
Bit-flipping Decoder Failure Rate Estimation
for (v,w)-regular Codes

Alessandro Annechini and Alessandro Barenghi and Gerardo Pelosi Member, IEEE
Department of Electronics, Information and Bioengineering - DEIB

Politecnico di Milano, Milano, Italy
Email: alessandro.annechini@mail.polimi.it, alessandro.barenghi@polimi.it, gerardo.pelosi@polimi.it

Abstract—Providing closed form estimates of the Decoding
Failure Rates (DFR) of iterative decoder for low- and moderate-
density parity check codes has attracted significant interest
in the research community over the years. This interest has
raised due to the use of iterative decoders in post-quantum
cryptosystems, where the desired DFRs are impossible to estimate
via Monte Carlo simulations. In this work, we propose a new
technique to provide accurate estimates of the DFR of a two-
iterations (parallel) bit-flipping decoder, which is also employable
for cryptographic purposes. In doing so, we successfully tackle
the estimation of the bit-flipping probabilities at the first and
second decoder iteration, and provide a fitting estimate for
the syndrome weight distribution. We numerically validate our
results, providing comparisons of the modeled and simulated
weight of the syndrome, incorrectly-guessed error bit distribution
at the end of the first iteration, and two-iteration DFR, both in
the floor and waterfall regime. Finally, we apply our method to
estimate the DFR of LEDAcrypt, a post-quantum cryptosystem,
improving by factors larger than 270, with respect to the previous
estimation techniques.

I. INTRODUCTION

This work focuses on binary codes with block length n
and redundancy r with a r×n parity-check matrix having all
rows and columns with a constant number of set bits, referred
to as (v, w)-regular binary codes, where w and v denote the
number of 1’s in any row and any column of the parity-
check matrix, respectively. Among binary Low Density Parity
Check (LDPC) codes, originally studied by Gallager [1], are
(v, w)-regular binary codes that admit a sparse parity-check
matrix, amenable to linear time decoding algorithms, exhibit-
ing column and row weights in the range of O(log(n)) [2].
Increasing the number of non null elements in each row of
the parity-check matrix up to the range of O(

√
n log (n)),

the codes are also known as Moderate Density Parity Check
Codes (MDPC) [3], [4]. The iterative (parallel) bit-flipping
decoding algorithm proposed by Gallager [1] can be applied
also to a generic (v, w)-regular binary code. The said decoding
process takes as input the parity-check matrix H = [hi,j ],
i∈{0, . . . , r−1}, j∈{0, . . . , n−1} of a code, and the value of
a syndrome s of an error affected codeword, c̃ = c+ e, where
e is an unknown 1×n error vector with Hamming weight t,
while c is a legit codeword: s=H(c+e)T = HeT . After each
iteration, the algorithm updates the value of the syndrome to be
used for the next iteration to match the equality s = H(ē⊕e)T ,
and terminates as soon as s=0, indicating that ē=e, or after
a predetermined maximum number of iterations yielding a

decoding failure. The initial value of ē is the null vector
01×n. Each algorithm iteration is split up in three phases. In
the first phase, it computes the inner product between the bit
vector s and the bits in each column of H , considering them
as integers, to obtain a quantity known as the “unsatisfied
parity-check [equation count]” (upc) bound to the j-th bit
position in the error vector, and stores such a value in a
variable upcj , j∈{0, . . . , n − 1}. In the second phase, a
threshold th∈

