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A B S T R A C T   

Reduction of battery capacity is a well-known symptom of aging, making it a universally accepted indicator of 
the state of health. Capacity also significantly depends on temperature, therefore, separating the effect of tem
perature from that due to aging has utmost important for a proper state of health assessment. However, according 
to the latest literature, there is a lack of information about how the temperature dependency of capacity changes 
with battery aging. In this respect, the study presented in this paper is based on an experimental campaign aimed 
at measuring battery capacity at different temperatures and cycling levels. Starting from the obtained results, an 
analytical model describing how the variation law of battery capacity with temperature is affected by cycling was 
proposed and validated. The achieved accuracy is better than 0.6 % for all the considered operating conditions.   

1. Introduction 

In the market, many types of rechargeable batteries based on 
different chemistries are currently available. At present, lithium-ion 
batteries (LiBs) are the most widely employed in multifold applica
tions, covering a broad range of power and capacity. The main reason is 
that such technology ensures high energy density, high power density, 
remarkable efficiency, low self-discharge, no memory effect, and long 
expected lifetime [1,2], resulting in a favorable performance-to-cost 
ratio. In any case, these applications can mainly be classified as sta
tionary and mobile. In the former, LiBs can be used, for instance, as 
storage systems integrated with the electric grid to support non- 
programmable renewable energy sources, or inside uninterruptible 
power supply systems for supplying critical loads [3]. In mobile appli
cations, LiBs are used as sources of energy and they can be extensively 
found in electronic devices (such as laptops, smartphones, tablets, etc.), 
electromedical equipment (including defibrillators, pacemakers, and so 
on), in electric vehicles, or in the aerospace sector [4–6]. 

The overall performance of a battery is mainly expressed in terms of 
maximum stored energy (related to the battery capacity) and the 
maximum electric power that can be exchanged (related to the battery 
internal resistance). These aspects are very important to guarantee the 
required performance in all the applications. 

Unfortunately, LiBs experience different aging mechanisms, in 
particular those due to the passage of time under predetermined envi
ronmental conditions (defined as calendar aging) and the repetitive 
charge and discharge cycles they undergo during usage (defined as cycle 
aging) [7,8]. Depending on the type of aging mechanism, battery 
degradation can lead to a decrease in its capacity (energy fade) or an 
increase in its internal resistance (power fade). To cope with these 
degradation mechanisms and ensure optimal operating conditions, it is 
of paramount importance to develop proper battery models. This en
ables batteries to operate within safe and optimal working ranges. The 
integration of such models into battery management systems is crucial, 
as they enable estimating important battery parameters such as state of 
charge (SOC) and state of health (SOH) [9]. Various battery models 
addressing electric, thermal, and aging aspects, either individually or 
coupled can be found in the literature. Furthermore, these models may 
adopt physical, analytical, or circuital approaches [10]. In particular, 
among the electric models those based on the circuital approach are 
extremely flexible and enable reaching the desired trade-off between 
complexity and accuracy [11]. Moreover, they can be as simple as those 
in [12,13], or more complicated, as in [14–16]. Selecting the suitable 
model depends on the desired level of accuracy and the specific phe
nomena that need to be considered, according to the peculiar 
application. 

* Corresponding author. 
E-mail address: simone.barcellona@polimi.it (S. Barcellona).  

Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2024.112087 
Received 13 November 2023; Received in revised form 28 February 2024; Accepted 12 May 2024   

mailto:simone.barcellona@polimi.it
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2024.112087
https://doi.org/10.1016/j.est.2024.112087
https://doi.org/10.1016/j.est.2024.112087
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2024.112087&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Energy Storage 91 (2024) 112087

2

The SOH of an LiB is typically quantified in terms of capacity fade or 
power fade with respect to those measured as the battery was new. 
Conventionally, the battery is considered at its end of life, when its ca
pacity falls below 80 % of its initial value or its internal resistance 
doubles [17]. In this work, the focus will be on the reduction of battery 
capacity as aging indicator. 

It is worth to note that the term “capacity” typically refers to the 
electric charge that can be stored in the battery. Therefore, battery ca
pacity can be easily measured by time-integrating the battery current 
during a full charge or discharge under fixed conditions [18]. Several 
technical commissions and standardization organizations have proposed 
reference procedures for capacity measurements, such as those reported 
in [17,19,20]. For example, ISO [20] recommends to discharge high- 
power batteries at 1C. 

