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ABSTRACT

This paper focuses on the application of the Covector Mapping Principle (CMP) to low-thrust
trajectory optimization problems to analyze the performances of the algorithm when non-complete
methods are employed. Non-complete methods are those numerical schemes that do not provide
an analytical mapping between the dual variables of direct and indirect approaches. However,
since these approaches stem from the same original continuous-time Optimal Control Problem,
it is intuitive that a link between them should exist. It is investigated and applied to an Energy
Optimal Problem to overcome the disadvantages characterizing direct and indirect methods when
used separately in order to improve mission planning. The same problem is solved with a global
Pseudospectral method, belonging to the class of complete schemes, to compare the results and
verify if and to what extent the CMP can be exploited with non-complete methods. The results show
the mapping to be successful even without an analytical law, allowing to obtain both accuracy and
robustness, and thus overcoming the disadvantages of the two main classes of numerical methods.
The performances obtained with the complete method are better due to both its fast convergence
properties and the availability of an analytical mapping.

Keywords: Low-Thrust Trajectory Optimization; Nonlinear Optimal Control; Covector Mapping Principle; Direct
Methods

Nomenclature

CMP = Covector Mapping Principle
CMT = Covector Mapping Theorem
EO = Energy Optimal
LGR = Legendre-Gauss-Radau
NLP = Nonlinear Programming Problem
OCP = Optimal Control Problem
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ODE = Ordinary Differential Equation
PS = Pseudospectral
RK = Runge Kutta
ToF = Time of Flight
TPBVP = Two Point Boundary Value Problem

1 Introduction
The Optimal Control Problem (OCP) consists in determining the input, namely the controls, to

a dynamical system in such a manner that a specified performance index is optimized while a set of
constraints is satisfied. It is used to address the problem of mission planning, which is performed offline
and plays a crucial role in reaching the goal of a space mission while keeping the cost reasonable.
Therefore, robustness of the algorithm and accuracy of the solution are important for the mission
objectives. In recent years, electric propulsion is increasingly gaining attention in this field, as it is more
efficient than classical chemical propulsion, guaranteeing a specific impulse approximately ten times
higher [1]. Propellant mass is consequently saved, allowing for heavier payloads to be embarked. In
addition, both launch windows are extended and control abilities are more flexible and precise. However,
this technology provides a low level of thrust (in the order of mN), leading to a rather difficult trajectory
optimization process, since it requires the determination of a continuous control law. An analytical
solution for this problem does not exist because of the high complexity it embeds. Therefore, numerical
techniques have been developed and are continuously improved. They are commonly classified as either
direct or indirect methods [2]. The first approach discretizes and then optimizes the problem, and
is characterized by a larger convergence basin, but does not guarantee solution optimality. The latter,
instead, firstly derives the optimality conditions, and then solves the problem numerically. It is considered
as more accurate, but difficult to initialize. Despite these intrinsic features, the methods stem from the
same original continuous-time OCP, and therefore it seems intuitive that a connection between them
exists [3]. The Covector Mapping Principle (CMP) works on the dual variables of the methods to exploit
this link with the aim of overcoming the limitations and providing an algorithm that is both accurate
and robust. Researchers have demonstrated that only few methods, denoted as complete [4], provide an
analytical link through a Covector Mapping Theorem (CMT), and so this paper analyzes both if and to
what extent the CMP can be exploited with non-complete methods. A different approach is presented in
[5], where dual variables of the indirect formulation are approximated starting from the results obtained
using a direct approach.

In particular, the aim of this work is to improve mission planning by combining the two main classes
of methods through the CMP with non-complete methods. It is proved both whether costates pass on
the information of optimality to direct methods, being an initial guess for Lagrange multipliers, and also
if robustness and flexibility of direct techniques can be exploited to solve the problem and to provide a
good initial guess for the indirect costates. Hermite-Simpson scheme [2] is used as direct non-complete
collocation method, while a comparison is done by employing a complete Pseudospectral (PS) method
with Legendre-Gauss-Radau (LGR) collocation [6, 7]. A simple shooting algorithm with Runge-Kutta
(RK) 7-8 integration scheme is adopted within the indirect formulation [8]. Performances are analyzed
and compared by solving a two-body low-thrust Energy Optimal (EO) problem, showing the possibility
of exploiting the principle with non-complete methods.