{
⌈ v+1

2 ⌉, . . . , v
}

is either looked up from a set of
predetermined values {th1th2, . . .}, each of which associated
to a specific iteration, or computed as a function of the current
value of the syndrome and of the current iteration count. In the
third phase, the algorithm evaluates for each j∈{0, . . . , n−1},
if upcj is greater than the threshold th, and in the affirmative
case it flips the value in ēj (i.e., ēj ← ēj ⊕ 1, by adding 1 to
ēj modulo 2) and updates the syndrome by adding (modulo
2) to it (bitwise) the j-th column of H (i.e., s← s⊕H:,j).
When fixing a predetermined maximum number of iterations,
the bit-flipping algorithm can fail to recover the error vector
thus, the decoding failure rate (DFR) is the most important
figure of merit for the code and the decoding algorithm of
choice. One context where closed form estimates for the
DFR are remarkably important is the design of post-quantum
cryptosystems. In this context, both LDPC and MDPC codes
are employed: BIKE [5], a current fourth-round candidate
in NIST’s standardization process, and LEDAcrypt [6]–[10]
employ quasi-cyclic LDPC/MDPC codes where the error
vector is randomly generated (with proper weight) to be the
confidential message (password) transmitted from the sending
to the receiving endpoint. Whenever a decoding failure takes
place during the decryption, information regarding the private
key of the cipher is leaked to an (active) attacker [11]. To
attain security against active attackers both cryptosystems
require the DFR of the employed codes to be below 2−128,
for a decoder of choice. To this end, BIKE relies on an
extrapolation of the behaviour of its own variant of the
iterative bit-flipping decoder [12] at lower values of DFR,
while LEDAcrypt employs a canonical two-iteration (parallel)
bit-flipping decoder for which it combines a first-iteration
model [13], [14] with a code-specific lower bound for the
correction capability of the second iteration [15], [16]. In
the line of research related to the study of DFR estimates,
J. Chaulet reports in [17] an estimate of the distribution of
the syndrome weights for QC-MDPC codes and models the



probability of parity check equations to be unsatisfied at the
first iteration of the parallel bit-flipping decoder. Chaulet notes
that error vectors with remarkably low syndrome weight tend
to be decoded with lower probability. In an affine line of
work, [18], [19] observes that errors vectors having regularities
such as runs of ones are less frequently decoded by QC-MDPC
iterative decoders. The authors of [20] and [21] observed that,
while indeed harder to decode, the error vectors represent a
relatively low amount of the overall non-decodable errors.
Going in a different direction, J-P. Tillich [15] provided a
code-specific technique to determine the maximum weight
of an error guaranteed to be corrected by a single iteration
bit-flipping decoder on a QC-LDPC/QC-MDPC code, proving
that the DFR falls exponentially for MDPC codes as the code
length increases under an assumption on the code density.
Contribution. We describe a DFR estimation technique for
two-iterations (parallel) bit flipping decoder for (v, w)-regular
LDPC/MDPC codes, such as the ones of [5], [6]. We provide
a closed form estimate of the syndrome weight distribution,
improving on [17], and a technique to assess the number of
mismatched bits between the error vector estimate and the
actual error vector values after the first iteration, improving
the accuracy with respect to [13], through direct count-
ing arguments, diverging from the Markov chain approach
of [18], [19]. Finally, we propose a technique to estimate
the mismatches between the error estimate and the actual
error after the second iteration, obtaining an estimate for the
two-iterations DFR. We validate our results with extensive
numerical simulations (C code available at [22]), while we
provide an extended version of this work at [23].

II. DECODING FAILURE RATE MODEL

In the following, we make this assumption: the rows of
H are independently and uniformly random drawn from the
set of binary vectors having length n and w asserted bits,
acknowledging it as an approximation, as the weight of the
parity-check matrix columns will be kept constant to v. We
share this assumption with the original paper by Gallager [1].
In the following, BIN(tr, spr, ns) indicates the probability
mass function of obtaining ns success events out of tr

independent events with a success probability of spr.
Modeling Syndrome Weight Distribution. Denote as (e, s)l,
l∈{0, 1, 2 . . . , t}, a pair of values: an error vector e and its
corresponding syndrome s = He both indexed by the weight
of the error vector l. Consider a given syndrome and its
corresponding error vector with weight t as the last pair in
the sequence (e, s)0, (e, s)1, (e, s)2, . . . , (e, s)t, where (e, s)0
is the null error vector and its (null) syndrome, while (e, s)l,
l ≥ 1, denotes a pair with an error vector that includes the
same set bits of the error vector in (e, s)l−1 plus an additional
set bit that is uniformly randomly placed in one out of the
n−(l − 1) available positions. The syndrome value in (e, s)l,
l ≥ 1, thus differs from the one in (e, s)l−1 for the bitwise
addition of a column of the parity-check matrix H .