It is well-known that battery capacity strongly depends on temper
ature [21–24]. In this respect, the study conducted in [22] analyzed the 
variation of battery capacity with respect to temperature, and the 
experimental results were fitted with a third-degree polynomial func
tion. Nevertheless, the analysis was carried out only for a fresh LiB cell. 
On the other hand, in the literature, several research works analyze how 
battery capacity decreases with time and cycling. A comprehensive re
view of the different aging models can be found in [10]. Calendar aging 
mostly depends on the time evolution of the storage temperature and 
SOC [25]. Cycle aging is mainly affected by operating temperature, 
depth of discharge, voltage limits, and current rate as a function of the 
number of full equivalent cycles or total moved charge [26–32]. In [25], 
the authors analyzed how battery capacity is affected by calendar aging 
at different storage temperatures and SOC levels. In [26], many LiB cells 
were cycled under various conditions, in terms of charging/discharging 
current rates, maximum cut-off voltages, and depths of discharge. The 
study demonstrated how capacity decreases as a function of the number 
of cycles according to these influence factors. Conversely, in [33] the 
authors showed that the shape of cycles does not affect capacity fade 
between the 20 % and 80 % of SOC. Additionally, in [34], the authors 
demonstrated that, for given operating conditions, battery current rate 
does not affect capacity fade. In [29], the authors studied the influence 
of temperature on battery capacity, considering cycle aging over 25 ◦C 
to 55 ◦C temperature range. 

Nevertheless, it is worth noting that, for a given cycling level, some 
battery parameters, such as its capacity and internal resistance, gener
ally exhibit dependency on some of the same factors affecting the aging 
process. Indeed, temperature, SOC, voltage, and current rate do not just 
affect the actual value of capacity or internal resistance for a given aging 
condition, but they also impact the aging process. Therefore, directly 
inferring the SOH from capacity and resistance measurements is reliable 
only if such measurements are performed under predetermined refer
ence conditions in terms of the aforementioned influence factors. In fact, 
under these assumptions, many aging models proposed in the literature 
can be adopted to predict the capacity reduction and internal resistance 
increase as a function of time and cycling. From a different point of view, 
there are several research works that analyze how the capacity and in
ternal resistance of a battery change as a function of the same influence 
factors for a fixed cycling level (typically fresh battery cells). However, 
there seems to be a lack of information regarding how these variation 
laws change as a function of cycling. 

Nevertheless, concerning internal resistance, in a previous work 
[35], the authors analyzed how the variation law of the battery internal 
resistance dependency on temperature and SOC changes with cycling. 
Regarding battery capacity, in [36], the authors compared two LiB cells, 
one fresh and the other aged through cycling at 35 ◦C. The voltage re
sponses of the two LiB cells were measured during discharge at different 
temperatures and current rates. In [37], the authors aged an LiB cell by 
performing several aging cycles at 3C and 50 ◦C. After 300 cycles and 
600 cycles, they measured the discharge capacity at different tempera
tures ranging from − 10 ◦C to 45 ◦C. A similar analysis was performed in 
[38], where the LiB cell was aged at 5C and 40 ◦C. In [39], the authors 

performed capacity measurements for each temperature between 0 ◦C 
and 40 ◦C, with a 2 ◦C step. The procedure was repeated four times to 
observe the capacity-temperature behavior for different aging cycles. 

However, there is a lack of a thorough analysis about how the law of 
capacity variation with temperature changes during cycling. In partic
ular, in [39], the capacity was measured for the different temperatures 
during the cycle aging process, thus without decoupling the two effects. 
Nevertheless, this aspect is of key importance, as far as the reduction of 
battery capacity is used as an SOH indicator; temperature dependency 
may jeopardize the outcome if it is not properly considered. 

In this respect, similar to the analysis conducted in [35] for the 
battery internal resistance, the aim of the present paper is to study how 
the variation law of battery capacity as a function of temperature 
changes with battery cycling. Unlike [22], this variation law was 
modeled using a different analytical expression based on a double 
exponential function. In particular, the capacity of the battery cell under 
test was estimated by integrating the current during discharge processes 
at different temperatures in a range between 20 ◦C and 50 ◦C. 
Furthermore, the battery cell was aged through several charging/dis
charging cycles under fixed conditions in terms of temperature and 
current rate. Therefore, the capacity of the battery was measured at the 
beginning of its life and after each group of aging cycles. 