The remainder of the paper is organized as follows: section 2 introduces the trajectory optimization
problem and the numerical methods traditionally used for the solution. The CMP is presented in section
3, where also the mapping between dual variables for non-complete methods is provided. Section 4
analyzes the results of the simulation, and eventually section 5 presents the conclusions along with some
open points.
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2 The Trajectory Optimization Problem
Without loss of generality, consider the EO trajectory optimization problem in Lagrange form.

It consists in determining the control history 𝒖(𝑡) that minimizes a given functional 𝐽, denoted as
performance index, while satisfying dynamic constraints ¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝑡), and boundary conditions
𝝓(𝒙(𝑡0), 𝑡0, 𝒙(𝑡 𝑓 ), 𝑡 𝑓 ) = 0. This results in the following mathematical statement:

minimize 𝐽 =

∫ 𝑡 𝑓

𝑡0

L(𝒙(𝑡), 𝒖(𝑡), 𝑡)𝑑𝑡, (1a)

subject to ¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝑡), ∀𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (1b)
𝝓(𝒙(𝑡0), 𝑡0, 𝒙(𝑡 𝑓 ), 𝑡 𝑓 ) = 0 (1c)

where L(𝒙(𝑡), 𝒖(𝑡), 𝑡) represents the running cost [9]. In particular, for the two-body low-thrust opti-
mization problem expressed in Cartesian coordinates, the states correspond to position 𝒓, velocity 𝒗, and
spacecraft mass m. The cost function for the EO problem and the continuous equations of motion can be
written as

𝐽 =

∫ 𝑡 𝑓

𝑡0

𝑇max
𝐼sp𝑔0

𝑢2𝑑𝑡, (2)

¤𝒙 =


¤𝒓

¤𝒗

¤𝑚

 =


𝒗

−𝜇⊙
𝑟3 𝒓 + 𝑢𝑇max

𝑚
𝜶

−𝑢𝑇max
𝐼sp𝑔0


. (3)

where 𝜇⊙ is the Sun gravitational constant and 𝑔0 the acceleration of gravity at sea level on Earth. In
this work, both maximum thrust 𝑇max and specific impulse 𝐼sp are considered as constant. The control
variables are the thrust magnitude 𝑢 ∈ [0, 1], and the thrust direction unit 𝜶, that embeds in-plane 𝛼 and
out-of-plane 𝛽 angles,

𝜶 =

[
sin(𝛼) cos(𝛽) cos(𝛼) cos(𝛽) sin(𝛽)

]𝑇
. (4)

As already mentioned in section 1, an analytical solution to low-thrust trajectory optimization
problems does not exist without a sufficient level of assumptions, and therefore they are solved numerically
using the methods introduced in the next section.

2.1 Numerical methods
The numerical approaches adopted to solve trajectory optimization problems are divided into two

main categories, namely direct and indirect methods [2].

Indirect methods

In an indirect method, calculus of variations leads to the derivation of first-order necessary conditions
for optimality, also denoted as Euler-Lagrange equations [10]. The augmented cost functional 𝐽 is
introduced through the dual variables 𝝂 linked to the boundary conditions and through the vector of
costate multipliers of the dynamics, 𝝀(𝑡), resulting in

𝐽 = 𝝂𝑇𝝓(𝒙(𝑡0), 𝑡0, 𝒙(𝑡 𝑓 ), 𝑡 𝑓 ) +
∫ 𝑡 𝑓

𝑡0

[L(𝒙(𝑡), 𝒖(𝑡), 𝑡) + 𝝀𝑇 (𝑡) ( 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝑡) − ¤𝒙(𝑡))]𝑑𝑡. (5)
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The problem consists in formulating the necessary conditions for a stationary point of 𝐽. Therefore,
its first derivative 𝛿𝐽 is set to zero. In order to obtain the necessary conditions in a compact form, the
Hamiltonian 𝐻 of the problem is defined as