We model the Hamming weight of each syndrome in
the sequence as a discrete random variable Wl bound
to a probability mass function Pr(Wl = y), with

l∈{0, . . . , t}, y∈{0, . . . , r}, represented as an array wp(l) =
[wp(l),0, . . . , wp(l),x, . . . , wp(l),r].
Starting from the distribution of the weight of the syndrome
of a null error vector, wp(0) = [1, 0, . . . , 0], the random
variable Wt associated to the weight of the syndrome at hand
coincides with final state of discrete-time non-homogeneous
Markov chain with r+1 states. Such a Markov chain is
uniquely defined by wp(0) and the transition matrices P(l) =
[px,y,l]x,y∈{0,...,r}. Specifically, the distribution of each ran-
dom variable Wl is derived through the following vector-
matrix multiplication wp(l) = wp(l−1) · P(l), with l∈{1, . . . , t},
where each transition probability px,y,l = Pr(Wl = y|Wl−1 =
x) is a function of the starting and ending weight of the
syndrome as well as of the step l considered along the chain.
We denote as Fl∈{0, . . . ,min(w, l)} the discrete random
variable modeling the count of flips of any single bit of
the syndrome of an error vector with weight l, during the
computation of the syndrome itself.

The probability mass function of Fl follows an hypergeo-

metric distribution ϕl(f, l)=Pr(Fl = f) =
(wf )(

n−w
l−f )

(nl)
. Indeed,

the l set positions in the error vector select l positions in any
single row of H , which in turn corresponds to a syndrome bit.
Whenever one of such selected row positions contains one of
the w set bits out of n, the syndrome bit corresponding to
the row at hand is flipped. Following any syndrome bit along
the sequence (e, s)0, . . . , (e, s)l−1, (e, s)l, . . ., we note that
Pr(Fl=f+1 | Fl−1=f) = w−f

n−l , while the event Fl−1 = f
implies that the syndrome bit is either clear or set, depending
on f being either even or odd, respectively.

Thus the probability π l−1→l
flip 0→1

(l) of flipping at step l any

syndrome bit cleared at step l−1, depends on the value of
the step, and is derived as

∑
f Pr(Fl=f+1|Fl−1=f) Pr(Fl−1=f)∑

f Pr(Fl−1=f)
,

where the f ranges over the even values in {0, . . . ,min(w, l)}.
Analogously, the probability π l−1→l

flip 1→0
(l) of flipping at step

l any syndrome bit that was set at step l−1, also de-
pends on l and is derived applying the same formula with
f∈{0, . . . ,min(w, l)} ranging over odd values:

π l−1→l
flip 0→1

(l)=

(
min(l,w)

Σf
0,even

(
w − f
n− l

· ϕl(f, l)
))
/
(

min(l,w)

Σf
0,even

ϕl(f, l)

)

π l−1→l
flip 1→0

(l)=

(
min(l,w)

Σf
0,odd

(
w − f
n− l

· ϕl(f, l)
))
/
(

min(l,w)

Σf
1,odd

ϕl(f, l)

)

Analyzing the change of the syndrome weight from step
l−1 to step l, we derive the probability mass function
px,y,l=Pr(Wl = y|Wl−1 = x), with x, y ∈ {0, . . . , r}. At
each step, v bits (the column weight of H) of the syndrome
flip (out of r). Thus, the weight y of the syndrome at step
l is obtained from flipping up a clear bits out of r−x, and
flipping down v−a set bits out of x, for all admissible a,
i.e., a∈{max{0, v − x)}, . . . ,min{r − x, v}}. The weight of
the syndrome after the l-th step is y = x + a − (v − a),
or equivalently r − y = r − x − a + (v − a), from which
we derive a = x−y+v

2 . Given Wl−1 = x and a value for



a, define two events: E1,a: a bits are flipped up in r−x
flip trials; E2,a: v−a bits are flipped down in x flip trials.
The probability mass function Pr(E1,a)=φ(x, a, l) describes
the probability of flipping up a bits of the syndrome at step
l−1, while Pr(E2,a) = ψ(x, a, l) describes the probability of
flipping down v−a bits of the at the step l−1. Note that,
depending on the weight of the syndrome at step l−1, there
are

(
r−x
a

)
possibile patterns for the said flip-ups and

(
x
v−a
)

possibile patterns for the said flips down. We thus have that
φ(x, a, l) = BIN(r − x, π l−1→l

flip 0→1
(l), a) while ψ(x, a, l) =

BIN(x, π l−1→l
flip 1→0

(l), v − a).
Given a specific value for a and Wl−1 = x, the event

modelling the v flips in the transition of the syndrome
weight from x to y=x+2a−v, from step l−1 to step l, is
E1,a∩E2,a. The event is bound to the probability mass function
Pr(E1,a) ·Pr(E2,a) = φ(x, a, l) ·ψ(x, a, l) since E1,a and E2,a
are independent (they take place on disjoint sets of bits).

