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A B S T R A C T

Although the global electrification rate has reached 91 %, roughly 730 million people still live without reliable
and affordable access to electricity, experiencing the first regression since 2013, following the COVID-19 crisis. In
this context, this paper aims to define a comprehensive electrification strategy through an innovative model
based on open-source data and machine learning algorithms, able to reduce the time and resource-consuming on-
field campaign that is generally needed for gathering data, and subsequently define the electrification strategy.
Following the location of human settlements and their socio-economic characterizations carried out by a novel
open-source tool proposed within this paper named VANIA (Village ANalytics in Africa), the energy demand and
hourly demand profile of each community are estimated through the application of machine learning techniques
based on MTF (Multi-Tier Framework) surveys and a stochastic bottom-up model for load profile generation. The
approach is designed to manage the complex nonlinear relationship between the energy needs of a community
and its socio-demographic parameters. Then, taking the communities’ demand profile as input, a GIS-facilitated
procedure is utilized to optimize the electrification strategy for the territory under investigation, proposing the
least-cost electrification solution. The final electrification plan focuses on long-term solutions enabling growth
over time in which each community can be either connected to the national grid or supplied by an off-grid
system. Ultimately, to demonstrate the approach and showcase its operational capabilities, the methodology is
utilized for the electrification planning of the Naeder province in Tigray, Ethiopia, characterized by a predom-
inantly lacking electrification status and low energy demand. The suggested solution advocates for the cost-
efficient electrification of approximately 11,560 households clustered in 50 communities. Considering consoli-
dated economic parameters and a perceived cost of electricity of 110 €/MWh showed a preference toward grid
extension, with 39 out of 50 communities connected to the national grid. Finally, sensitivity analysis on the cost
of energy showed that regardless of the value, 3 communities should be electrified with a microgrid, whereas for
values upward of 130 €/MWh the microgrid starts becoming the more lucrative option, and at 145 €/MWh an
extension is not economically justified.

Introduction

Various literature sources have already found a clear correlation
between access to electricity and improvement in socio-economic

indicators (Mandelli et al., 2016). As such, the seventh goal of the 2030
Agenda for Sustainable Development aims to “Ensure access to afford-
able, reliable, sustainable and modern energy for all” through an equi-
table distribution of resources. However, even though the global
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electrification rate reached 91 % of the worldwide population in 2020,
around 730 million people still live without access to electricity (IEA,
2022a), with over 77 % of them being in Sub-Saharan Africa. Hence-
forth, the African Union adopted the “Agenda 2063: The Africa We
Want”, the continent’s strategic framework that aims to deliver inclusive
and sustainable development (Tella, 2018; Garfias Royo et al., 2022).
However, the COVID-19 pandemic has interrupted the favorable tra-
jectory of energy access, leading to the first recorded setback since 2013
(WHO Media inquiries, 2022). This necessitates the redirection of in-
vestment flows to reinstate momentum, particularly for off-grid systems,
where the cumulative investment falls significantly short of the esti-
mated requirement for achieving universal energy access (IEA, 2022b).
However, errors arising from survey-based bottom-up approaches (Riva
et al., 2019) and lack of reliable information could be barriers for gov-
ernments, international organizations, and local enterprises (Avila et al.,
2017) inclined to deploy new infrastructures. On the other hand, owing
to the elevated investment expenses related to electrical infrastructure,
planners and investors necessitate tools that can enable them to
formulate strategies for reducing electrification costs (Loken, 2007;
Cinelli et al., 2022; Environmental Research: Infrastructure and Sus-
tainability, 2021). In general, field visits remain essential, rendering the
process time- and resource-intensive, particularly when addressing
expansive and distant regions, as exemplified by the case of FUNAE, a
public institution that works on rural electrification in Mozambique
(Uamusse et al., 2017). Under such circumstances, the utilization of
open-source GIS data and procedures could expedite and enhance the
decision-making process (Dimovski et al., 2023).

GIS for rural electrification overview

Energy access planning, especially in developing countries, faces
various difficulties when trying to estimate load profiles and energy
trends across the years (The World Bank, 2013). As the population of
sub-Saharan Africa continues to expand rapidly (The World Bank,
2022), the task of augmenting electricity accessibility has proven to be
complex and financially demanding. It is within this context that the
integration of open-source and GIS data could signify a significant stride
in the analysis and characterization of remote regions (Isihak et al.,
2022; Blechinger et al., 2019), which applies to both load estimation and
the configuration of electrification solutions. In order to obtain a reliable
load estimation in rural areas, different algorithms are proposed in the
literature, based on different approaches, such as the stochastic bottom-
up procedure proposed in RAMP (Lombardi et al., 2019), the end-use

technique (Mwakitalima & King’ondu, 2015), and socio-demographic
comparison (Caquilpan et al., 2017), or by using archetypes of daily
energy demand profiles (Setiawan et al., 2009). Recently, computer
vision algorithms (Correa et al., 2021) and ML algorithms (Sarhani & El
Afia, 2015) have been gaining momentum. Indeed, these approaches
that are potentially able to find nonlinear correlations between real-life
data coming from surveys on one side, and socio-economic parameters
on the other side represent a viable way for assessing the energy re-
quirements. Pursuant to this objective, ESMAP initiated a data collection
initiative known as the MTF framework in 2015, aimed at gathering
extensive country-scale data and providing analysis to portray a coun-
try’s energy situation, including the categorization of different levels of
energy access into six distinct Tiers. This dataset holds the potential to
serve as input indicators for a ML-driven comprehensive energy
assessment analysis on a wide scale.

