power 
consumption. 

Later, it was discovered that smart materials could effectively address these issues. Wherein, the piezoelectric materials [13–15] is 
one of the most widely used devices for the passive vibration control of structures. Passive piezoelectric vibration control is also known 
as the technique of piezoelectric shunt damping. When incorporating piezoelectric materials into traditional TMDs, the electrome-
chanical coupling characteristics of piezoelectric materials, along with the inertia, stiffness, and damping properties of the shunt 
circuit, can replace the mass, spring, and damping components of traditional TMDs. The small added mass minimizes their impact on 
the system, while their fast dynamic response high specific force, and wide broadband enable these actuators to perform low and high- 
frequency vibration suppression [16–18]. The development of piezoelectric shunting vibration absorber (PSVA) can generally be 
divided into three parts: new structures [19–23], novel circuits [24–27], and designs integrating with other concepts [28–30]. 
Currently, in order to achieve effective application of PSVA in practical engineering, the following challenges still need to be overcome.  

• The characteristic of piezoelectric stacking being unable to withstand shear forces necessitates an external protective frame to 
shield it from such forces, while also allowing the piezoelectric power shunt absorber to interface with the damped object and 
function seamlessly in various installation environments.  

• Additionally, many studies on PSVAs only test the vibration suppression effects under specific excitation conditions, such as 
random excitation [31], sine excitation [32], with limited comprehensive testing of the proposed PSVA under various excitations. 
Hence, it is essential to develop a PSVA that can effectively control vibrations under various excitation conditions containing 
random, sine and impact ones.  

• Moreover, vibration control effects can be categorized into vibration isolation and amplitude attenuation aspects. For instance, the 
research of Lin et al. [33] only focuses on isolation. It is urgently needed to propose a PSVA that simultaneously achieves both 
objectives.  

• At last, broadening the vibration control bandwidth is also a crucial technological point for PSVA. According to the principle of 
PSVA, vibration at resonance frequencies is effectively suppressed, but the phenomenon of increased vibration in non-resonant 
regions is often overlooked. Some researchers have attempted to improve this deficiency, with who introducing a semi-active 
control method − adaptive circuit, and simulation results and simple experiment verifying the broadband vibration reduction 
effect of this circuit [34]. However, the time delay issue introduced by the adaptive circuit may lead to poor effectiveness in 
practical applications. Furthermore, complex circuit control systems also introduce extra weight and demand more installation 
space, which is undesirable. Therefore, this study will struggle to address the aforementioned challenges and issues by conducting 
the following research. 

This research aims at developing a novel butterfly-shaped vibration control device with piezoelectric materials to address the 
above-mentioned issues. In this study, the static and dynamic models of the electromechanical coupling system are presented. A 
comprehensive testing system was developed, incorporating Single-degree-of-freedom spring-mass system alongside the designed 
PSVA. The efficacy of the PSVA was evaluated through sweep sine testing both numerically and experimentally when comparing the 
PSVA’s performance in open-circuit versus connected-circuit states, demonstrating remarkable amplitude reduction and vibration 
isolation capabilities. Furthermore, a series of diverse excitation conditions, including random excitation, impact excitation, and 
single-frequency excitation, were applied during testing to showcase the versatility of the PSVA. Through a thorough parameter 
analysis, the impact of inductance values on vibration control effectiveness was examined, offering invaluable insights for PSVA 
applications. Building upon insights gained from single-frequency tests, a novel segmented inductance circuit was introduced to 
enhance the effective vibration control bandwidth of the PSVA. 

2. Modelling 

This section mainly introduces the configuration of the proposed novel piezoelectric shunt vibration absorber (PSVA). The static 
stiffness of this configuration is obtained through the application of the Castigliano’s 2nd theorem. Subsequently, the Laplace 
transform is introduced to discuss the equivalent dynamic stiffness of the piezoelectric stack who is connected to the shunt circuit. 
Then, combined with static analysis, the overall dynamic stiffness of the proposed PSVA can be determined. Using a single-degree-of- 
freedom system as an example, the force transmissibility and amplitude frequency response of the entire system can be obtained, 
facilitating a simulation-based discussion on the performance of this PSVA. 
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2.1. Description of the designed PSVA 

This paper aims to propose a novel piezoelectric shunt dynamic vibration absorber, consisting of a butterfly-shaped steel frame and 
a stack of piezoelectric elements as Fig. 1 (a) shows. Compared to traditional piezoelectric plates or fibers, piezoelectric stacks offer 
higher energy density and a broader frequency response range, making them more efficient in vibration control. Additionally, 
piezoelectric stacks have a longer lifespan and greater reliability, reducing maintenance needs and costs compared to piezoelectric 
plates. However, due to its layered structure, piezoelectric stacks cannot withstand shear forces. Therefore, in practical applications, a 
protective outer frame is required to shield them from shear forces. Hence, inspired by the rhombic frame structure in Ref. [35], the 
butterfly-shaped structure is designed to protect the piezoelectric stack during the vibration reduction process. The assembly con-
taining the butterfly-shaped frame and piezoelectric stack can serve as a vibration control unit and can be attached to the vibrating 
object, such as bending beams via bolts. Due to its compact structure and easy installation, it can be flexibly positioned and scaled 
according to specific requirements, making it suitable for various working conditions. Using a single-degree-of-freedom system as an 
example, this paper validates the performance of the designed dynamic vibration absorber. 