Considering all the admissible values for a, the probability
mass function Pr(Wl−1 = x) = ω(x, l), models the probabil-
ity of moving to any valid syndrome weight y at step l, is:
ω(x, l) =

∑min{r−x,v}
i=max{0,v−x} (φ(x, i, l) · ψ(x, i, l)) .

Thus, the transition probability px,y,l=Pr(Wl = y|Wl−1 = x)
can be written as a function of the step count l, and of both
the starting and ending weights of the syndrome.

px,y,l =


1, l = 1, x = 0, y = v

ρ(x, y, l),
l ≥ 2

max(0, x− v) ≤ y ≤ min(x+ v, r)

y ≡2 (x+ v)

0, otherwise

with ρ(x, y, l) = φ(x, x−y+v
2 ,l)·ψ(x, x−y+v

2 ,l)

ω(x,l) , where π l−1→l
flip 1→0

(l)

is not defined in the special case l = 1, x = 0, y = v. The
value p0,v,1 = 1 is justified as a null syndrome (i.e. with
x = 0) will deterministically turn into a weight v syndrome
when a column of H is added. The algorithmic procedure
deriving the distribution of the weight of the syndrome of an
error vector with weigth t, Pr(Wt = y) is available in the
extended version of this paper at [23].
First Iteration of a Bit Flipping Decoder. We define a
parity-check equation as

∑n−1
j=0 hi,jej = si, where ej are

the unknowns, hi,j the coefficients and si the constant known
term. The equation is satisfied if si=0, unsatisfied if si=1. The
(parallel) bit flipping decoding algorithm iteratively estimates
the most likely value ē of the error vector e, given s and H ,
starting from the initial value ē = 01×n.

We estimate the distribution of the random variable E(iter)
modeling the Hamming weight of ē ⊕ e after the iter-
th iteration of the decoding algorithm, i.e. the number of
mismatches between ē ⊕ e. The probability mass function
Pr(E(iter) = d), d∈{0, . . . , n}, will be considered only with
iter > 0, because Pr(E(0) = t)=1, before the beginning
of the decoding algorithm, when ē=0. The probability mass
function Pr(E(iter) = d) will be obtained, using the distri-
bution of the weigth of the syndrome of an error vector of

weight t, (i.e., Wt = y), as follows: Pr(E(iter) = d) =∑r
y=0

(
Pr
(
E(iter) = d | Wt = y

)
Pr(Wt = y)

)
.

From now on, the goal of the analysis is going to be
the estimate of the probability Pr

(
E(iter) = d | Wt = y

)
,

y=wt(s): iter=1 in this subsection, and iter=2 in the next
one. Furthermore, for the sake of brevity, in the definition of
any event and in the formulas of probability mass functions we
are going to omit any reference to the weight of the syndrome.

In the analysis of the first iteration of the decoding algo-
rithm, we denote as Si, i∈{0, . . . , r}, the random variables
modeling the value taken by the i-th bit of the syndrome, si,
at the beginning of each iteration of the decoding algorithm.
Therefore, for each unsatisfied and satisfied parity-check equa-
tion, the probability to observe a clear or set constant term is:
Pr(Si = 0) = r−y

r , Pr(Si = 1) = y
r , respectively.

We denote as E(i,j),0 or E(i,j),1 the event of an error bit
being either clear or set, respectively, in a position j captured
by one of the w set coefficients of the row hi,: in the i-th
parity-check equation, i.e.: E(i,j),0={hi,j = 1 and ej = 0}, and
E(i,j),1={hi,j = 1 and ej = 1}, respectively.