Table 1 summarize the features of the main procedures presented in
the literature: (Gershenson et al., 2019) utilizing Data for Good (Meta,
2022) applies a routing algorithm to a night-time lighting dataset from
NASA to estimate the transmission and distribution network across the
entire World, particularly in the African continent; OnSSET (Mentis
et al., 2017) calculates the LCOE and the resulting least-cost electrifi-
cation strategy (Khavari et al., 2021); Network planner (Natali & Car-
bajal, 2017; Cader et al., 2016) attempts to design electrification
solution from the level of a single community to the level of an entire
nation (“Network Planner”, n.d.; GEOSIM IED, n.d.) is a GIS-based
software developed for swiftly constructing highly interactive rural
electrification planning scenarios which enables georeferenced electri-
fication planning within a particular framework when load forecasts are
feasible and diesel, biomass, and hydro mini-grids can be modeled
(Watchueng et al., 2010). HOMER (HOMER Energy LLC, n.d.; Farret &
Godoy, 2005) is a software developed by NREL which conducts NPC
analysis and identifies the least-cost hybrid generation portfolio for a
pre-defined area of interest. The RNM (Khaitan & Gupta, 2013; Mateo
Domingo et al., 2011) uses a heuristic branch-exchange algorithm to
efficiently create various grid configurations aiming to reduce the
overall costs, considering investment, O&M and reliability. It was
developed to conduct analysis in Spain and in the US that would guide
the regulatory bodies in properly setting the revenue cap of local DSOs.
On the basis of RNM as a network designer, another tool named REM
was developed (Ciller et al., 2019; Amatya et al., 2019). It is a
comprehensive least-cost electrification design tool that was specifically
developed for brown- and green-field electrification planning analysis. It
identifies the most cost-effective electrification solution on a household-

Table 1
Summary of GIS electrification planner tools.

Tool Geospatial
planning

Grid
extension

Clustering
approach

Energy
system
model

Open
Source
Code

Electric system
optimization

Penalty
cost factor

Weakness

Data for
Good

x – – – x – – Only six countries - MV lines; Basic
implementation of a routing algorithm without a
comprehensive planning framework

OnSSET x x x x x – x 1 km × 1 km resolution; Improper assessment of
grid extension and no modeling of electric network

Network
planner

x x – – – – – Mini grid modeling based only on diesel
generators; Improper modeling of the electric
network

GEOSIM x x – x – – – For stand-alone systems only PV technology is
considered; Lack of transparency on the algorithms
utilized

HOMER – – – x – – – The distribution grid is not optimized or modeled;
Lack of large-scale analysis

REM/RNM x x – x – – x Energy sources are limited; Focus on urban areas;
Utilization of only heuristic algorithms

GISELE x x x x x x x Needs in input an estimation of the energy
demand; Clustering algorithm without a direct
way of determining the parameters; Limited
scalability
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level choosing between stand-alone systems, isolated microgrids with
local generation, and distribution network extension. Finally, a research
group at Politecnico di Milano has introduced a new tool named GISELE
that serves to delineate the optimal electrification strategy in a specified
area. This involves a comparative analysis between stand-alone micro-
grid systems and public grid extension, effectively leveraging GIS data,
graph theory, and MILP modeling techniques (Dimovski et al., 2023;
Corigliano et al., 2020). However, even though the tool has had a sig-
nificant evolution over the recent years, it should be noted that it lacks
features for a wide-scale energy assessment, which requires an external
procedure to quantify the energy needs of the identified communities.

The literature review clearly points out the complexity of the prob-
lem and the deficiency in solutions capable of adequately addressing the
overall issue. In particular, the authors highlight the lack of input data
or, equivalently, the substantial time and economic effort required to
collect data.

The objectives of this paper revolve around introducing an efficient
procedure that tackles time and resource constraints to promote a
comprehensive electrification strategy. First, open source and GIS data
are acquired and processed to locate communities and characterize them
with socio-economic indicators. Second, using the georeferenced sur-
veys from theMTF, a bottom-up energy assessment analysis is conducted
for a subset of the communities in the region of interest for which sur-
veys were available. Then, a ML algorithm is proposed to capture the
non-linear relationships between the communities’ indicators and their
energy needs, and subsequently extrapolate the energy demand results
to the entire area under analysis. Finally, the energy assessment is uti-
lized to support cost-effective electrification planning prioritizing the
detailed topological and geospatial design of the electric grid. This in-
cludes both communities that are supposed to be connected to the na-
tional grid, as well as those operating autonomously as isolated off-grid
systems. Additionally, the optimal hybrid generation portfolio is ob-
tained for the latter.

Proposed methodology

This chapter will go through the three steps of the proposed frame-
work depicted in Fig. 1. The first two are novelties proposed in this
paper, that are integrated with electrification planning tool GISELE,
aiming to illustrate the effectiveness of the proposed framework in

electrification planning.
In particular, the first step is Village Analytics in Africa (VANIA), a

spatial analyst software tool devoted to gathering and processing open-
source data for an area under investigation. It acquires and processes
open-source databases to obtain country-scale socio-demographic in-
formation, creates clusters of population (i.e. communities) and subse-
quently characterizes them, effectively enhancing the electrification
efforts with a diverse set of detailed data.

The second part is an energy estimation procedure based on the MTF
framework, which aims to estimate the energy demand of communities
of interest. Using the socio-demographic characteristics obtained from
VANIA and surveys collected within the MTF, it proposes an ML
approach to find complex nonlinear correlations between the energy
consumption of a community and its socio-economic characteristics.

Finally, as previously discussed, given the communities and energy
demand from the previous steps, GISELE is utilized to propose the
optimal electrification strategy (Dimovski et al., 2023). The next sub-
sections aim to provide sufficient input on the novelties that this
paper introduces, as well as a brief overview of the most important as-
pects of the tool. Finally, it is fully available open-source on the platform
GitHub under an APACHE 2.0 license, accessible on (Gisele, 2022).