2. Electric battery model 

For the purpose of the present analysis, the third-order Thevenin 
circuit model [40], shown in Fig. 1, was adopted. It consists of an ideal 
voltage source connected in series with a resistor and three parallel RC 
branches. The ideal voltage source, VOC(SOC), represents the open cir
cuit voltage (OCV) of the battery, and it is related to the stored energy, 
thus reflecting the battery capacity. The OCV is also affected by several 
other factors such as battery chemistry, SOC, temperature, and aging. 
The series resistor, Rs, models the electronic resistance of the current 
collectors and electrodes, as well as the ionic resistance of the electro
lyte; it is the so-called high-frequency resistance of the battery. The 
other terms enable modeling the medium- and low-frequency behavior 
of the battery and are related to different slow-dynamic phenomena. The 
resistor RSEI and capacitor CSEI model the resistance and capacitance 
effect of solid electrolyte interface; the resistor Rct and capacitor Cdl 
model the charge transfer process and double layer effect, respectively; 
finally, the resistor Rd and capacitor Cd model the resistance and 
capacitance effects of lithium/lithium-ion diffusion processes into the 
electrode/electrolyte. 

It is worth noting that, under steady state conditions, the total in
ternal resistance of the battery corresponds to the sum of the four 
resistive contributions. The estimation of the latter is important to 
properly compare the battery capacities under different conditions in 
terms of temperature and cycling levels, as will be elucidated later. 

By definition, calendar aging is purely a function of time for given 
storage conditions. On the contrary, cycle aging is the result of multiple 
charges and discharges, therefore it is considered as a function of the 
number of equivalent cycles performed under predetermined reference 
conditions, or of the total moved charge Q, defined as: 

Fig. 1. Equivalent electric circuit of LiB.  
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Q =

∫t

0

|Ib(τ) |dτ. (1) 

Moreover, [33,34] show that, under given environmental conditions, 
the moved charge directly affects the aging level (the reduction of bat
tery capacity C, typically expressed in Ah [20]), and it is weakly affected 
by discharge depth as well as battery current. 

On the other hand, the battery capacity C, was measured following 
the procedure adopted in [22] through the constant current-constant 
voltage (CC-CV) protocol during charging and CC during discharging. 
Specifically, the CC-CV protocol consisted of fully charging the battery 
at a constant current of 1C until reaching the maximum cut-off voltage. 
This voltage was then maintained until the current decayed below 0.5C, 
thus, according to Fig. 1, the voltage drops over the internal resistances 
can be considered nil, ensuring that 100 % SOC was reached. Then, the 
battery was fully discharged at a constant current of 1C until reaching 
the minimum cut-off voltage, while measuring the battery current, Ib. 
Therefore, the battery capacity was obtained as: 

C =

∫tmin

tmax

Ib(τ)dτ (2)  

where tmax and tmin are the initial and final time instants corresponding 
to the maximum and minimum cut-off voltages related to the discharge, 
respectively. 

In this respect, during the charging, the maximum cut-off voltages 
corresponded to the maximum OCVs for all the tests. However, even 
though the discharge current was the same for all the tests, the internal 
resistance of the battery varies with SOC, temperature, and cycle aging. 
Consequently, the resulting voltage drop across the internal resistance 
was different according to the operating conditions. Therefore, if one 
directly considered the values of the battery capacity obtained by inte
grating the battery current up to the minimum cut-off voltage, they 
would correspond to different minimum OCVs, because of the varying 
internal resistance values, making the capacity values not comparable. 
According to [22], the internal resistance also affects capacity; the 
reason is that capacity was evaluated by integrating the battery current 
during discharge at 1C, but without removing the effect of the internal 
resistance. Therefore, for the sake of a fair comparison, capacity values 
corresponding to the same minimum OCVs must be considered. On the 
other hand, compensating for the internal resistance ensures the con
sistency of the obtained capacity values, thus leading to a more signif
icant comparison. For the purpose, one may evaluate the internal 
resistance of a fully discharged battery for each temperature and aging 
condition, remove the corresponding voltage drop at the end of the 
discharge process, and consider the maximum between the OCVs as the 
minimum cut-off voltage in Eq. (2) for all tests conducted at different 
temperatures and cycling levels. To do this, according to the electric 
circuit depicted in Fig. 1, when a current step is applied to the battery, an 
electric transient occurs according to the different time constants due to 
the different RC branches. Specifically, the largest one is due to the 
diffusion process. Since the battery discharge was performed at a con
stant current of 1C, it is possible to assume steady-state conditions as the 
voltage reaches the minimum cut-off value, thus capacitors can be 
considered as open circuits. In this way, when the battery voltage rea
ches the minimum cut-off value, a 1C current step occurs, which can be 
employed to evaluate the internal resistance using the dc current pulse 
method [41]. 