𝐻 (𝒙(𝑡), 𝝀(𝑡), 𝒖(𝑡), 𝑡) = L(𝒙(𝑡), 𝒖(𝑡), 𝑡) + 𝝀𝑇 (𝑡) 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝑡), (6)

and the resulting first-order necessary optimality conditions read

¤𝒙 = 𝐻𝜆, ¤𝝀 = −𝐻𝑥 , 0 = 𝐻𝑢, (7)

where the subscripts denote partial derivation. The first and second equations correspond respectively
to dynamic constraints and costate dynamics, also denoted as adjoint equation, while the third one is an
algebraic equation for the controls. A more general expression for the latter corresponds to Pontryagin’s
Minimum Principle [11]

𝒖(𝑡) = argmin
𝒖∈𝑈

𝐻 (𝒙(𝑡), 𝝀(𝑡), 𝒖(𝑡), 𝑡), (8)

where 𝑈 is the set of feasible controls [9]. The differential-algebraic system in Equation (7) shall be
solved together with the final boundary conditions and the following transversality condition

𝝀(𝑡 𝑓 ) = [𝝂𝑇𝝓𝑥]𝑡=𝑡 𝑓 . (9)

Euler-Lagrange equations represent necessary conditions [12], and, together, they form a two-point
boundary value problem (TPBVP), which is solved using a numerical method.

Direct methods

Direct methods, instead, transcribe the original OCP into a mathematical programming problem
without deriving the first-order necessary optimality conditions. This process involves the approximation
of control and/or state variables over a discretized time grid [2]. The resulting problem is then optimized
using Nonlinear Programming (NLP) solvers, which are based on Newton scheme, and therefore are
denoted as gradient-based methods.
This work employs direct collocation method, whose features are now presented. The time interval
[𝑡0, 𝑡 𝑓 ] is discretized into a finite sequence of N successive time instants 𝑡𝑖, and both states and controls
are approximated on this time grid. This step can be summarized as

[𝑡0, 𝑡 𝑓 ] ⇒ 𝑡𝑖, 𝑖 = 1, ..., 𝑁, where 𝑡1 = 𝑡0, 𝑡𝑁 = 𝑡 𝑓 , (10)

𝒙𝑖 = 𝒙(𝑡𝑖), 𝒖𝑖 = 𝒖(𝑡𝑖). (11)

Then, the dynamics constraints in Equation (1b) are replaced by defect constraints and imposed
at 𝑡𝑖. Their formulation depends on the adopted numerical scheme. The most extensively used are
Hermite-Simpson scheme [2], high-order Gauss-Lobatto quadrature schemes [13], and PS methods [6].
The defect constraints and the boundary constraints in Equation (1c) are grouped together within a vector
𝒄(𝒚), where 𝒚 is the vector of decision variables

𝒚 = [𝒙𝑇1 , . . . , 𝒙
𝑇
𝑁 , 𝒖

𝑇
1 , . . . , 𝒖

𝑇
𝑁 ]𝑇 = [𝑿𝑇 ,𝑼𝑇 ]𝑇 . (12)

The optimization process aims at finding the pairs 𝒙𝑖, 𝒖𝑖 that minimize the objective function 𝐹 while
satisfying the constraints 𝒄(𝒚) ≤ 0. The solution is obtained with a Lagrange multipliers approach. The
minimization of the Lagrangian
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𝑳(𝒚, 𝝀) = 𝐹 (𝒚) − 𝝀̃𝑇 𝒄(𝒚), (13)

where 𝝀̃𝑇 corresponds to the Lagrange multipliers, leads to a set of Karush-Kuhn-Tucker (KKT) condi-
tions, whose solution yields the optimal control history and corresponding trajectory. Therefore, the pair
(𝒙∗, 𝝀̃∗) is an optimum if it satisfies the necessary conditions [2]


∇y𝐿 = g(y) − G⊤(y)𝝀̃ = 0
∇𝝀𝐿 = −c(y) = 0
𝜆̃∗
𝑖
≥ 0 for all 𝑖 = 1, ..., 𝑛𝐴

(14)

where ∇ indicates the derivatives the Lagrangian with respect to 𝒚 and 𝝀, and 𝑖 stands for the 𝑛𝐴 active
constraints. The system (14) can be solved using a Newton method, and 𝒈 and 𝑮 in the formulas are
respectively the objective function gradient and the Jacobian matrix of the constraints, mathematically
defined as

g(y) =
(
𝜕𝐹

𝜕y

)⊤
=


𝜕𝐹
𝜕𝑦1
...
𝜕𝐹
𝜕𝑦𝑛

 , G(y) = 𝜕c(y)
𝜕y

=


𝜕c1
𝜕𝑦1

· · · 𝜕c1
𝜕𝑦𝑛

...
cm
𝜕𝑦1

· · · cm
𝜕𝑦𝑛

 . (15)