VANIA

VANIA is a Python-based procedure that performs three comple-
mentary actions:

1) Locates communities as clusters within a territory of interest using a
novel density-based clustering approach.

2) Processes currently available open-source datasets to perform socio-
economic parametrization of the communities.

3) Labels the communities based on their presumed electrification sta-
tus, effectively locating the ones that would require access to
electricity.

The clustering procedure utilizes an iterative implementation of
DBSCAN, a renowned density-based algorithm, the main advantage of
which is its suitability for analyzing large datasets with varying sample
density (Ester et al., 1996).

The first step is the definition of the community borders, and for this

Fig. 1. Overall flowchart of the proposed methodology.
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goal the proposed procedure takes as input a dataset that implies the
spatial distribution of the population. Different datasets are investi-
gated, such as WorldPop’s 100-m resolution buildings count dataset and
its, 100-m resolution estimated population dataset (Tatem, 2017) and
Google’s Open Buildings dataset (Google, 2022). The objective is to
consider the variability of population density even within the same
administrative unit weighing a certain attribute of points referring to the
population distribution in space. For the two datasets referring to
buildings, the number of buildings or people inside the pixel is used for
the WorldPop raster, while the roof area is used for the Google vector.
The reason why the authors also test the result with the WorldPop
population dataset is evident when thinking about urban areas, where
the knowledge of both buildings and population density is relevant.
Thus, the proposed algorithm segments the population into clusters with
varying densities on a case-by-case basis, relying on the count of
building footprints and the population. The detection of possible outliers
is composed as described below:

1. Calculation of the Population Mean.
2. Calculation of the Population Standard Deviation.
3. Calculation of Z score as:

Z =
(X − μ)

σ (1)

where:
X = observation, which in this case is the actual population;
μ = Population Mean;

Fig. 2. Overview of the clustering procedure.

Table 2
Name, sources and format of considered dataset.

Name Format Source Name Format Source

Administrative MultiPolygon Vector UN Agencies Networks Vectors World Bank
Cell towers Points OpenCell Night Lights Raster NASA
Clustering (Sub) MultiPolygon Vector KTH Population Raster Facebook
Crops Raster Harvard Population Growth Raster Columbia
Development Potential Raster Columbia Poverty Raster WorldPop
Distance to city Raster – Protected areas Vector Protected Planet
Elevation Raster RCMRD Relative Wealth Points Facebook
Food Insecurity Raster Columbia Rivers Vector Hydroshed
GHI Raster Global Solar Atlas Roads Vector OSM
HDI Shapefile UN Schools Points OSM
Hospitals Points OCHA Singularities Vectors Multiple
Landcover Raster ESA Substations Vectors Multiple
Literacy Raster WorldPop Urban Raster WorldPop
Locations Vectors OpenStreetMap Wind Raster Global Wind Atlas
MTF Stata Dataset World Bank

Table 3
Processed attributes for each community through VANIA.

Number of administrative areas for
each level present in the cluster

Km of electric grids (categorized by type:
existing, planned, etc.)

Categorized OSM locations inside the
cluster

% of buildings close (500 m) to the electric
grids (categorized by type)

Area and extension of the cluster Km of roads within the cluster
Estimated (distributed) population
through Facebook’s dataset

% of buildings close (500 m) to the roads

Estimated Buildings distribution
through Worldpop’s dataset

Number of health centers and Number of
health centers per 1000 inhabitants

Population and building densities Close to (500 m) grid health centers
% of urban and rural areas inside the
cluster

Number of Schools and Number of Schools
per 1000 inhabitants

% of the area with night lights Close to (500 m) grid Schools
% of buildings in areas with night
lights

% of area inside the cluster for each
landcover category

Decision whether or not to include
cluster in the GISELE modeling

Rivers in a (15 km) buffer zone with
respect to the cluster

Estimation of the load barycenter of
the cluster

Closest rivers’ point and highest flow rate
river point

Max, min, average elevation Average GHI value in the cluster
Highest and average wind speed value
in the cluster

Max areas [km2] required for PV and Wind
Power based on peak load

Potential location for PV plant
(assuming only off-grid system)

Categorization of the electrification status

Potential location for wind plant
(assuming only off-grid system)
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σ = Population Standard Deviation.

4. Defining the threshold as the standard deviations from the mean,
beyond which a point is classified as an outlier.

5. Extraction of outliers as those points for which the Z score is greater
than the previously defined threshold.

The entire clustering procedure can be described through different
iterative steps displayed on Fig. 2. The initial phase involves the vec-
torization of buildings and population through i-level density clustering.
Furthermore, after the initial inputs regarding buildings, population,
and elevation have been converted into vector format, the tool generates
a geo-referenced regular grid of points. Once the boundaries of each
community are defined, the procedure attributes multiple indicators for
characterizing each community through economic, social, environ-
mental, and infrastructural information. Based on the availability of
various datasets, the outcome is a comprehensive database that pertains
to distinct, defined communities; data for each community is collected
from the sources documented in Table 2.

During the second step, the information gathered for each cluster are

processed and, through the combination of the geospatial data and the
datasets, the procedure defines different attributes, as detailed in
Table 3.

One of the key features of VANIA is the assessment of the electrifi-
cation status of each community, which is based on a two-step
procedure:

1. Should data pertaining to the existing distribution network be
insufficient, the procedure exclusively depends on nocturnal illumina-
tion data, sourced from a globally validated database (Li et al., 2020),
characterized by a spatial resolution of 1 km and a yearly temporal
resolution spanning from 1992 to 2018. The extended temporal reso-
lution permits the authors to identify the highest value for each pixel,
mitigating errors arising from weather conditions.