2.2. Static analysis 

The bending and axial stress in the diagonal bar can be separately written as: 

σm− yy =
(FNcosβ − Fsinβ)(l1 − x) + M

I1
y

σm− xx =
(FNsinβ + Fcosβ)

A1

(1)  

The axial stress of the piezoelectric stack is defined as: 

σp− xx =
FN

A2
(2)  

The total strain energy of this piezoelectric butterfly-shaped structure has the following form: 

U = Ubending +Uaxial =

∫

V

1
2

(
σ2

xx + σ2
yy

)
dV (3)  

U =
2l31

3E1I1
(FNcosβ − Fsinβ)2

+
2M2l1
E1I1

+
2M(FNcosβ − Fsinβ)l21

E1I1
+

2(sinβ + Fsinβ)2l1
E1A1

+
2F2

Nl2
E2A2

(4)  

According to Castigliano’s 2nd theorem, for this linear conservative system, the generalized displacement, which is defined as the first 
partial derivative of the strain energy concerning generalized force, is set to 0. Hence, Castigliano’s 2nd theorem is presented as 
follows: 

Fig. 1. Schematic diagram of the designed PSVA.  
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⎧
⎪⎪⎨

⎪⎪⎩

∂U
∂FN

= 0

∂U
∂M

= 0
(5)  

The solutions of Eq. (5) are given as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FN =
l31sinβcosβ/3E1I1 − 4l1sinβcosβ/E1A1

4l2/E2A2 + l31cos2β/3E1I1 + 4l1sin2β/E1A1
F = XF

M =
2l1sinβ/E1A1 + 2l2sinβ/E2A2

4l2/E2A2 + l31cos2β/3E1I1 + 4l1sin2β/E1A1
Fl1 = YFl1

(6)  

Substituting Eq. (6) into Eq. (4), the expression of the total strain energy is obtained as: 

U =
2
3
F2

[
3l2X2

E2A2
+

3l31Y2

E1I1
+

3l31Y(Xcosβ − sinβ)
E1I1

+
l31Y( − Xcosβ + sinβ)2

E1I1
+

3l1(Xsinβ + cosβ)2

E1A1

]

(7)  

According to the classical theory of mechanics, the following definitions are given: 

kmc = E1A1/l1,kmb = E1I1/l31,k2 = E2A2/l2 (8)  

where kmc and kmb are the compressing and bending stiffness respectively. k2 is the static compressing stiffness of the piezoelectric 
stack. 

U = 2F2
{

2k2 + [12kmb( − 1 + cos2β) + kmc(1 − cos2β) ]
24kmbkmc + k2[12kmb(1 − cos2β) + kmc(1 + cos2β) ]

}

(9)  

The following expression can be derived according to Castigliano’s 2nd theorem: 

ΔF =
∂U
∂F

= 4F
{

2k2 + [12kmb( − 1 + cos2β) + kmc(1 − cos2β) ]
24kmbkmc + k2[12kmb(1 − cos2β) + kmc(1 + cos2β) ]

}

(10)  

The stiffness of this butterfly-shaped structure is written as: 

ka =
2F

2ΔF
=

24kmbkmc + k2[12kmb(1 − cos2β) + kmc(1 + cos2β) ]
2k2 + 12kmb( − 1 + cos2β) + kmc(1 − cos2β)

(11)  

2.3. Dynamic analysis 

To illustrate the effect of this butterfly-shaped structure with a piezoelectric stack, we consider a single-degree-of-freedom host 
system containing an equivalent mass m here as Fig. 2 shows. The piezoelectric structure is equivalent to a spring ka and damping ca 
under the one degree of freedom system hypothesis. When dynamic force is applied to this structure, simply considering the static 
stiffness of piezoelectric components is not enough. When the piezoelectric stack is connected to a shunt circuit, the impedance of the 
circuit should also be considered. The constitutive equation of the piezoelectric stack is given as: 

Fig. 2. Schematic diagram of the electromechanical coupling system.  
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[
q
f

]

=

[
CS

p θp

θp k2

][
v
x

]

(12)  

where q, v represents the generated charge and voltage of the piezoelectric stack respectively, while f, x represents the applied force 
and the contraction of the stack. CS

P is the capacitance of the piezoelectric stack without deformation and θp is the generalized elec-
tromechanical coupling coefficient of the piezoelectric stack. Transforming Eq. (12) into the Laplace domain and integrating it yields 
the following expression: 

{
I(s) = sQ(s) = sCS

pV(s) + sθpX(s)
F(s) = − θpV(s) + k2X(s)

(13)  

In which s represents the Laplace variable, and I(s) denotes the current through the piezoelectric stack and V(s) is the voltage of the 
stack. According to Kirchhoff’s law, the following equation can be obtained: 

V+ I ⋅ Z = 0 (14)  

where Z is the impedance of the shunting circuit. Combining Eq. (14) and Eq. (13), the equivalent dynamic stiffness can be derived as 
shown in Eq. (15). 

k2d(s) =
F(s)
X(s)

= k2 +
sθ2

pZ
sCS

pZ + 1
(15) 

Substituting Eq. (15) into Eq. (11), the dynamic stiffness of this vibration control device can be obtained as 

ka(s) =
24kmbkmc + Pk2 + sZ

[
24kmbkmcCS

p + P
(

k2CS
p + θ2

p

) ]

2k2 + Q + sZ
(

2k2CS
p + 2θ2

p + QCS
p

) (16)  

where 

P = 12kmb(1 − cos2β) + kmc(1 + cos2β)
Q = 12kmb( − 1 + cos2β) + kmc(1 − cos2β) (17)  

Then the acceleration response of the host system can be gained as 

A(s) =
s2F(s)

ms2 + cs + ka(s)
(18)  

And the force transmissibility can also be derived as 

FT(s) =
Fout

Fin
=

ka(s)
ms2 + cs + ka(s)

(19)  

where m, c is the mass and the damping coefficient of host system respectively. Here, the expressions for the system’s force trans-
missibility and amplitude frequency response have been obtained. The optimal shunt circuit parameters will be derived in the 
following parts. 