Observe that, using Ft from the previous section as the ran-
dom variable modeling the count of bitflips determining si, for
any i, in the computation s = HeT , the probabilities Pr(Si =
0) and Pr(Si = 1) can be written also as: Pr(Si = 0) =

Pr
(⋃min(t,w)

f=0,even(Ft = f)
)
=
∑min(t,w)
f=0,even Pr(Ft = f), Pr(Si =

1) = Pr
(⋃min(t,w)

f=1,odd (Ft = f)
)

=
∑min(t,w)
f=1,odd Pr(Ft = f),

where the last step is mutuated by the fact that the events
(Ft = f) are disjoint. Note that Ft = f implies that there are
f variables of the i-th parity-check equation which are both
set to 1 and have a corresponding coefficient set to 1 (out of
the w set ones present in the equation). Here, Pr(Ft = f)
is a shorthand for Pr(Ft = f |Wt = y), and the formula
for the probability mass function of Pr(Ft = f) reported in
the previous section cannot be applied anymore. The complete
derivation of Pr(Ft = f |Wt = y), is available in [23].

Consider now, punsat|0 = Pr
(
Si = 1 | E(i,j),0

)
, that is the

probability that, given an error variable ej=0, the constant
term si of the i-th parity-check equation, where the variable
is involved with a coefficient hi,j=1, is si=1. Since the rows
of the parity-check matrix are assumed to be independent and
with the same weight, we have that punsat|0 is independent
from the index of the parity-check equation i:

punsat|0 =
Pr(E(i,j),0 | Si=1)Pr(Si=1)

Pr(E(i,j),0 | Si=1)Pr(Si=1)+Pr(E(i,j),0 | Si=0)Pr(Si=0)

The factors Pr
(
E(i,j),0 | Si = 0

)
, Pr

(
E(i,j),0 | Si = 1

)
are:

Pr
(
E(i,j),0 | Si = 0

)
=

=
Pr(E(i,j),0 ∩Si=0)

Pr(Si=0) =
∑min(t,w)

f=0,even Pr(E(i,j),0 | Ft=f)Pr(Ft=f)∑min(t,w)
f=0,even Pr(Ft=f)

Pr
(
E(i,j),0 | Si = 1

)
=

=
Pr(E(i,j),0 ∩Si=1)

Pr(Si=1) =
∑min(t,w)

f=1,odd Pr(E(i,j),0 | Ft=f)Pr(Ft=f)∑min(t,w)
f=1,odd Pr(Ft=f)

.

Note that Pr
(
E(i,j),0 | Ft = f

)
=w−f

w , since knowing Ft =
f for the i-th parity-check equation implies that there
are w−f variables ej , among the w ones with their
coefficient hi,j = 1, which are equal to zero. The



expression for punsat|1 can be obtained with a deriva-
tion analogous to the one for punsat|0 (full derivation
in [23]). We derive the distribution Uj modelling upcj
variables computed at each decoder iteration. In particular,
we model Pr (Uj = u | ej = 0) and Pr (Uj = u | ej = 1)
through a counting argument (fully detailed in [23]), ob-
taining Pr (Uj = u | ej = 0) = BIN(v, punsat|0, u) and
Pr (Uj = u | ej = 1) = BIN(v, punsat|1, u).

We then obtain pflip|0 = Pr(upcj ≥ th|ej = 0), that is
the probability that the decoder flips the j-th error estimate
value ēj , when ej = 0. pflip|0 is to the union of all events
where the upcj value is equal or greater than the thresh-
old th: pflip|0 =

∑v
a=th Pr (Uj = a | ej = 0). We denote

with p¬flip|0 its complement 1 − pflip|0, i.e., the decoder
decides not to flip the error estimate bit. Analogously, we
obtain pflip|1 (the probability that the decoder flips an error
estimate bit, assuming that the corresponding error vector bit
is set) as pflip|1 =

∑v
a=th Pr (Uj = a | ej = 1) , denoting as

p¬flip|1 = 1− pflip|1.
Denote with ē(i) the value of ē after the bit flips of

the i-th iteration have been applied. Given the previous
probabilities, we consider the event E(d+) = |({0, . . . , n −
1} \ Supp(e)) ∩ Supp(ē(1))| = d+, that is d+ flips of ē
happen on the n − t positions where ej = 0, and the event
E(d−) = |Supp(e) ∩ Supp(ē(1))| = d−, that is d− flips
happen on the t positions where ej = 1 has a set bit. We
have δ+(d+) = Pr

(
E(d+)

)
= BIN(n − t, pflip|0,d+), and

δ−(d−) = Pr
(
E(d−)

)
= BIN(t, pflip|1,d−).