2. In case distribution network data are available, the procedure
allows for a more accurate estimation of the electrification status quo.
Indeed, it is possible to merge data from the night-time lighting dataset
(NASA) and the existing distribution network to identify communities (i.
e. clusters) fed by the national grid and those fed by a local microgrid.
The adopted algorithm is detailed in Fig. 3. Notably, the presented
approach evaluates the existing and planned grids, processes data for

Fig. 3. Definition of electrification rate and type procedure.

Fig. 4. Power and Functioning window of appliances (Bhatia & Angelou, 2015).
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each cluster, and ultimately schedules the optimization of the electrifi-
cation strategy, as described in the following chapters.

MTF and energy needs estimation

Once the communities and the electrification status quo are defined,
a reliable estimation of the energy needs is vital to the optimization of
the energy and electrical infrastructure. In this paper, the proposed
procedure is based on data acquired by the MTF, an initiative initiated in
June 2015 by ESMAP. The MTF collects a comprehensive set of data at
the country level, the approach recognizes that electricity access en-
compasses a spectrum of service levels encountered by households, en-
terprises, and institutions. In particular, according to the usage of energy
that a household could afford related to its income, different classes are
defined, from Tier 0 (no access) to 5 (the highest level of access)
(SEforALL, 2016; Mullen & Wade, 2020). As shown in Fig. 4, each tier
refers to the minimum required appliances, power capacity, and func-
tioning window to calculate the energy requirements (Foster & Tre,
2000; Mullen & Wade, 2020).

Nonetheless, at the time of writing in 2024, the geographical scope of
MTF data compiled by ESMAP is restricted, encompassing only 8 African
countries. Within this framework, this study endeavors to employ ma-
chine learning techniques to establish correlations between these
existing data and significant socio-economic parameters, thereby
enabling the indirect utilization of the MTF across the globe.

Several ML techniques have been investigated: Random Forest (Liaw
& Wiener, 2002; Zhang et al., 2022), Support Vector Machine (Chen
et al., 2022; Winters-Hilt & Merat, 2007) and Multiple Linear Regres-
sion, to determine the most suitable option for the problem under
investigation considering both accuracy and robustness in the

evaluation process. In succession, ML models were trained and applied
to the available dataset, followed by a stepwise simulation where fea-
tures were systematically added to ascertain the optimal input, using the
RMSE as the metric for comparison.

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(yi − ŷi)2

√
√
√
√ (2)

N = Number of samples, yi = Actual observation as the total consump-
tion of each community, yi = Predicted value of total consumption.

As a result of the large amount of possible input data and charac-
teristics, it is often required to guide the procedure to reduce the number
of irrelevant attributes, with the goal of avoiding inconsistent behavior
in the demand estimation, preserving accuracy and robustness (Bosisio
et al., 2021). Quantitative analysis showed that the distance from the
nearest city, wealth index, HDI, number of buildings, and population
were posited as the most pivotal parameters for delineating the energy
demand of a community. Consequently, these features were integrated
as features of the dataset, over which different algorithms were utilized
to select the one that minimizes the RMSE. The entire procedure is
shown in Fig. 5. In the investigated case study, as detailed in 4.1, RF
proved to be the most effective approach in maximizing the estimation’s
accuracy. The exploration and comparison of the ML algorithms falls
beyond the scope of this paper.

Optimal electrification planning: GIS for rural ELEctrification (GISELE)

The final stage of the proposed approach is the optimization of the
electrical infrastructure’s design within each unelectrified community,

Fig. 5. General approach for the estimation of load profiles and energy needs.

A. Dimovski et al.
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and then for the entire area of interest in a holistic manner. The opti-
mization process for devising the most cost-effective electrification plan
is executed using the tool GISELE, an open-source framework in Python
developed by the Energy4Growing team, which facilitates extensive
large-scale electrification analysis. GISELE is a comprehensive and
consolidated electrification software, with the latest edition containing
significant improvements over previous releases (Corigliano et al.,
2020). An exhaustive in-depth explanation of the tool and its stages is
available in (Dimovski et al., 2023), whereas the software itself is
accessible under a free APACHE 2.0 license. It is a cluster-oriented
procedure that integrates both top-down and bottom-up methodolo-
gies to generate a realistic outcome for a least-cost electrification
strategy. Unlike various tools and procedures proposed in the literature,
it puts emphasis on the structure and deployment of the distribution grid
by establishing a grid layout of the area that effectively accounts for
diverse costs linked to morphological constraints. This is done by
determining a penalty factor (Pf) for each point of the grid, in alignment
with factors contributing to the complexity of implementing grid dis-
tribution lines, including road distance, land cover, and elevation
(Monteiro et al., 2015), and their impact on the different costs related to
line deployment, such as poles, conductors, permits and maintenance,
with the various coefficients available in (Dimovski et al., 2023).

Pf = 1+
∑categories

i
penaltyi (3)

The distinctive merit of this approach lies in its capability to conduct
an extensive assessment of the electrical system, pinpoint the optimal
electrification solution, and account for potential challenges in the
routing of the electric lines.

With this being said, it has been well established in the literature and
practice that off-grid systems can be the preferred solution to electrifi-
cation in rural areas (Palit & Chaurey, 2011; Moshi et al., 2016). The
proposed procedure optimizes a hybrid generation portfolio for each
community and in an optimization environment chooses the economi-
cally preferred electrification solution for the area, with the other option
being an expansion of the national grid. The focus of the procedure is
scalable and robust grid-oriented solutions for relatively dense areas,
which is why intermediate solutions such as stand-alone systems are not
considered. In the forthcoming sub-sections, the main steps of the pro-
posed procedure are expounded on in detail.