Comparison

Now that the methods have been described, their main features can be summarized. By considering
the procedure adopted, indirect methods are often referred to as optimize then discretize [2], since the
first-order necessary conditions for optimality are analytically derived and solved [14]. Their primary
advantage is the high accuracy of the solution, but the necessary conditions need to be re-computed every
time the problem statement changes. Furthermore, the problem is very sensitive to the initial guess of
the costates, which is not intuitive, causing poor convergence properties and lack of robustness [15].

On the other hand, direct methods transcribe the original continuous-time OCP into a NLP. Therefore,
they discretize then optimize. They have broader convergence properties and thus are easier to initialize,
but the lack of first-order necessary optimality conditions derivation yields to uncertainties in the nature
of the solution. Path constraints are easily handled, making these techniques appealing for large and
complex optimization problems. However, a large number of variables is generally involved, leading to
numerical issues and requiring high computational effort [16].
The main properties are summarized in Table 1.

Table 1 Direct and indirect methods main features.

Method Flexibility Robustness Optimality
Indirect × × ✓

Direct ✓ ✓ ×

3 Covector Mapping Principle
After an overview of numerical methods has been given, we present the Covector Mapping Principle

(CMP). As already discussed, low-thrust trajectory optimization problems are treated with either direct
or indirect methods. Promising techniques are continuously developed and updated thanks to progress
in computer technologies and mathematics [3], but they always treat the two categories of methods as
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separate. However, they originate from the same continuous-time OCP, and therefore the existence of a
link between them seems intuitive. In the last decades, researchers came up with the idea that Lagrange
multipliers of the direct approach are actually a discretized version of the costate variables resulting from
the indirect formulation [17–19]. The aim of the CMP is to exploit this relation and build an algorithm
that combines convergence properties of direct methods and accuracy of indirect ones. First of all, the
concept behind this method is contextualized in Optimal Control Theory by means of functional analysis,
and in particular by the Hahn-Banach theorem. The reader should refer to [20] for a detailed study. Note
that the notation in this section differs from the rest of the paper. If a generic vector Ordinary Differential
Equation (ODE) and a functional H are such that

¤𝒙 = 𝒇 (𝒙), (16)

H(𝜸, x) := 𝜸𝑇 f (x), (17)

where 𝒇 : R𝑛 → R𝑛 is continuous and differentiable, 𝒙, 𝜸 ∈ R𝑛, and 𝜸 is an auxiliary vector of variables.
Then, an auxiliary ODE can be defined as

− ¤𝜸 :=
(
𝜕H
𝜕x

)𝑇
=

(
𝜕f
𝜕x

)𝑇
𝜸. (18)

Since it is always possible to define H , it follows that the auxiliary ODE always exists because
Equation (16) exists. Therefore, Equation (16) can always be transformed to a higher-dimensional space,
the primal-dual space [4]. This dualization process allows to reinterpret direct and indirect methods as
part of the same formulation. Indeed, the definition of necessary optimality conditions in the context of
indirect methods, Equation (7), is the result of the dualization through the Legendre-Fenchel transform
[21], while a direct method can instead be interpreted as the solution of only half of the Hamiltonian
system, thus ignoring the optimality of the solution. As a consequence, the CMP exploits the hidden
Hamiltonian structure to reach its goal.

3.1 OCP formulations

P

P𝜆

PN

P𝜆N

PN𝜆

D
ua

liz
e

Discretize

Convergence

Discretize

Convergence

D
ua

liz
e

C
M

T

Fig. 1 OCP formulations. In blue the hy-
brid method. In orange the indirect strategy.