Having obtained closed formulas for δ+(d+)
and δ−(d−), we observe that the events E(d+) and
E(d−) act on disjoint subsets of the bits of e and
are thus independent. We are thus able to obtain
Pr
(
E(1) = d | Wt = y

)
considering the set D of pairs

(d+,d−) such that d=t−d−+d+: Pr
(
E(1) = d | Wt = y

)
=

Pr
(⋃

(d+,d−)∈D(E(d+) ∩ E(d−))
)

=
∑

(d+,d−)∈D δ+(d+) ·
δ−(d−) The conditioning on the value of Wt is embedded in
the fact that (Wt = y) is employed to derive Pr(Si = 0) and
Pr(Si = 1), which are needed to obtain pflip|0 and pflip|1.
Second Iteration of the Bit Flipping Decoder. We partition
the bits of ē(1) into four classes. Each class is labeled with a
pair (a, b), where, for each bit ēj belonging to the class, we
have a = ej , b = ej ⊕ ē(1),j . From now on, we denote as Ja,b
with a, b∈{0, 1} the sets of positions of the bits in the class
(a, b). We estimate the probabilities of flips being applied
to the bits in each of the four (a, b) classes considering
their values obtained after the first iteration ē(1), which we
denote as pflip|00, pflip|01, pflip|10, and pflip|11, derive
as a function of the cardinalities of the sets, |J0,1| = ϵ01
and |J1,1| = ϵ11. Note that, from the analysis of the first
iteration, we are able to compute Pr(ϵ01 = d+) as δ+(d+)
and Pr(ϵ11 = t− d−) = δ−(d−).

Once we obtain pflip|00, pflip|01, pflip|10, and pflip|11, we
derive the probability of performing a correct decoding at the
second iteration as Pr(E(2) = 0|Wt = y), combining together
the said probabilities, as follows:

∑
(ϵ01,ϵ11)∈{0,...,n−t}×{0,...,t}

(
δ+(ϵ01) · δ−(t− ϵ11)·

·(1− pflip|00(ϵ01, ϵ11))n−t−ϵ01 · pflip|01(ϵ01, ϵ11)ϵ01 ·
·(1− pflip|10(ϵ01))t−ϵ11 · pflip|11(ϵ01, ϵ11))ϵ11

)
.

Finally, we derive the Decoding Failure Rate (DFR) after
the second decoder iteration as DFR = 1 − Pr(E(2) = 0) =
1−

∑r
y=0 Pr(E(2) = 0|Wt = y) Pr(Wt = y).

We note that our result can be combined with the
ones from [13], [15]: to do so, given the specific matrix
H required by [13], [15] compute the weight which an
iteration is guaranteed to correct, τ , and subsequently obtain
Pr(E(2) = 0|Wt = y) excluding from the weighted sum
employed to derive it all the terms resulting in an amount of
mismatches after the first iteration ≤ τ .

We now provide a summary of the steps to derive pflip|00,
while the full derivations are available in [23]. We start by
computing the probability pflip|0,OneEqSat of flipping up a
bit of ē, given that it appears in a satisfied parity-check
equation and the corresponding error bit value is 0, that is
pflip|0,OneEqSat = Pr

(
upcj ≥ th | ej = 0, hi,j = 1, si = 0

)
is obtained as pflip|0,OneEqSat =

∑v−1
a=th BIN(v−1, punsat|0, a),

i.e., the probability of the union of the events where a ≥ th

parity-check equations are unsatisfied, knowing that one out
of the v parity-check equations is satisfied, hence reducing
the number of trials to v−1. Analogously,
pflip|0,OneEqUnsat=Pr

(
upcj ≥ th | ej = 0, hi,j = 1, si = 1

)
as pflip|0,OneEqUnsat =

∑v−1
a=th−1 BIN(v − 1, punsat|0, a), and

p¬flip|1,OneEqSat =
∑th−1
a=0 BIN(v − 1, punsat|1, a), while

p¬flip|1,OneEqUnsat =
∑th−2
a=0 BIN(v − 1, punsat|1, a).