The methodology proposed within this paper aims to integrate with
GISELE the procedures described previously, VANIA and the MTF
approach for energy demand estimation, to acquire more detailed in-
formation regarding the communities to be electrified, as well as their
energy needs. The division of the area in clusters (i.e. communities) and
the assignment of load demand are fundamental to the entire procedure
and can have a large impact not only on the economic evaluation of the
electrification, but also on the means of electrification proposed for each
community.

Microgrid generation portfolio sizing
This part of the procedure aims to calculate the optimal microgrid

portfolio for each community and related costs, to be considered as an
option in the final electrification planning. The adopted procedure is
based on the MILP model presented in (Petrelli et al., 2021). The model
allows the design of a hybrid off-grid system with various energy sour-
ces, including DG, PV, and BESS.

The availability of renewable energy resources is evaluated through
the usage of global open-source atlases (“Renewable Ninja,”, 2020). For
each community, this model receives data regarding the potential RES
production, energy demand estimated by the procedure in 3.2, as well as
costs and specifications of the components obtained as user input. The
optimization function is the minimization of the NPC for the duration of
the microgrid’s lifetime selected by the user, based on the deployment,
maintenance, and replacement cost for each element. Additionally, a

salvage value is considered for each element to account for the different
lifespan of various components.

minNPC =
∑

i
(ICi +O&Mi +RCi − SVi) (4)

where: i = Different generator types; ICi = Investment cost; O&Mi =

Discounted annual operating and maintenance costs; RCi = Replacing
cost; SVi = Salvage value.

Different constraints and variables are considered in the methodol-
ogy, with the most important listed below.

• Power Balance:

∑

b

(

Pdchh,b • ηb −
Pdchh,b
ηb

)

+Prenh +
∑

g
Pdgh,g +D

u
h = Dh (5)

where: Pdchh,b = discharging power of BESS b at time h [kW]; ηb = BESS
efficiency; Prenh = sum of renewable power injected into the system at
hour h [kW]; Pdgh,g = power produced by diesel generator at time h [kW];

Duh = unmet demand [kW]; Dh = load demand [kW].

• Renewable production:

Prenh ≤
∑

p
Np • Ppvh,p+

∑

w
Nw • Pwth,w (6)

where: Prenh = sum of renewable power injected into the system at hour h
[kW]; Ppvh,p = per unit power available from PV at time h; Pwth,w = per unit
power available from WT at time h.

• Diesel Generators constraints:

FCh,g = A • Uh,g +B • Pdgh,g (7)

Pdgh,g +R
dg
h,g ≤ Cg • Uh,g (8)

Pdgh,g ≥ Pg • Uh,g • Cg (9)

Uh,g ≤ Ng (10)

where: FCh,g = fuel consumption of generator at time h [kW]; A = cost
coefficient of the diesel generator [l/h]; Uh,g = number of diesel gen-
erators of type g active at hour h; B = cost coefficient of the diesel
generator [l/h/kW]; Pdgh,g = power produced by the diesel generator at

time h [kW]; Rdgh,g = reserve to be provided by diesel generator of type g;
Cg = capacity of diesel generator; Pg = minimum power of the diesel
generator; Ng = number of diesel generators.

More details on the formulation of the optimization with detailed
information regarding the variables, parameters, and constraints can be
found in (Petrelli et al., 2021).

Electric grid design within communities
This stage of the procedure is tasked with the routing of the electric

lines within each community, as well as citing the necessary distribution
transformers. The procedure for the design of the electric grid draws
inspiration from Luke’s algorithm (Lukes, 1978) and the analysis here is
purely topological, based on graph-theory and following the least-cost
logic of equipment deployment. It starts with the creation of a graph
(G) in which the edges (E) are obtained by connecting the final demand
points using the Delaunay triangulation, with the weights representing
the Euclidean distance. Subsequently, a tree structure is obtained by
using the Prim’s algorithm for obtaining the minimum spanning tree
(MST), which effectively minimizes the deployment of lines while as-
suring a connected network-like structure. Moreover, the algorithm has

A. Dimovski et al.
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an intermediate step which allows the consideration of roads by adding
them to the graph (G) as discounted edges, in order to design a realistic
structure of the distribution grid in semi-urban and urban areas by
discounting the roads in a 2-step procedure detailed in Dimovski et al.
(2023). This first step concludes the obtained MST as the LV lines,
should the given community be selected for electrification via an off-grid
system.

However, distribution is performed on the MV level, making it
necessary to deploy distribution transformers and potentially, MV lines
within the community. The procedure to split each community into n
sub-clusters relies on agglomerative clustering, following the logic that
network planners and DSOs generally adopt a parameter for the
maximum length of LV lines (LVMAX) when planning LV networks. This
is made possible by clustering by using a complete distance matrix
following the distances on the MST, rather than considering the
Euclidean distances. Then, each edge of the original MST that connects
populated points belonging to different sub-clusters is cut, creating n
sub-trees, representing separated LV networks. Finally, the secondary

substation of each LV network is placed in its weighted centroid, with a
parameter that allows the user to introduce bias toward roads proximity,
a common practice with DSOs for easiness of installation and mainte-
nance. The power of the transformer is selected based on the total power
requirement of the users connected to it by considering a logarithmic
contemporary coefficient for a more accurate estimation of the peak
load.

In case of multiple MV/LV substations within the community, the
internal grid design is concluded with the deployment of MV lines. In
this case, the MST algorithm is run by considering the distribution
transformers as the final vertices of the tree. The entire procedure is
illustrated in 4 steps on Fig. 6. To conclude, the output of this part of the
procedure is the equipment deployment for each community individu-
ally, that following a pre-processing procedure, provides input to the
final optimization that determines the means of electrification.