2.4. Derivation of the optimal parameters of the shunt circuit 

In this paper, we focus on the vibration control performance of the proposed absorber when it is shunted with a series RL circuit. 
The impedance Z(s) has the form sL+R, where L and R denote the inductance and resistance values, respectively. Substituting Z(s) into 
Eq. (16), and note that s = jω (j is the imaginary unit, and ω is the excitation frequency), the expression of the dynamic stiffness can be 
rewritten as 

ka(ω) =
24kmbkmc + Pk2 + jω(jωL + R)

[
24kmbkmcCS

p + P
(

k2CS
p + θ2

p

) ]

2k2 + Q + jω(jωL + R)
(

2k2CS
p + 2θ2

p + QCS
p

) (20) 

According to Hagood and Flotow’s work [36], a piezoelectric absorber shunted with a series RL circuit can be regarded as a dy-
namic vibration absorber. The fixed-points method can then be used to derive the exact solutions for the optimal circuit parameters. 
Yamada et al. [37] also employed this method to derive the optimal parameters for the shunt circuit. Through simulation and 
experimentation, they validated the effectiveness of this method. It is important to note that this method is only suitable for analyzing 
the undamped or slightly damped host systems. Given that the proposed electromechanical coupling system meets the slightly damped 
condition, mechanical damping is neglected (i.e., c = 0) in the following theoretical derivation, and the fixed-points method is applied. 
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Combining Eqs. (20) and (19), the detailed expression of the force transmissibility can be represented as 

FT(ω) =
M1 + jN1

M2 + jN2
(21)  

where 

M1 = 24kmbkmc + k2P − 24CS
pkmbkmcLω2 − CS

pk2LPω2 − LPθ2
pω2,

N1 = 24CS
pkmbkmcRω + CS

pk2PRω + PRθ2
pω,

M2 = 24kmbkmc + k2P − 24CS
pkmbkmcLω2 − 2k2mω2 − CS

pk2LPω2

− mQω2 − LPθ2
pω2 + 2CS

pk2Lmω4 + CS
pLmQω4 + 2Lmθ2

pω4,

N2 = 24CS
pkmbkmcRω + CS

pk2PRω + PRθ2
p ω − 2CS

pk2mRω3 − CS
pmQRω3 − 2mRθ2

pω3.

The square of the absolute value of the force transmissibility can be written in the form of 

|FT(ω) |2 =
a2

1ω2 ⋅ R2 + (a2 − La1ω2)
2

ω2(a1 − a3ω2)
2 ⋅ R2 + (a2 − La1ω2 − a4ω2 + La3ω4)

2 (22)  

where 

a1 = 24CS
pkmbkmc + P

(
k2CS

p + θ2
p

)
,

a2 = 24kmbkmc + k2P,

a3 = 2m
(

k2CS
p + θ2

p

)
+ mCS

pQ,

a4 = 2mk2 + mQ.

According to the fixed-point method, once the inductance L is given, the response curves for different resistance R all pass through 
two fixed points, Λ1 and Λ2. When the response values at these two fixed points are equal and reach their maximum, the system 
response is minimized. The corresponding inductance L and resistance R is thus optimal. First, let’s derive the optimal inductance L. 
Since the locations of fixed points on the horizontal axis are independent of the resistance R, the following expression can be obtained 
from Eq. (22): 

a2
1ω2

ω2(a1 − a3ω2)
2 =

(a2 − La1ω2)
2

(a2 − La1ω2 − a4ω2 + La3ω4)
2 (23) 

Then an equation related to ω can be derived as follows: 

2a1a3ω4L −
(
a2a3 + a1a4 + 2a2

1L
)
ω2 +2a1a2 = 0 (24) 

Its solutions are given as: 

ωΛ1 ,Λ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2a3 + a1a4 + 2a2
1L ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 16a2
1a2a3L + (a2a3 + a1a4 + 2a2

1L)2
√

4a1a4L

√
√
√
√

(25)  

Substituting Eq. (25) into Eq. (22), the response values at these two fixed points are given by: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|FT(ωΛ1 ) |
2
=

a2
1R2ω2

Λ1
+
(

a2 − La1ω2
Λ1

)2

R2ω2
Λ1

(
a1 − a3ω2

Λ1

)2
+
(

a2 − La1ω2
Λ1

− a4ω2
Λ1

+ La3ω4
Λ1

)2,

|FT(ωΛ2 ) |
2
=

a2
1R2ω2

Λ2
+
(

a2 − La1ω2
Λ2

)2

R2ω2
Λ2

(
a1 − a3ω2

Λ2

)2
+
(

a2 − La1ω2
Λ2

− a4ω2
Λ2

+ La3ω4
Λ2

)2

(26) 

They must be equal, leading to the following expression: 

|FT(ωΛ1 ) |
2
= |FT(ωΛ2 ) |

2 (27) 

Then the equation associated with inductance L yields 

(a2a3 + a1(a4 − 2a1L) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 16a2
1a2a3L + (a2a3 + a1(a4 + 2a1L) )2

√

= 0 (28) 

By solving it and discarding the negative solutions, the optimal inductance L can be expressed analytically as: 
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Lopt =
a2a3 + a1a4

2a2
1

(29) 

Subsequently, by adjusting the resistance R to make |FT(ω) |
2 reach its maximum at the first fixed point (or the second one), the 

optimal resistance R can be determined. Defining that 

|FT(ω) |2 =
Fnum

Fden
, (30)  

where 

Fnum = a2
1R2ω2 +

(
a2 − La1ω2)2

, Fden = R2ω2( a1 − a3ω2)2
+
(
a2 − La1ω2 − a4ω2 + La3ω4)2 (31) 

The derivative of |FT(ω) |
2 with respect to ω is given as 

∂|FT(ω) |
2

∂ω =

∂Fnum
∂ω Fden − Fnum

∂Fden
∂ω

F2
den

(32) 

Obviously, Fden ∕= 0. By setting the numerator of Eq. (32) to zero, and substituting the locations of the two fixed points ωΛ1 ,ωΛ2 along 
with the optimal inductance Lopt into Eq. (32), the optimal resistance R can be obtained as 

R =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r1

(
r2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r3(r4 + r5 + r6 + r7)

√ )√

(33)  

where 

r1 =
1

a2
1a3ω4

Λ1

(
a1 − a3ω2

Λ1

),

r2 = 3a2
2a2

3ω4
Λ1

+ 2a3
1Loptω4

Λ1

(
a4 − 2a3Loptω2

Λ1

)
− 4a1a2ω2

Λ1

(
a2 + a3Loptω4

1
)

+a2
1ω4

Λ1

(
a2

4 − 4a3a4Loptω2
Λ1

+ 2a3Lopt

(
3a2 + 2a3Loptω4

Λ1

))
,

r3 = (a2a3 − a1a4)ω4
Λ1
,

r4 = 9a3
2a3

3ω4
Λ1

− 4a5
1L2

optω4
Λ1

(
a4 − 4a3Loptω2

Λ1

)
− 3a1a2

2a2
3ω2

Λ1

(
8a2 − 3a4ω2

Λ1
+ 8a3Loptω4

Λ1

)
,

r5 = a2
1a2a3

(
16a2

2 − 8a2a4ω2
Λ1

− a2
4ω4

Λ1
+ 36a2a3Loptω4

Λ1
+ 8a2

3L2
optω8

Λ1

)
,

r6 = a3
1

(
− 16a2

2a3Loptω2
Λ1

− a3
4ω4

Λ1
+ 8a3a2

4Loptω6
Λ1

+ 8a2a2
3L2

optω6
Λ1

− 24a2
3a4L2

optω8
Λ1

+ 16a3
3L3

optω10
Λ1

)
,

r7 = − 4a4
1Loptω4

Λ1

(
a2

4 − 6a3a4Loptω2
Λ1

+ a3Lopt

(
3a2 + 8a3Loptω4

Λ1

))
.