We model with µ(nsat, nunsat, a, ϵ01, ϵ11) the probability
that, as a result of the flips from the first iteration,
among the v parity check equations which involve a given
position in J0,0, out of the v−a satisfied ones nsat

become unsatisfied, while, out of the a unsatisfied ones
nunsat stay unsatisfied; we derive, from the previous
quantities, the probabilities that parity checks involving
bits in J0,0 become unsatisfied (p00|BecomeUnsat) or stay
unsatisfied (p00|StayUnsat). We have µ(nsat, nunsat, a) =
BIN(v − a, p00|BecomeUnsat(ϵ01, ϵ11), nsat) ·
BIN(a, p00|StayUnsat(ϵ01, ϵ11), nunsat). Finally, we obtain
pflip|00 as a function of ϵ01 and ϵ11, pflip|00(ϵ01, ϵ11) :

pflip|00(ϵ01, ϵ11) =

th(1)−1∑
a=0

Pr(Uj = a, j ∈ J0,0)· v−a∑
nsat=0

a∑
nunsat =

max(0, th(2) − nsat)

µ(nsat, nunsat, a, ϵ01, ϵ11)


pflip|01(ϵ01, ϵ11), pflip|10(ϵ01, ϵ11) and, pflip|11(ϵ01, ϵ11) are
obtained through an analogous line of reasoning (in [23]).

III. NUMERICAL VALIDATION

In this section, we provide numerical validations of our
results. The numeric simulations were run on two Dell Pow-
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Fig. 1. Numerical validation of the model of syndrome weight distribution, picking a communication-grade code parameter set (a) and a cryptography-grade
code parameter set (b); Distribution of d = wt(ē(1) ⊕ e) (c). Numerical results obtained with 109 random syndrome samples. depicts our estimate,
reports the numerical simulations, depicts the estimates from [6]
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, parallel decoder employing majority thresholds, i.e., th1 = th2 = ⌈ v+1
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⌉.
Each data point obtained performing either 108 decoding actions, or reaching 100 decoding failures. Solid lines are the model, crosses are numerical simulations

erEdge R630 nodes, each one endowed with two Intel Xeon
CPU E5-2698 v4 (20 cores/40 threads each), and a Dell
PowerEdge R7425 equipped with two AMD Epyc 7551 (32
cores/64 threads each), taking around 50k core-hours. The
memory footprint of the simulations was small (<200MiB).

Figure 1 reports the comparison between our modeled (red)
and the numerically estimated (black) distribution of syndrome
weights Pr(Wt = y) for a small (11−22) regular LDPC code
with code length n = 4400 and error weight t = 18 (Figure
1a), and for the code with rate 3

4 employed in the LEDAcrypt
specification [6] (Figure 1b), for NIST security category 1.
In both cases, our estimation technique provides a very good
match for the numerically simulated probabilities. Figure 1c
reports the distribution of d, the weight of e⊕ ē(1), comparing
our model (red) ad the one employed in [6] (blue) with
numerical data (black): our model provides a closer fit to the
sample distribution of d, w.r.t. the one employed in [6]. This
improvement in fitness results in a significant improvement
on the value of the expected DFR for cryptographic-grade
parameters in LEDACrypt (NIST category 1 parameters in

table). Parameters designed for a 2−64 DFR, actually provide a
better (smaller) DFR than the one required to achieve security
against active attackers (2−128). Finally, Figures 2a and 2b
compare numerical DFR values of a two-iterations parallel bit-
flipping decoder with our estimation technique, while varying
either the code density (left) or the number of errors (right)
over the code length range n ∈ {1200, . . . , 12000}. We
provide a reliable estimate of the waterfall region, and a
conservative estimate for the floor region of the codes. More
numerical results are available in the extended version at [23].
Acknowledgements. This work was carried out with par-
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n k v t τ LEDAcrypt DFR Our DFR

46742 23371 71 130 10 2−64 2−147

48201 32134 79 83 9 2−64 2−139

53588 40191 83 66 8 2−64 2−134
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