To better understand the method underlying logic, dif-
ferent formulations of the same OCP, denoted by P, are
introduced. They are represented in Figure 1. Problem 𝑷
is the original continuous-time OCP. As shown in section
2, it can be dualized, obtaining the TPBVP 𝑷𝝀. It is then
solved through numerical integration, therefore introducing
discretization. This formulation corresponds to 𝑷𝝀𝑵 . The
path 𝑷 → 𝑷𝝀 → 𝑷𝝀𝑵 in orange in Figure 1 is the vari-
ant solved by indirect methods. On the other hand, 𝑷 can
also be firstly discretized, as in direct approaches, becom-
ing 𝑷𝑵 , and a zero-finding version 𝑷𝑵𝝀 of 𝑷𝑵 is obtained
through dualization. This is the most implemented version
in commercial software [22]. The CMP follows the hybrid
technique in blue in Figure 1. In particular, problem 𝑷 is
firstly discretized using a method that satisfies the CMP, re-
sulting in 𝑷𝑵 . It is subsequently dualized becoming 𝑷𝑵𝝀,
and solved. The CMT is exploited to compute the set of
costate variables, which are then used to verify the necessary optimality conditions [3]. Therefore, the
direct method is used as initial guess generation mechanism for an indirect method, and this technique
allows to avoid the issues caused by the use of an indirect approach only, being both accurate and robust.
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The CMP is defined as follows: given both the solution to the continuous OCP denoted by 𝑷 and a
series of approximations of 𝑷 converging to it, the CMP states that, under certain circumstances dictated
by the CMT, there exist a sequence of solutions of the approximated problem leading to the solution of
the original one.

Dual variables are the central characters of the CMP, and they correspond to costate variables in
indirect methods and to Lagrange multipliers in the direct approach. More specifically, the mapping
consists in finding the transformation of the multipliers between problems 𝑷𝑵𝝀 and 𝑷𝝀𝑵 . Finding this
map is not straightforward, since not all discretization methods allow its existence. Methods that provide
a CMT are referred to as complete methods [4], and they include the Symplectic Euler method [23],
which however is characterized by poor accuracy, Hager’s family of Runge-Kutta methods [3], that are as
accurate as the order of the method employed, and PS methods [6]. The last ones are the most promising,
being characterized by a very fast convergence rate, known as spectral accuracy, and by an Eulerian-like
simplicity [24].

3.2 CMP with Non-Complete methods
The crucial step to reach the goal of this work is to provide a mapping between Lagrange multipliers

and costates when a non-complete method is used in order to verify if and to what extent the CMP can
be exploited. Since direct and indirect methods have different formulations, these are recalled. The
expression of the augmented cost functional of the indirect approach and the Lagrangian involved in the
direct method are respectively

𝐽 = 𝐽𝐿EO + 𝝂𝑇𝝓(𝒙(𝑡0), 𝑡0, 𝒙(𝑡 𝑓 ), 𝑡 𝑓 ) +
∫ 𝑡 𝑓

𝑡0

𝝀𝑇 (𝑡) ( 𝒇 (𝒙(𝑡), 𝒖(𝑡), 𝑡) − ¤𝒙(𝑡))𝑑𝑡, (19)

𝑳(𝒚, 𝝀) = 𝐽𝐿EO − 𝝀̃𝑇 𝒄(𝒚), (20)

where 𝐽𝐿EO is the Lagrange cost functional of the EO problem, defined in Equation (2). Note that the
boundary conditions introduced by 𝝂 in 𝐽 are embedded in the vector of constraints 𝒄(𝒚) in 𝑳. Therefore,
by comparing the two equations, it is clear that

𝝀̃𝑖 ≈ −𝝀 (𝑡𝑖) , for all 𝑖 = 1, ..., 𝑁 − 1, (21)

where 𝑡𝑖 is the discrete time instant. The last node corresponding to 𝑖 = 𝑁 is not included using Hermite-
Simpson collocation because defect constraints are imposed at grid mid-points.

This approximation is considered acceptable, although it seems less accurate than results reported in
literature [2, 17]. Indeed, known relations assume that both direct and indirect methods employ the same
numerical scheme, and this does not apply within this work. In spite of this, Equation (21) represents a
good initial guess for the optimization process.