Up to this point, the analytical expressions of the optimal circuit parameters for force transmissibility have been derived. Through 
simulation, it is found that the acceleration response also demonstrates the optimal state under this optimal solution, so no additional 
deduction is required. The following simulation and experiment will use this optimal solutions. Subsequently, the experiments will be 
designed to acquire experimental results and validate the effectiveness of the proposed PSVA alongside simulation results. 

3. Description of experimental setup 

The diagram in Fig. 3 illustrates the conceptual overview of the experimental set up, comprising the host structure, a physical 

Table 1 
Parameters of the electromechanical coupling system.  

Property Symbol Value Unit 

Mass of host system m 16 kg 
Compressing stiffness kmc 8.75 × 103 N/m 
Bending stiffness kmb 1.05 × 108 N/m 
Static compressing stiffness of the piezoelectric stack k2 1.197 × 108 N/m 
Electromechanical coupling factor θP 0.33 C/m (N/V) 
The capacitance of the piezoelectric stack CS

P 0.375 μF 
The angle of link part β 45 ◦
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representation of the designed PSVA, a shunting circuit diagram, and data acquisition equipment. The host structure is composed of 
mass blocks, connected to the foundation through a straight guide rod. The straight guide rod primarily serves the purpose of sta-
bilizing the structure. The designed PSVA is connected to the mass block and foundation through bolts. The relevant parameters 
involved in the experiment are listed in Table 1. Electrical wires are soldered to both ends of the piezoelectric stack electrodes, and they 
are connected to the shunting circuit. The measurement device primarily consists of an accelerometer on the mass block, force sensors 
1 and 2. Two force sensors are used to obtain the force transmissibility of the system. Sensor 1 is connected to the exciter to measure the 
input force, while sensor 2 is positioned between the foundation and the mass block to measure the output force. A M+p system is used 
to manage the excitation and the acquisition of the temporal signals. 

During the experiment, a common circuit configuration of a series circuit with resistance and inductance is employed, achieved 
through the use of an inductor box and a resistor box. Wherein, substituting the exact value of the relevant parameters into Eq. (29) & 
Eq. (33), the optimal condition of the shunt circuit is calculated as: 

Lopt = 0.47H,Ropt = 51Ω (34)  

4. Frequency domain performance of PSVA 

4.1. Optimal performance of the designed PSVA 

Primarily, we delved into the behavior of the vibration absorber under swept frequency excitation, which is a prevalent condition 
across diverse research studies. By scrutinizing the frequency response curves pre and post connection to the optimal shunt circuit, the 
performance of the vibration absorber can be distinctly validated. Taking into account the natural frequency of the single degree of 
freedom main system, which stands at 123 Hz, we designate the sweep range as [80, 180 Hz]. In order to fully showcase the effec-
tiveness of the designed PSVA, the following discussion will unfold from two perspectives: acceleration and force transmissibility. The 
numerical simulation and experimental results are outlined as Figs. 4-7 show. 

Figs. 4-5 present the amplitude frequency response of acceleration and transmissibility separately and Figs. 6 and 7 present the 
phase frequency response of acceleration and transmissibility respectively under open-circuit condition and optimal-circuit condition. 
As illustrated in Figs. 4-7, there was good agreement between the numerical and the experimental results both of the amplitude re-
sponses of acceleration and force transmissibility. They exhibit congruence in both peak magnitudes and overall curve trends. So do 
the phase responses of simulation and experiment. The subtle discrepancies between the simulation and experiment are that the 
frequency value corresponding to the double peaks of the amplitude curve and the frequency value corresponding to the inflection 
point of the phase curve have errors under the with-control condition. The experimental values of these two frequencies are slightly 
larger than the simulated ones. The excellent agreement between simulation and experiment validates the reliability of our simplified 
model. 

Moreover, Figs. 4-5 exhibit the excellent vibration reduction effect of the designed PSVA. Compared with the open-circuit situation, 
when the system is assembled with PSVA connected to the optimal circuit, the simulated acceleration amplitude is reduced from 2.3 g 
to 0.38 g, the acceleration vibration reduction effect reaches 83.4 %, and the simulated force transmissibility amplitude is reduced 

Fig. 3. Diagram of experimental setup.  
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from 31.8 to 5. The vibration reduction effect reaches 84.2 %. The experimental acceleration amplitude was reduced from 2.27 g to 
0.38 g, and the acceleration vibration reduction effect reached 83.3 %. The force transmissibility amplitude in the experiment was 
reduced from 33.07 to 5.08, and the vibration reduction effect reached 84.6 %. These performances are excellent. It can be seen that 
the PSVA proposed here can well suppress the surface vibration of the system and reduce the force transmitted to the foundation at the 
same time. 

4.2. Parametric analysis 

Then we discussed the performance of PSVA under different inductance conditions. Figs. 8 and 9 show the amplitude-frequency and 
phase-frequency response curves of acceleration and force transmissibility under different inductance values. Comparing Figs. 8 and 9, 
it can be seen that the acceleration and force transmissibility response curves change with inductance in a similar trend. Taking the 
acceleration response as an example, Fig. 8(a) and 8(c) are the simulated amplitude-frequency and phase-frequency response dia-
grams, and Fig. 8(b) and 8(d) are the experimental ones. 