3. Experimental activity 

The battery cell employed in this work was a lithium cobalt oxide 
(LCO) cell 8773160K manufactured by General Electronics Battery Co. 
Ltd., whose main parameters are reported in Table 1. 

3.1. Experimental setup 

Experiments were conducted using a Biologic Science Instruments 
100 A booster (VMP3B-100) in conjunction with a potentiostat (SP-150), 
controlled by a PC running EC-LAB software, whose specifications are 
reported in Table 2. The overall test arrangement is depicted in Fig. 2. 

Ensuring uniform and stable battery temperature throughout the 
tests is of paramount importance. Typically, experiments for evaluating 
temperature dependency are carried out using a climatic chamber. 
However, the drawback is that while it ensures a fairly constant ambient 
temperature, it fails to maintain a steady battery temperature under 
different operating conditions, mostly because of the slow thermal dy
namics with respect to self-heating phenomena. For this reason, three 
Peltier cells were electrically connected in series and placed between the 
battery and a properly sized heatsink. Therefore, regulating the current 
flowing through the Peltier cells enabled a more direct and thus faster 
control of battery temperature. The proportional-integral temperature 
control loop was implemented on an F28069M microcontroller from 
Texas Instruments driving an DRV8323RX inverter from the same 
manufacturer, which imposes the current of the Peltier cells through 
pulse width modulation. The battery temperature was measured with a 
thermocouple placed on the battery surface exposed to air. In this way, 
the measured temperature, used as feedback for the control, was not 
affected by the temperature of the Peltier cell. Since the battery is very 
thin, it is possible to consider temperature as uniform along thickness. 

3.2. Test procedure 

Fig. 3 shows the block diagram of the adopted experimental pro
cedure, which consisted of two phases: the capacity measurement phase 
and the cycle aging phase. A preliminary capacity measurement phase 
was conducted to determine the initial battery capacity, followed by 
subsequent measurements after each cycle aging phase to assess the 
capacity reduction corresponding to about 10 kAh, 15 kAh, and 20 kAh 
of moved charge. 

3.3. Capacity measurement phase 

Considering the typical battery applications (including automotive, 
storage, and portable electronics) the ambient temperature could be 
significantly lower than 20 ◦C. Nevertheless, during regular operation, 

Table 1 
Battery cell specifications.  

Parameter Value Units 

Rated capacity 10 Ah 
Rated voltage 3.7 V 
Charge cut-off voltage 4.2 V 
Discharge cut-off voltage 2.75 V 
Maximum continuous discharge current 100 (10C) A 
Maximum peak discharge current 150 (15C) A  

Table 2 
Test setup specifications.  

SP-150 specifications 

Voltage range ±10 V 
Current range ±0.8 A 
Voltage measurement accuracy <10 mV 
Current measurement accuracy <0.8 mA  

VMP3B-100 specifications 
Voltage range 0–5 V 
Current range ±100 A 
Voltage measurement accuracy <10 mV 
Current measurement accuracy 1 A 
Impedance measurement accuracy 1 %, 1◦

S. Barcellona et al.                                                                                                                                                                                                                             



Journal of Energy Storage 91 (2024) 112087

4

the battery temperature is generally higher than this value due to self- 
heating, typically ranging between 15 and 40 ◦C [42]. Therefore, in 
this work, battery capacity was evaluated at eight reference tempera
tures between 20 and 50 ◦C (i.e., 20 ◦C, 22.5 ◦C, 25 ◦C, 27.5 ◦C, 30 ◦C, 
33.5 ◦C, 38 ◦C, and 46 ◦C). In practice, because of the limitations of the 
temperature control loop, measurements were conducted in a range of 
±2 ◦C around the reference values. 