Integrated area optimization
Lastly, the third step entails the execution of a MILPmodel, aiming to

Fig. 6. Internal grid routing procedure: a) Identification of each building (red) and of the main roads (dotted black) b) candidate LV main feeder c) MST solution d)
MV/LV transformers deployment and final solution.
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determine the optimal electrification strategy encompassing the entire
investigated region. The objective is to minimize the net present costs
associated with the comprehensive electric infrastructure deployment,
encompassing the expansion of the national grid, the generation port-
folio of off-grid systems, and the local distribution grid within commu-
nities. Essentially, the optimization model takes on the task of
determining which clusters are to be connected to the national grid,
subsequently formulating the design for new distribution lines. Simi-
larly, the model identifies clusters that are to be autonomously operated
(i.e., powered by the generation portfolio developed in step 1).

The objective function (OF) subject to minimization is the following:

min
∑

(i,j)∈Ad

NPCAd,ijxij+
∑

(i)∈Mg

NPCMg,iyi +
∑

i∈S
NPCS,izi +

∑

(i)∈C

(1 − yi)DC,icoe

+
∑

(i)∈C

(1 − yi)NPCg,i

(11)

where: NPCAd,ij = net present cost of candidate connection (i,j); xij = 1 if
connection (i; j) exists, 0 otherwise; NPCMg,i = net present cost of
microgrid in community c; yi = 1 if microgrid is installed in node (i),
0 otherwise; NPCS,i = net present cost of substation s; zi = 1 if substation
in node (i) is used/built, 0 otherwise; DC,i = Energy demand of com-
munity c during microgrid’s lifetime;NPCgIi = net present cost of the MV
equipment within the communities.

The set of candidate connections (Ad) is obtained by using the
Delaunay triangulation between the various communities and connec-
tion points to the existing grid, obtaining a realistic subset of the po-
tential links. The cost and length of each line is not subject to a point-to-
point connection, but its rather obtained by executing the Dijkstra al-
gorithm on a graph-representation of the weighted grid of points
explained in 3.3. An example of the preset and candidate links that are
an input to the optimization procedure, as well as its output is illustrated
on Fig. 7.

Looking at the objective function it can clearly be seen how the final
optimization considers different costs for the internal grids and energy
used based on the means of electrification selected, adding the costs of
MV equipment and energy consumed only in case they would be
required in the final solution. In the case of a microgrid, in the cost
evaluation there is expenditure for the generation portfolio rather than
energy purchased. It should be noted that due to the different lifetimes of
microgrid components and conductors, a salvage value is adopted in the
NPC calculation in order to put the costs on the same timeframe.

Case study & numerical simulations

The proposed framework was then applied on a real-life study case in
the Federal Democratic Republic of Ethiopia. This country is charac-
terized by 85 % of people living in rural areas (ETHIOPIA Data Portal, n.
d.) and a share of 51.1 % electricity access in 2020, a percentage that can
reach 39.4 % of the population in rural areas (“World Bank - Data,”,
2020; Douglas et al., 2016). The analysis presented in this chapter

consists of two parts: a) Leveraging the clustering, acquisition of socio-
economic attributes and MTF surveys to provide an estimation for the
energy demand of various communities. Owing to the abundance of data
availability combined with low electrification rates, the Tigray region in
the north of the country was selected as the most appropriate and
interesting candidate for the energy demand assessment. b) Using the
analysis of the electricity requirements, provide a comprehensive elec-
trification planning for an area of interest. For this segment of the
analysis, the authors chose the Naeder province in Tigray to offer a more
concise and concentrated case study. It spans 500 km2 situated near the
national grid with very low electricity access in general and without an

Fig. 7. Integrated area optimization procedure: a) Identification of candidate
lines to connect the communities’ previously determined MV grids (dotted
green line); b) Final solution where the red clusters are operated as microgrids,
whereas the orange ones are grid-extensions (green line).

Fig. 8. Spatial distribution of MTF surveys in Ethiopia.

Fig. 9. Population distribution in Naeder.
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expanded distribution network. Concentrating on this particular prov-
ince will not only provide a detailed electrification strategy for a pre-
dominantly unelectrified area, but also enable a more profound
understanding of the operational procedures involved. Moreover, the
output of VANIA for the entire Ethiopia is available upon request.

Communities’ identification and energy needs estimation

Implementing the procedure within the Tigray region involved
adopting the three-step approach outlined in the preceding chapter. The
Ethiopia MTF surveys acquired responses from 4317 individuals repre-
senting their respective household that consisted of 4.5 members on
average, fairly close to the official national average of 4.6 members,
distributed across 225 communities. The spatial distribution of MTF
surveys across the country is illustrated on Fig. 8, revealing a notable
concentration in the northern part encompassing Tigray and Naeder.

Having defined the boundaries of the communities for which MTF
surveys were available, the data was utilized to allocate the share of

households in each tier. Notably, the MTF surveys provide insights into
the distribution of households across different tiers, that are used as
proxy for assessing the energy demand. Moreover, Fig. 9 represents the
spatial distribution of population in Naeder, which is another parameter
that has a significant impact on the energy demand. Utilizing the
knowledge of the tier distribution and population estimates of each
community, its total energy consumption can be estimated. It is note-
worthy that a significant portion of households predominantly falls
within Tier 2 and Tier 3 categories. On the other hand, the procedure
detailed in 3.1 has provided key socio-economic indicators, facilitating a
correlation between them. An example of this pre-processing for a
selected set of communities is presented on Table 4, where the indicators
are shown on one side, and on the other side, the distribution of tiers and
the estimation of the average daily energy demand of a household (HH)
that come as a result of the MTF surveys processing.