In comparison with Fig. 8(a) and 8(b), we can see that the curve trends of the experiment and simulation are consistent. As the 
inductance value increases, the first peak of the response curve (the one with the smaller resonance frequency) decreases. The second 
peak (the one with the larger resonant frequency) increases. This means that when the inductance value is small, the acceleration 
response is larger in low the frequency band and smaller in the high frequency band. When the inductance value is larger, the 
conclusion is opposite. It can be known from this that when the inductance value in the shunt circuit is small, the designed PSVA has a 

Fig. 4. Acceleration amplitude response of the host system under blue line: open circuit; orange line: L=0.47H, R=100 Ω. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Force transmissibility amplitude of the host system under blue line: open circuit; orange line: L=0.47H, R=100 Ω. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

W. Chen et al.                                                                                                                                                                                                          



Mechanical Systems and Signal Processing 223 (2025) 111843

10

better effect on reducing the amplitude response in the high frequency band and a poor effect in the low frequency band. On the 
contrary, when the inductance value in the shunt circuit is large, the designed PSVA has a better effect on reducing the amplitude 
response in the low frequency band and a poor effect in the high frequency band. To clearly illustrate this point, a 2D plot of the 
inductance response graph is provided, as shown in Fig. 10. The darker the curve, the larger the inductance value. From the figure, it 
can be observed that on the left side of the center line, which corresponds to lower excitation frequencies, the system response de-
creases as the inductance value increases. Conversely, on the right side of the center line, which corresponds to higher excitation 
frequencies, the system response decreases as the inductance value decreases. This also supports the aforementioned argument: in the 
low-frequency band, higher inductance values provide a better overall amplitude attenuation effect, while in the high-frequency band, 
lower inductance values offer a better overall amplitude attenuation effect. A similar conclusion about the effect of the designed PSVA 
on isolating the force transmissibility can be obtained. 

Hence, the conclusion can be gained that, both for isolating the force transmissibility and attenuating amplitude, the designed 
PSVA behaves better in the higher frequency band when the value inductance is smaller and has a better effect in the lower frequency 
band when the value inductance is larger. These conclusions can be a guide in the engineering application of PSVA. 

Meanwhile, it can be observed that the two bone lines (the lines connecting the resonance peaks at different inductance values) are 
not perpendicular to the frequency coordinate axis, which indicates that as the inductance value changes, the time for resonance to 
occur will also change. For example, it can be seen from Fig. 8(b) and 8(d) that the first inflection point of the phase is similar in size, 
and the peak value of the second inflection point increases as the inductance increases. In order to more clearly demonstrate the 
performance changes of PSVA under different inductance values, we extracted the peak data of the above three-dimensional graph and 

Fig. 6. Acceleration phase response of the host system under the blue line: open circuit; orange line: L=0.47H, R=100 Ω. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Force transmissibility phase of the host system under the blue line: open circuit; orange line: L=0.47H, R=100 Ω. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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summarized it in Figs. 11 and 12, as shown below. 
Fig. 11 visually illustrates the variation trend of the vibration reduction effect for the designed PSVA on acceleration response and 

force transmissibility with changing inductance. As observed in (a) and (b), the trends in the changes of acceleration and force 
transmissibility are consistent. As the inductance value increases from 0.3H, the reduction effect improves, reaching its optimal 
performance at 0.47H. Subsequently, the reduction effect begins to deteriorate. Moreover, the experimental and simulated trends 
align: in the vicinity of the optimal solution, the suppression effects are similar. However, when the inductance value deviates from the 
optimum, the experimental performance gradually surpasses the simulated results. 

Additionally, another significant parameter worthy of discussion is the resonant frequency. Due to the introduction of the 
piezoelectric shunting circuit, the system response exhibits a two-peak nature, necessitating attention to two resonant frequencies. As 
depicted in Fig. 12, the variation trends of the two resonant frequencies with changes in inductance values are clearly discernible. Both 
resonant frequencies decrease with increasing inductance values. However, the key distinction lies in their rates of change. By 
observing the slopes of the curves, it becomes apparent that, for the larger resonant frequency, it initially decreases rapidly with 
increasing inductance until reaching the optimal inductance, after which the rate of decrease slows. Conversely, the smaller resonant 
frequency exhibits an initial slow decrease, followed by an accelerated descent rate after reaching the optimal inductance. 

The previous research on vibration absorbers often separated the goals of vibration attenuation and isolation, with one type of 
absorber achieving only one of these objectives. However, the discussion above, supported by both simulation and experimental 
perspectives, comprehensively validates that the designed PSVA excels in both attenuation and isolation, achieving optimal perfor-
mance of 80 % or more. Furthermore, the compact size and easy installation of the PSVA, as demonstrated in this study, broaden its 
applicability, making it adaptable to various installation environments and vibration reduction requirements in practical engineering 
environments. Subsequent parameter analysis focused on both amplitude and phase frequency response, revealing the trends influ-
enced by inductance values. This insight can serve as valuable guidance for practical applications, enhancing our understanding of the 
impact of inductance values on amplitude and phase frequency response in practical conditions. 

Fig. 8. Acceleration frequency response of the host system.  
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Fig. 9. Force transmissibility frequency response of the host system.  

Fig. 10. 2D plot of the response under different inductances conditions.  
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5. Time domain performance of designed PSVA 

In this section, the time history responses of the system under random excitation, impact excitation, and sinusoidal excitation are 
tested to further evaluate PSVA’s vibration control performance. 

5.1. Sinusoidal excitation 

This Section focuses on the vibration control performance of the PSVA under single-frequency sinusoidal excitation in the 
experiment. The excitation amplitude is set at 5 N, with excitation frequencies corresponding to the resonance frequency of 124 Hz, as 
well as frequencies of 122 Hz, 128 Hz, and 114 Hz (gradually deviating from the resonance frequency). During the excitation process, 
the circuit changes from the open-circuit state to the optimal-circuit state, thereby testing the performance of PSVA under different 
excitation frequencies. Time domain response of acceleration and force transmissibility under these different excitation conditions are 
illustrated as Figs. 13-14 show. The vibration control efficiency, which is abbreviated as VCE, is defined by the following expression: 

VCE =
Xopen circuit − Xt

Xopen circuit
× 100% (35) 

Fig. 11. The vibration reduction effect of the designed PSVA as the function of inductance.  