Initially, the battery cell was charged to achieve a SOC of 100 % 
using a CC-CV protocol. In more detail, the battery cell was charged at a 
rate of 10 A (1C) until the maximum cut-off voltage of 4.2 V was 
reached, followed by the application of the same voltage until the bat
tery current decayed to 100 mA (0.01C). In turn, the cell was fully dis
charged with 10 A (1C) current until reaching the minimum cut-off 
voltage of 2.75 V. The consequent current interruption corresponded 
to a − 10 A (− 1C) current step. After this, the battery was left to rest for 1 
h, measuring the subsequent voltage transient resulting from relaxation 
phenomena. The internal resistance was then calculated as the ratio 
between the voltage change over 1 h and the current step. After evalu
ating the resistance of the fully discharged battery, the battery cell was 
charged back to 100 % of SOC, and the same procedure was repeated for 
the other temperatures. 

3.4. Cycle aging phase 

Each cycle aging phase consisted of a constant current charge and 
discharge at a reference temperature of 30 ◦C. For speeding up the test 
process, a charge and discharge current of 5C was selected. However, 

given that battery capacity decreases with aging, the current was 
reduced to 4C after reaching Q = 10 kAh to mitigate the effects of high- 
frequency aging [43]. This change in the current rate does not impact on 
the results, as previous findings in [34] indicates that the current rate 
does not impact aging. In any case, the charge and discharge cycles were 
limited by two constraints: the SOC was bounded between 20%and 80 
%, while the battery voltage was confined within 3.45 V and 4.05 V. It is 
worth highlighting that if the voltage limits are reached before reaching 
the SOC bounds, the moved charge within a single cycle would be <6 
Ah. Nonetheless, the outcomes presented in [33] demonstrates that 
battery aging depends on the moved charge, regardless of the cycle 
shape. 

4. Experimental results 

The experimental results enable tracking the variation of battery 
capacity, C, at different temperatures and cycling levels. For a given 
aging condition, experimental results show that C initially rises with 
temperature. The behavior could be explained since, according to the 
Arrhenius equation, reaction rate increases with temperature [44]. This 
facilitates the intercalation/deintercalation process, leading to 
increased battery capacity. Furthermore, higher temperatures enhance 
the concentration and mobility of lithium ions in the electrolyte, making 
them more prone to intercalation/deintercalation. Therefore, we 
modeled this behavior with an exponential term in temperature, namely 
assuming an Arrhenius-like behavior. 

However, capacity measurements exhibit significantly lower values 
at the highest temperature setpoint, which is not explained according to 
previous considerations. One possible reason is that further increasing 
the temperature produces excessive movement of lithium ions, making 
the intercalation/deintercalation process more difficult [22]. To also 
consider this phenomenon, a second exponential term was introduced, 
thus resulting in the following expression for battery capacity: 

C(T) = a⋅eb⋅T + c⋅ed⋅T + f (3)  

where a, b, c, d, and f are the fitting coefficients that depend on the cycle 
aging, while e is the Euler's number. For each cycling level, the corre
sponding coefficients were estimated by minimizing the Euclidean norm 
of the deviation between experimental data and the corresponding 
model output, thus resulting in a nonlinear least-squares problem. Fig. 4 
shows the comparison between experimental capacity and model output 
for each of the four cycling levels, Q. 

Fig. 2. Adopted test setup.  

Fig. 3. Block diagram of the experimental test procedure.  
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The trends reported in Fig. 4 confirm that the proposed fitting 
expression (3) accurately fits the experimental capacity for all cycling 
levels. It is interesting to note that battery capacity exhibits a similar 
trend for all cycling levels. It increases with temperature up to about 
40 ◦C, after which it begins to decrease. An exponential term in Eq. (3) 
allows a proper fitting of the ascending part of C(T) for each cycling 
level. On the other hand, the second exponential term enables consid
ering the plateau observed around 35 ◦C, as well as the decreasing part 
of C(T). Notably, the reduction in capacity at the highest temperature 
appears to be more significant at lower cycling levels. Furthermore, 
capacity values for cycling levels of 10, 15, and 20 kAh are rather close 
but remarkably different with respect to that measured for the fresh cell. 