Proceeding to the second step, the task entails estimating the daily
energy requirements for each individual community located by VANIA
in the Tigray region. Within this subset, 80 % of the communities were
designated as a training dataset, while the remaining 20 % constituted
the testing dataset. Having displayed the highest degree of stability in
terms of performance and lowest error, the RF was utilized as described
in 3.2.

Interestingly, as reported in Fig. 10, the features carrying the greatest
weight for the RF were identified as the distance from the nearest city
and the average wealth index. These features distinctly emerged as the
most influential factors in the classification of energy demand.

Then, the trained RF model was employed to compute the antici-
pated energy consumption, subsequently juxtaposed against the actual
energy requirements. An example of the comparison between real and
estimated energy demand for 20 communities used as a validation set is
illustrated in Fig. 11. The obtained results are subject to an RMSE value
of 207 Wh and a MAE of 138 Wh, which is a reasonably accurate esti-
mate compared to the actual demand and more than fitting for the

Table 4
Summary of outputs from VANIA1 and MTF2 for a subset of communities in Tigray.

Community VANIA MTF

Distance from city1

[km]
Wealth
Index1

HDI1 Buildings
count1

Population1 Tier 12 Tier 22 Tier 32 Tier 42 Tier 52 Daily
Consumption
[Wh/HH]

Degehabur 190.79 − 0.52 0.4 231 603 0 0.08 0.5 0.17 0.25 3133
Kebribeyah 162.99 − 0.47 0.4 284 766 0 0.04 0.48 0.27 0.21 3116
Zequala 441.72 − 0.45 0.5 194 343 0 0.73 0.27 0 0 416
Janamora 1179.49 − 0.45 0.5 243 956 0.5 0.5 0 0 0 106
Asayita 308.73 − 0.44 0.4 875 3693 0.02 0.27 0.58 0.13 0 1062
Bulen 768.94 − 0.41 0.5 413 1218 0.17 0.67 0.17 0 0 302
Abaala 89.67 − 0.4 0.4 131 898 0.08 0.46 0.29 0 0.17 1751
Ambasel 327.93 − 0.4 0.5 358 1118 0 0.33 0.5 0.17 0 1133

Fig. 10. Importance of features in RF algorithm.

Fig. 11. Comparison of predicted and actual consumption for a validation set.
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subsequent electrification planning.
Finally, the trained RF algorithm was adopted to estimate the daily

energy demand for each community within the Tigray province of
Ethiopia. To prevent overloading the paper, the detailed outcome of the
energy demand assessment are omitted here, but are available in Pez-
ham and Ahmadi (2022). The procedure provided an estimate of 1315
Wh average electricity demand per household, ranging between 330 and
2700 Wh based on their socio-economic characterization. The average
household energy demand for the communities within Naeder was

estimated at 1420 Wh, slightly higher than Tigray’s average.
These estimations exhibit a significant range of variation and it’s

clear how considering just a unique energy demand may lead to a sub-
optimal electrification strategy and misguide stakeholders on the
required resources. To provide a clear parallel, communities with a
lower household demand and low demographic density generally tend
to lean toward off-grid solutions to avoid capital investments in over-
designed infrastructure.

Fig. 12. Grid of point parametrization based on a) road distance, b) elevation, c) land cover, d) slope.
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Electrification planning

In the concluding phase of the electrification planning, the design of
both the internal electric grid within each community and the potential
interconnection with the national grid is executed. The population in
Naeder was clustered into 50 communities, providing electrification
guidelines for approximately 52,150 inhabitants. This task commences
with the representation of the Naeder province through its principal
spatial attributes, as illustrated in Fig. 12. These attributes encompass
distance from roads (a), elevation effects (b), land cover (c), and slope
(d), all of which significantly influence the feasibility of deploying
electric distribution lines. These spatial characteristics were directly
employed to formulate the weighted grid of points, as detailed in 3.3.
The obtained cost surface can be visualized on Fig. 13, whereas the
energy estimation in the first year of electrification for the various
communities in Naeder is displayed on Fig. 14. The grid routing algo-
rithm subsequently utilizes the cost surface to determine the optimal and
cost-effective deployment of distribution lines.

In order to identify the optimal electrification strategy, the simula-
tion relies upon the following assumptions: annual demand growth of 2
%, fuel cost of 0.75 € per liter, nominal voltage of 15 kV for distribution
lines, grid expected lifetime set to 20 years, microgrid expected lifetime
set to 10 years and a maximum allowed length of low voltage lines equal
to 2 km. The electricity tariff in Ethiopia is heavily subsidized and as
such is not a good representative of the actual costs of energy, which is
why it was substituted for a more realistic value of 100 €/MWh.
Following guidelines from stakeholders close to electrical utilities, the
base cost of MV lines is set to 10,000 €/km, whereas the cost for LV lines
is equal to 8000 €/km. In terms of MV/LV substations, the ones selected
within the case study are 50 and 100 kVA, with costs of 1500 and 2100€,
respectively. The complete list of parameters and related costs utilized in
the optimizations is available in the annexures in (Dimovski et al.,
2023).

As delineated in preceding chapters, the presented framework opti-
mizes the microgrid generation portfolio for each cluster, tailored to

fulfill the specific local energy demands. The load profiles used to
optimize the generation portfolio were obtained with the tool RAMP
(Lombardi et al., 2019) starting from the energy needs of each com-
munity. Given this procedure, the average household is estimated to
consume a peak power of 165 W, which is in line with the estimations of
the MTF for a user that is between Tiers 2 and 3. The result obtained an
equal distribution, 50 % each, between PV + BESS and DG + PV + BESS
microgrids, with a preference for the latter in case of communities with
higher energy demand. The generation portfolio obtained and related
costs were subsequently compared with the expenses associated with the
expansion of the distribution grid adopting the integrated optimization
presented in 3.3.3.