Fig. 12. The two resonance frequencies (green & blue: smaller one, orange & red: bigger one) as a function of inductance. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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where Xopen circuit is the amplitude of the response under the open-circuit condition. Xt is the amplitude of the response under the 
optimal-circuit condition. The calculated vibration control effectiveness are concluded in Table 2 and Table 3. 

As shown in Fig. 13(a)-(c) and 14(a)-(c), the vibration amplitudes of the system have decreased after connecting the optimal circuit, 
indicating that the designed PSVA is effective under single-frequency excitation conditions. It is noteworthy that as the excitation 
frequency moves away from the resonance frequency, the degree of decrease in response amplitude gradually diminishes. When the 
excitation frequency shifts from 124 Hz (resonant frequency) to 128 Hz, the force transmissibility control effectiveness decreases from 
93.2 % to 60 %, and the acceleration control effectiveness drops from 94.6 % to 64.2 %. Even at a significantly distant excitation 
frequency of 114 Hz, the system’s response increases with the circuit connection, as depicted in Fig. 13(d) and 14(d). The acceleration 
control efficiency is negative. The force transmissibility increased by 36.8 % while the acceleration response increased by 83.3 %. This 
implies that as the excitation frequency deviates from the resonance frequency under single-frequency excitation, the vibration control 
efficiency of PSVA gradually deteriorates, and there may even be a counteractive effect leading to an increase in system response. This 
phenomenon is also clearly evident in the frequency domain response in Fig. 4 of Section 4.1. For convenience, we present it again here 
as Fig. 15 shows. Only during the range of [117, 136] Hz, the designed PSVA works. In frequency bands outside this range, PSVA will 
increase the system response and have a counterproductive effect. 

This is a situation that should be avoided in practical applications. However, past research has predominantly focused on sup-
pressing vibrations within the resonance region, with little attention given to the non-resonance region due to its relatively weak 
vibration amplitudes. To enhance the effectiveness of the presented PSVA over a broader frequency range, further optimization or 

Fig. 13. Time domain response of force transmissibility, the shunting circuit condition is yellow region: open circuit, blue region: optimal circuit 
(L=0.47H). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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adjustment of PSVA parameters may be necessary to ensure its efficiency in controlling system vibrations at different excitation 
frequencies. 

5.2. Random excitation 

The above discussion primarily revolves around the performance of the designed PSVA under frequency sweep excitation. How-
ever, in practical applications, various types of excitations may be encountered. To comprehensively validate the vibration control 

Fig. 14. Time domain response of acceleration, the shunting circuit condition is yellow region: open circuit, blue region: optimal circuit(L=0.47H). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
VCE of force transmissibility under different excitation 
frequencies when circuit is optimal.  

Excitation frequency VCE 

124 Hz 93.2 % 
122 Hz 82.6 % 
12 8 Hz 60 % 
114 Hz − 36.8 %  
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performance of the designed PSVA from different perspectives, the following will discuss its effects under single-frequency sinusoidal 
excitation, impulse excitation, and random excitation. 

Initially, the performance of the designed PSVA under random excitation is discussed. Figs. 16 and 18 respectively illustrate the 
time-domain responses of acceleration and force transmissibility in four different states. These states correspond to open-circuit 
condition, L=0.35H state, L=0.47H state, and L=0.59H state. The bottom-left corner features a local zoom-in around 31 s, aimed 
at providing a clearer view of the differences in response among the four curves. The darkest curve represents the open-circuit state, 
and as the color lightens, the inductance values approach the optimal solution, with the lightest color indicating the optimal solution. 
From the comparison of the four curves, it can be observed that as the curve color lightens, the time-domain response weakens, 
indicating an improving performance of the designed PSVA. The bottom-right insets of Figs. 16 and 18 clearly show that when the 
circuit is in the optimal state, the effect is pronounced, with the controlled response almost consistently lower than the open-circuit 
response within the test time range. Subsequently, to comprehensively analyze the performance of the PSVA, the commonly used 
evaluation functions, Power Spectral Density (PSD) and Root Mean Square (RMS) values of random responses, are obtained to assess 
the frequency and amplitude characteristics of the response. The PSD curves of the force transmissibility and the acceleration are 
presented in Fig. 17(a) and 19(a) respectively, and the RMS curves of the force transmissibility and the acceleration are shown in 
Fig. 17(b) and 19(b) separately. 

The PSD curves in Fig. 17(a) and 19(a) effectively illustrate the frequency characteristics of the response. The resonance peak in the 
open-circuit state is located at 124 Hz, consistent with the earlier analysis. Under the optimal-circuit condition, the values of the two 
peaks are nearly the same. The frequency variations corresponding to the double peaks induced by adding the circuit are also similar to 
the previous analysis: as the inductance increases, both peak frequencies decrease. Simultaneously, in practical applications, the RMS 
value is a commonly used measure for assessing the effective strength of a signal. The RMS curves in Fig. 17(b) and 19(b) aptly 
showcase the amplitude characteristics of the response. As the curve colors lighten, indicating the circuit approaching the optimal 
state, the effective strength of the response decreases. This implies that the vibration control effect of PSVA improves, whether in terms 
of vibration attenuation or isolation. In order to more clearly illustrate the intensity of the random vibration, the standard deviation of 
the response is calculated, as shown in Tables 2 and 3. The formula for calculating the standard deviation is given as 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − 1

∑n

i=1

(

xi −
1
n
∑n

i=1
xi

)2
√
√
√
√ (36) 

Table 3 
VCE of acceleration under different excitation frequencies 
when the circuit is optimal.  