Examining Fig. 4, it is evident that all four fitting curves exhibit a 
noticeable deviation from the experimental data at 22.5 ◦C. Addition
ally, the curves corresponding to moved charges of 10 kAh and 15 kAh 
intersect at high temperatures. It is important to note that we are 
attempting to describe relatively small capacity variations, while bat
teries are complex electrochemical systems influenced by numerous 
factors and second-order effects that are challenging to model. Conse
quently, these small capacity variations are inherently subject to sig
nificant uncertainty. Nonetheless, the deviations between experimental 
data and fitting remain relatively small compared to the overall varia
tion of battery capacity. Additionally, Table 3 reports the corresponding 
coefficients of determination, R2, and the normalized root mean square 
errors (NMRSEs), normalized with respect to the root mean square value 
of the experimental capacity, confirming the goodness of fit. 

Fig. 5 shows the five fitting coefficients of Eq. (3) as functions of the 
moved charge, which corresponds to the cycling level. 

When considering the overall trend of battery capacity as reported in 
Fig. 4, from a holistic point of view, the qualitative behaviors of the 
curves are rather similar, with the exception of the curve related to Q =
10 kAh, which crosses the other curves (likely due to a possible error in 
its last data point). This observation suggests rewriting Eq. (3) under the 
assumption that the exponents are consistent across all curves, and the 
three terms are just scaled by three factors, namely k1(Q), k2(Q), and 
k3(Q), which account for the dependency on cycle aging. This yields the 
following expression: 

C(T,Q) = k1(Q)⋅a(0)⋅eb(0)T + k2(Q)⋅c(0)⋅ed(0)T + k3(Q)⋅f(0). (4) 

In Eq. (4) a(0), b(0), c(0), d(0) and f(0) are the parameters modeling 

the C(T) characteristic of the fresh cell (hence Q = 0), which can be 
obtained by solving a nonlinear least squares problem as previously 
done with Eq. (3). The scale factors k1 and k2 are related to the ascending 
and descending parts of the curve C(T), while k3 is an offset term. In this 
way, it was possible to decouple and quantify the effect of cycle aging 
separately on the ascending and descending parts of the curve C(T). 
Furthermore, given the initial values of a(0), b(0), c(0), d(0), and f(0), 
the scaling factors could be estimated from experimental data by solving 
a different linear least squares minimization problem for each consid
ered value of Q. This would make it possible to predict the variation of 
battery capacity with temperature for a given cycling level. 

Fig. 6 shows the comparison between the experimental and modeled 
data for the four cycling levels using the new model (4), which still 
accurately fits the experimental points for all temperatures and cycling 
levels, in particular when considering the inherent uncertainty of the 
experimental data. 

Additionally, Table 4 represents the corresponding coefficients of 
determination, R2, and NRMSEs which confirm the overall goodness of 
fit, despite slightly lower values of R2 in case of significant aging. The 
reason is that the new fitting problem introduces constraints involving 
different cycling levels (thus resulting in less degrees of freedom), while 
the previous approach considers an independent data fitting for each 
curve. Fig. 7 shows the three scale factors, k1, k2, and k3, as a function of 
the moved charge. In this case, the coefficient k3 exhibits a virtually 
linear trend with respect to Q, while the coefficients k1 and k2 do not 
show a well-defined trend, but they remain relatively constant. 

Nonetheless, it would be interesting to introduce a more complete 
aging model, capable of estimating how the variation law of battery 
capacity with temperature changes with respect to the overall moved 
charge. To achieve this, another fitting problem could be formulated by 
assuming that the three coefficients of Eq. (4) exhibit a linear trend with 
the moved charge, Q, modeled by introducing the new coefficients mi 
and qi, i ∈ {1,2,3}. Therefore, we have 

k1(Q) = m1Q + q1
k2(Q) = m2Q + q2
k3(Q) = m3Q + q3

. (5) 

Substituting Eq. (5) into Eq. (4), we obtain 

C(T,Q) = (m1Q+ q1)⋅a(0)⋅eb(0)T +(m2Q+ q2)⋅c(0)⋅ed(0)T +(m3Q+ q3)⋅f(0).
(6) 

Assuming that a(0), b(0), c(0), d(0), and f(0) have been previously 
computed from the temperature behavior of a fresh battery cell, using 
Eq. (5) and the experimental data enables the formulation of a new 
linear least squares minimization problem, whose solution provides the 
estimates of mi and qi. Table 5 reports the obtained values, while Fig. 8 
shows the comparison between the experimental and modeled data 
obtained through Eq. (6) for the four cycling levels. Assuming that the 

Fig. 4. Experimental and modeled capacity as a function of temperature for different cycling levels using Eq. (3).  