Fig. 15 shows Naeder’s optimal electrification strategy suggested by
the proposed procedure. Communities shaded in light yellow corre-
spond to communities slated for connection to the national grid, facili-
tated by the green MV distribution lines. Meanwhile, blue shapes denote
communities recommended for electrification via local stand-alone
microgrids. A higher resolution focus is provided to illustrate the level
of detail of the solution proposed. Within the scope of the study, the
procedure selected 11 out of 50 communities for electrification via
stand-alone microgrids and local generation, whereas the remaining
communities were connected to the national grid. Considering Figs. 13
and 14, it becomes evident that the communities proposed for off-grid
electrification are the ones in relatively difficult terrain, with a lower
energy demand. In terms of electrical infrastructure required for
extending the national grid, the overall electrification will require the
deployment of 54 MV/LV substations to supply an estimated peak load
of 686 kW, 515.8 km of LV lines and 139.35 km of MV lines.

Expecting an accurate prediction of the future would be extremely
impractical, which is why policymakers are typically charged with
developing scenarios to address the uncertainty of input parameters and
their impact on the outcomes. Sensitivity analysis offers a practical way
to deal with parameter uncertainty in situations where stochastic opti-
mization would be computationally infeasible, as exemplified by this
methodology. With this in mind, the analysis was deepened with a

Fig. 13. Cost surface representation of Naeder. Fig. 14. Daily energy demand of the communities in Naeder.
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sensitivity analysis conducted on the cost of electricity purchased from
the national grid, investigating prices ranging between 80 €/MWh and
145 €/MWh. In recent years the cost of electricity has been extremely
volatile and it’s paramount to analyze its effect on the optimal

electrification solution.
The complete results from this sensitivity analysis are presented in

Table 5, whereas the georeferenced solution for three different prices of
electricity is displayed on Fig. 16. As anticipated, the conducted simu-
lations illustrate that with an increase in the cost of electricity supplied
by the national grid, a larger number of dispersed communities could be
more economically served by local stand-alone microgrids. The analysis
has shown that 3 of the 50 communities have a demand so low that given
the surrounding terrain, a MV extension would not be economically
justified in any case. Interestingly, fluctuations between 80 and 100
€/MWh show minor changes in the electrification strategy, with an
increased preference toward off-grid solutions if the price reaches 110
€/MWh. Moreover, variations between 110 and 120 €/MWh do not have
an impact on the final solution which suggests that the next communities
in line for off-grid systems show a significant jump in investment cost for
the generation portfolios required. Cost of electricity upwards from 120
€/MWh result in a drastic preference toward off-grid systems, with the
price of 145 €/MWh being the break point above which it is not cost-

Fig. 15. Optimal electrification strategy for the area under investigation.

Table 5
Outcome of sensitivity analysis on the cost of energy.

CoE Number of microgrids Microgrid CAPEX MV Network Length MV Network CAPEXa Peak powerb Population electrified via extension

[€/MWh] [k€] [km] [M€] [kW]

80 3 81 155.3 2.91 719 51,708
90 4 129 153 2.84 715 51,440
100 5 176.5 150.45 2.79 711 51,190
110 11 489.2 139.35 2.48 686 49,479
120 11 489.2 139.35 2.48 686 49,479
130 20 1180 118.35 1.96 621 44,880
140 37 3792 78.75 1.15 455 33,050
145 50 6422 41 0.44 0 0

a Costs are inclusive of both the electric lines and MV/LV substations.
b Power requested from the national grid in the first year of electrification.

Fig. 16. Sensitivity of CoE on the optimal electrification strategy.
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effective to extend the national grid at all, but rather electrify the entire
province with microgrids.

The final solution must depend on the adequacy of the underlying
system to host the additional request, which makes it important to note
that the optimal strategies between 80 and 130 €/MWh lead to a dif-
ference of 98 kW of peak load requested from the system, which is a
rather insignificant impact.

Conclusion

This paper addressed the challenge of optimizing electrification
planning in rural areas, a task that confronts key difficulties such as data
reliability and the accurate assessment of energy requirements and load
demand profiles. The central aim of this study was to assess the optimal
electrification design for rural regions, addressing these challenges
through a three-step procedure. In the initial phase, a novel approach
named VANIA is introduced to identify communities within an area of
interest and characterize them with key socio-economic indicators. The
second step employs an integration of the MTF and a ML algorithm to
estimate the energy requirements of each identified community estab-
lishing non-linear correlations between the socio-economic indicators
and the energy requirements obtained from the MTF surveys. The case
study analyzed demonstrated that the most significant correlations with
the communities’ energy requirements are associated with indicators
such as distance from the nearest city and the average wealth status. The
final step leverages an enhanced version of the tool GISELE to ascertain
the optimal electrification strategy. Moreover, having understood that
the cost of electricity is extremely volatile in post-COVID times, the
flexibility of the methodology was demonstrated by conducting sensi-
tivity analysis on the price of electricity absorbed from the national grid.
In fact, this confirmed the hypothesis of the sensitivity of the final so-
lution to variations of the input parameters. The analysis showed how
the valuation of the cost of energy supplied from the national grid may
impact the optimal electrification strategy. Indeed, variations between
80 and 145 €/MWh showed a significant influence, starting from a
strong preference toward grid extension, to a complete electrification
using isolated microgrids. Overall, the comprehensive optimization
tools proposed in this paper hold the potential to streamline decision-
making processes for defining the most suitable long-lasting electrifi-
cation strategy in rural areas, benefiting both local and global stake-
holders. The main challenge to the widespread adoption of this
framework is the lack of accurate and accessible geo-referenced data,
which is something that has shown improvement over time.
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