Excitation frequency VCE 

124 Hz  94.6 % 
122 Hz  87.7 % 
128 Hz  62.2 % 
114 Hz  − 83.3 %  

Fig. 15. Acceleration amplitude response, purple region: the PSVA produces a reverse effect; blue region: the PSVA works. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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where n is the number of data points, xi is ith data point. 
Meanwhile, the VCE is defined by the following expression: 

VCE =
sopen circuit − sa

sopen circuit
× 100% (37)  

where sa is the standard deviation corresponding to the circuit state to be calculated. The vibration control effectiveness are also 
calculated and demonstrated in Table 4 and Table 5. From Table 4, it is clear that when the inductance L is optimal, the standard 
deviation of the acceleration response is 17.196, which is significantly lower than the standard deviation of 32.687 under open-circuit 
conditions, indicating excellent vibration reduction with an effectiveness of 47.4 %. As the inductance value deviates from the optimal 
state, the standard deviation of the response increases, approaching that of the open-circuit condition, and the computed vibration 

Fig. 16. Time domain response of acceleration under different conditions, the bottom-left corner displays a local zoom-in around 30 s, the bottom- 
right corner is a comparison between the open circuit state and the optimal circuit state. 

Fig. 17. (a) PSD curve, (b) RMS curve of force transmissibility under different conditions.  
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Fig. 18. Time domain response of force transmissibility under different conditions, the bottom-left corner displays a local zoom-in around 31 s, the 
bottom-right corner is a comparison between the open circuit and the optimal circuit state. 

Fig. 19. (a) PSD curve, (b) RMS curve of force transmissibility under different conditions.  

Table 4 
Standard deviation and VCE of acceleration under random excitation in different conditions.  

Circuit State Standard Deviation s VCE 

Open circuit  2.311 / 
L=0.35H  1.678 27.4 % 
L=0.59H  1.469 36.4 % 
Optimal circuit(L=0.47H)  1.184 48.8 %  
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control effectiveness deteriorates. Similarly, the conclusions regarding the force transmissibility can also be obtained from the analysis 
presented in Table 5. 

In summary, based on the analysis above, it can be concluded that under the influence of PSVA, the effective magnitudes of both the 
acceleration and force transmissibility are reduced substantially. Therefore, it is evident that the designed PSVA exhibits a 
commendable vibration suppression effect against vibrations induced by random excitations. 

5.3. Impact excitation 

Impact excitations are widely encountered in practical engineering, such as the bumps from vehicles on roads or collisions of ships 
on bridges, bumps during takeoff, landing, or turbulence during the processes of flight, etc. Addressing the vibration issues caused by 
these impacts is crucial for ensuring traffic safety and enhancing aerospace technology. In experiments, force hammers are often 
employed to simulate impact excitations. The time-domain responses of acceleration and force transmissibility obtained from the tests 
are shown in Figs. 20 and 21, with different colored curves representing various circuit conditions. The thumbnails in the bottom right 
corner of Fig. 20(a) and 21(a) compare the time-domain responses between the optimal circuit and the open-circuit state. 

Typically, the two key indicators for evaluating the response to impact excitations are the peak magnitude and the attenuation rate. 
As evident in the optimal performance charts, connecting the optimal circuit results in a significant reduction not only in the peak 
responses of acceleration and force transmissibility compared to the open-circuit state but also in a faster attenuation. The entire 
vibration amplitude is effectively suppressed. Additionally, considering both Fig. 20(a) and (b), Fig. 21(a) and (b), the performance of 
the PSVA follows the same pattern as the variation of L, consistent with the earlier analysis. As the inductance approaches the optimal 
value, the performance gradually improves, while moving away from the optimal state leads to a decline in effectiveness. To present 
the effect more clearly, the decay rate metric has been chosen for analysis. The response under the impact excitation can be fitted by 
using the following equation 

x(t) = Ae− ζω0 tcos(ω0t + φ) (38) 

where A is amplitude, ζ is damping ratio, ω0 is natural frequency and φ represents phase. By fitting the experimental response data 
with this equation, the abovementioned parameters can be calculated. Then, according to Ref. [38], the decay rates δ can be defined by 
the following expression: 

Table 5 
Standard deviation and VCE of transmissibility under random excitation in different conditions.  

Circuit state Standard deviations s VCE 

Open circuit  32.687 / 
L=0.35H  24.664 24.5 % 
L=0.59H  21.534 34.1 % 
Optimal circuit(L=0.47H)  17.196 47.4 %  

Fig. 20. Time domain response of acceleration under the impact acceleration when the shunting circuit is in a different state: (a)open circuit, 
L=0.32H, L=0.41H,optimal circuit;(b) open circuit, L=0.59H, L=0.53H, L=0.49H. 
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δ =
2πζ
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ζ2

√ (39) 

Hence, by substituting the value of ζ into Eq. (39), the decay rates δ under different circuit conditions can be determined as Table 6 
and Table 7 shows. The VCE of the PSVA under impact conditions can be represented by the increase in the system’s response decay 
rate δ compared to the open-circuit state, as shown below 

VCE =
δt − δopen circuit

δopen circuit
× 100% (40) 

where δt is the decay rate corresponding to the circuit state to be calculated. 
Table 6 clearly shows that at the optimal state, the acceleration response decay rate is 0.3497, which is significantly higher than the 

0.1283 decay rate observed under open-circuit conditions. This represents a notable improvement in the decay rate and a 172.56 % 
enhancement in vibration control efficiency. As the inductance value deviates from the optimal level, the decay rate decreases, 
approaching that of the open-circuit condition, and the efficiency of vibration control deteriorates. Similar conclusions regarding the 
force transmissibility can be drawn from the analysis in Table 7. 

6. Design of a novel circuit 

As mentioned in Section 5.1, the vibration control efficiency of PSVA gradually deteriorates, and there may even be a counteractive 
effect leading to an increase in system response as the excitation frequency deviates from the resonance frequency under single- 
frequency excitation. Meanwhile, as Fig. 15 shows, only within the resonant region, the designed PSVA works. In frequency bands 
outside this range, PSVA will increase the system response and have a counterproductive effect. The limitation of the PSVA urgently 
needs to be addressed. The existing effective solution involves an adaptive circuit to address this issue. The strategy of this adaptive 
circuit involves real-time adjustment of the center frequency with the excitation frequency. While this adaptive circuit theoretically 
and initially achieves vibration reduction effect across the entire frequency range as Ref. [34] shows, practical applications encounter 
various challenges. For instance, the adjustment in the adaptive control process takes a certain amount of time, introducing a time 
delay. The adaptive shunt circuit needs adjustment at every frequency point, and the accumulated time delay throughout the excitation 

Fig. 21. Time domain response of force transmissibility under the impact acceleration when the shunting circuit is in a different state: (a)open 
circuit, L=0.32H, L=0.41H, optimal circuit;(b) open circuit, L=0.59H, L=0.53H, L=0.49H. 