Table 3 
R2 and NMRSE for the different cycling levels using the model fitting Eq. (3).  

Q [kAh] R2 NMRSE [%]  

0  0.9900  0.2623  
9.7  0.9666  0.4477  
14  0.9055  0.6421  
19  0.9367  0.6280  
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scaling factors are linearly dependent on Q leads to a stiffer model. 
Despite the slight degradation observed at the highest cycling level, the 
overall quality of the fit remains robust, even when considering the 
uncertainty inherent in the experimental data. This is evidenced by the 
coefficient of determination, which equals 0.9761, greater than the one 
obtained for Q = 10 kAh using fitting model (4). Additionally, the 
NRMSE is 1.427 %, further confirming the goodness of fit. It is important 
to note that while a more complex expression could potentially yield a 
seemingly better fit by accommodating additional dependencies of the 

scaling coefficients on Q, such an approach risks overfitting, namely the 
model just better follows the error contributions. 

Finally, to evaluate the accuracy of the proposed model, the relative 
error of the modeled battery capacity was calculated as follows: 

erel(Q,T) =
⃒
⃒Cexp(Q,T) − Cmod(Q,T)

⃒
⃒

Cexp(Q,T)
(7)  

where Cexp(Q,T) and Cmod(Q,T) are the experimental and modeled bat
tery capacity, respectively, for a given temperature or cycling level. 
From Fig. 9, it is possible to recognize that the error is generally below 
0.4 % for all the considered values of temperature and moved charge, 
confirming the overall good accuracy of the proposed aging model. The 
two deviations exceeding 0.4 % are likely to be due to the uncertainty of 
the experimental results. 

Indeed, while the quality of the fitting achieved with the proposed 
aging model is slightly worse than that obtained by considering the 
cycling levels separately, the errors are small enough for estimating 
battery capacity at different temperatures and cycling levels, by 

a b c

d f

Fig. 5. Fitting coefficients of Eq. (3).  

Fig. 6. Experimental and modeled capacity as a function of temperature for different cycling levels using Eq. (4).  

Table 4 
R2 and NMRSE for the different cycling levels using the model fitting Eq. (4).  

Q [kAh] R2 NMRSE [%]  

0  0.9900  0.2623  
9.7  0.9579  0.5030  
14  0.8700  0.7532  
19  0.8043  1.104  
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exploiting the knowledge about the battery capacity variation law with 
temperature for a fresh battery cell. 

5. Conclusion 

The decrease of capacity with cycle aging is one of the most impor
tant factors that limits the lifespan of batteries. Moreover, while many 
research works have analyzed the effect of temperature on the variation 
of battery capacity, the impact of cycle aging on the relationship be
tween battery capacity and temperature has not been studied in detail, 
although it is of paramount importance for a more accurate SOH 
assessment. In this respect, the present work investigated the de
pendency of the capacity of an LCO battery on both temperature and 
cycle aging. In particular, the battery under test was cycled for about 20 
kAh under fixed temperature conditions of 30 ◦C. At the beginning of the 
battery life and after each cycle aging phase, the battery capacity was 
evaluated at eight different temperatures. 

Firstly, for each cycling level, the experimental data of the battery 
capacity at the different temperatures were fitted using the proposed 
model Eq. (3). This model consists of two exponential terms and one 
constant term, resulting in a total of five fitting coefficients computed 
with the least squares approach. The results show a good match between 
the experimental and modeled data across all temperatures and cycling 

levels. 
Upon observing the experimental data, the model was refined to 

describe also how the dependency between capacity and temperature 
changes with cycle aging, starting from that measured on a fresh cell. 
This involved multiplying each term representing the behavior of the 
fresh cell by a scale factor dependent on aging. This approach enables 
the separate quantification of the effect of cycle aging on the ascending 
and descending parts of the capacity-temperature curve. Additionally, it 
was observed that the variation of these coefficients could be assumed as 
linear with the moved charge, expressed through a set of six coefficients 
estimated using the least squares approach. The comparison between the 
experimental and modeled data confirms the overall good accuracy of 
the proposed aging model, with a percentage error in estimated capacity 
below 0.6 % for all explored conditions. 
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