Table 6 
Decay rate and VCE of acceleration under impact excitation in different circuit conditions.  

Circuit State Decay Rate δ VCE 

L=0H(Open circuit)  0.1283 / 
L=0.32H  0.2064 60.87 % 
L=0.41H  0.3113 142.63 % 
L=0.47H(Optimal circuit)  0.3497 172.56 % 
L=0.49H  0.2632 105.14 % 
L=0.53H  0.2379 85.42 % 
L=0.59H  0.1842 43.57 %  
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process results in the final stages deviating from the expected standards, thereby failing to achieve the anticipated damping effect. 
Moreover, complex circuit control systems also bring additional weight and installation space requirements, which is undesirable. 
Therefore, a better and easier method is needed to broaden the vibration control bandwidth. 

According to the discussion in Section 4.2, we know that the smaller the inductor, the better it performs in the higher frequency 
band, and conversely, the larger the inductor performs better in the lower frequency band. According to this result, the optimal vi-
bration control effects are achieved at excitation frequencies of 128 Hz and 114 Hz by adjusting the shunt circuit in the experimental 
process. From Figs. 22 and 23, it can be observed that with an inductance of 0.41H at an excitation frequency of 128 Hz, the damping 
effect of PSVA on acceleration response increased from the original 62.2 % to 70.2 %, and the damping effect on force transmissibility 
increased from the original 60 % to 75 %. With an inductance of 0.59H at an excitation frequency of 114 Hz, the damping effect of 
PSVA on acceleration response increased from the original − 83.3 % to 55.2 %, and the vibration control effect on force transmissibility 
increased from the original − 36.8 % to 47.3 %. PSVA demonstrates excellent vibration suppression effects in the new circuit states. 

Therefore, inspired by the above analysis, a novel circuit called segmented inductance circuit is proposed as Fig. 24 shows in the 
following section to broaden the vibration suppression bandwidth, enhancing the versatility of PSVA. By varying the inductance only 
at the ΩA (122 Hz) and ΩB (132 Hz) as shown in Fig. 25, ideally, not only can excellent vibration reduction like the purple region shows 
be achieved across the entire frequency range, but it also mitigates the effects of time delay. 

Then the test was conducted to verify these thoughts. Initially, the inductance L is 0.62H, adjusted to 0.47H at 122 Hz and 0.25H at 
132 Hz. The acceleration frequency response under this condition is exhibited in Fig. 26. Obviously, the frequency response is sup-
pressed between the frequency domain [75, 180] Hz. Compared to the fact that the effective operating frequency range of a typical RL 
circuit is [117, 136] Hz, the introduction of segmented inductance significantly expands the effective bandwidth of the designed PSVA, 
thereby improving the performance of the designed PSVA. It should be noted that this study primarily introduces the concept of 
segmented inductance. Hence, the inductance is manually adjusted in the test at two key frequency points to achieve the segmented 
inductor effect. In future research or practical applications, it is feasible to consider using band-pass filters (BPF) to control and adjust 
the inductance. The BPF is an electronic filter that allows signals within a specific frequency range to pass through while blocking 
signals that are higher or lower than that range. By utilizing its frequency selectivity, the proposed segmented inductance can be 
effectively realized. In practical applications, each of the three circuit branches depicted in Fig. 24 is equipped with a BPF. The pass- 

Table 7 
Decay rate and VCE of transmissibility under impact excitation in different circuit conditions.  

Circuit State Decay Rate δ VCE 

L = 0H (Open circuit)  0.1308 / 
L = 0.32H  0.2430 85.77 % 
L = 0.41H  0.3843 193.81 % 
L = 0.47H (Optimal circuit)  0.4647 255.28 % 
L = 0.49H  0.3173 142.58 % 
L = 0.53H  0.2574 96.79 % 
L = 0.59H  0.1989 34.24 %  

Fig. 22. Time domain response when the excitation frequency is 128 Hz, the shunting circuit condition is yellow region: open circuit, blue region: 
L=0.47H, purple region: L=0.41H. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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band settings for these BPFs are configured corresponding to the frequency ranges indicated in the boxes for each branch. When the 
sweep excitation is applied, only the branch where the excitation frequency falls within the pass-band of its corresponding BPF will 
allow current to pass through; otherwise, that branch will be open-circuited. Therefore, within the specific excitation frequency range, 
only the branch with the relevant inductance will be active, while the other branches will be open-circuited., thereby successfully 
achieving segmented inductance. 

7. Conclusion 

A novel PSVA is proposed here and successfully applied to a single DOF system. This proposed PSVA is composed of a butterfly- 

Fig. 23. Time domain response when the excitation frequency is 114 Hz, the shunting circuit condition is yellow region: open circuit, blue region: 
L=0.47H, purple region: L=0.41H. 

Fig. 24. Schematic diagram of segmented inductance.  
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shaped steel frame and a piezoelectric stack. A simplified dynamic model of this electromechanical coupling system was established, 
and its numerical acceleration response and force transmissibility frequency response were obtained. A test system containing masses 
and designed PSVA was designed and manufactured. A sweep sine test was conducted. By contrasting open-circuit and connected- 
circuit states, the designed PSVA exhibits outstanding performance numerically and experimentally both in amplitude reduction 
and vibration isolation. Following that, more excitation conditions containing random excitation, impact excitation, and single- 
frequency excitation were imposed in tests to comprehensively demonstrate the versatility of the designed PSVA. The parameter 
analysis process also summarizes the impact of inductance values on the effectiveness of vibration control, providing valuable 
guidance for the practical application of PSVA. Subsequently, inspired by single-frequency tests, a segmented inductance circuit is 
proposed to broaden the effective vibration control bandwidth of PSVA, and its efficacy is well-validated through experiment. 
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Fig. 25. Experimental acceleration response of the host system under conditions of different L.  

Fig. 26. The experimental performance of the designed PSVA connected to the segmented inductance circuit.  
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