4 Simulation and Results
In this section the EO low-thrust trajectory optimization problem is solved using different algorithms

to show to what extent the CMP can be exploited with non-complete methods. In particular, Hermite-
Simpson direct collocation scheme is adopted. A comparison is performed by solving the same problem
with a complete global PS methods employing LGR collocation. To perform the mapping, Equation (21)
and the CMT provided in [6] are used in the non-complete and the complete frameworks, respectively.
Concerning the indirect formulation, a RK7-8 single-shooting method is used [8, 25]. The most relevant
settings of the problem are summarized in section 4.1, while the results and analysis concerning non-
complete and complete steps are analyzed in sections 4.2, 4.3 and 4.4.
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4.1 Simulation settings
The problem is formulated in Lagrange form and in Cartesian coordinates within each solver in

order to reduce the source of error concerning transformations when comparing the results, and also
when the solution obtained with a method is used as warm start for another. Note, however, that the
optimization tools present a substantial difference, as they employ different discretization methods. This
feature influences the application of the CMP, and therefore it has to be considered in the analysis of the
solution. It would have had more importance if the aim of the simulation was to provide a CMT, since
the same discretization shall be used to close the gap between the dual variables [4].

The solution of the root-finding problem involved in the indirect formulation relies on 𝑀𝐴𝑇𝐿𝐴𝐵
®

fsolve, while the direct algorithm is implemented in the framework offered by CasADi tool [26],
adopting interior-point method. The results are relative to AMD Ryzen 9 5950X 16-Core Processor, 3.40
GHz, RAM 128 GB. The problem is solved using initial and final conditions reported in Table 2, where
a fixed Time of Flight (ToF) is imposed. All the variables are scaled to non-dimensional units prior to
the optimization process for numerical reasons. This procedure is common to all solvers, and the scaling
factors are reported in Table 3, together with the values of physical constants involved in the problem
formulation. Note that the values related to the engine, 𝑇max and 𝐼sp, refer to M-ARGO mission [27].
Concerning instead the number of collocation points, 70 nodes are used for the non-complete method,
as they represent a good compromise between accuracy and computational time. This value can be
increased without any issue for the solver. On the other hand, a large number of points in the complete
solution would cause ill-conditioning of Legendre polynomials. Therefore, the accuracy of the results
is sensitive to the number of collocation points, as visible in Figure 8. After precision evaluation of the
solution, 23 nodes are chosen.

Table 2 Boundary conditions of the analyzed problem.

Parameter Value Unit
𝒓0 [1.51·108; -2.24·107; 4.49·106] km
𝒗0 [5.36; 30.1; 0] km s−1

𝑚0 23 kg
𝒓 𝒇 [1.54·108; -2.09·107; 4.49·106] km
𝒗 𝒇 [3.92; 28.93; 0.84] km s−1

ToF 420 days

Table 3 Scaling factors and physical constants.

Parameter Value Unit
Length Unit (LU) 1.49598·108 km
Time Unit (TU) 3.15576·107 s
Velocity Unit (LU/TU) 4.7405 km s−1

Mass Unit (MU) 10 kg
𝜇⊙ 1.32712·1011 km3 s−2

𝑔0 9.80665 m s−2

𝑇max 2.3·10−3 N
𝐼sp 3000 s
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4.2 Non-complete step

Fig. 2 Non-complete step procedure.

First of all, the EO problem is solved with the indi-
rect 𝐼𝑁𝐷 and the direct Hermite-Simpson 𝐻𝑆 methods
independently, as visible in the graph in Figure 2, in
order to obtain the optimal solutions in terms of dual
variables. They are used to compute the mapping from
costates to Lagrange multipliers and viceversa as in sec-
tion 3.2. This is the most important step of the analysis,
as identifying a correct transformation will allow to ex-
ploit the CMP. Optimized solutions in Figure 3 show
that the shape of dual variables is essentially the same, and an almost exact superposition is observable.
However, a scaling factor equal to approximately 4.1 between Lagrange multipliers 𝝀̃ and costates 𝝀 has
been applied, namely 𝑘 := 𝝀̃/𝝀 ≈ 4.1. This is still an open issue, and a brief analysis of possible causes
is presented in section 4.4.
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Fig. 3 Lagrange multipliers 𝜆̃ of non-complete method and costates 𝜆 multiplied by 𝑘 = 4.1.

To analyze the performance two simulations are leveraged.

1) The initial costates obtained from the mapping of Lagrange multipliers from the direct solution
are used as initial guess within the indirect solver both with scaling factor, 𝝀𝑯𝑺mapped , and without
it, 𝝀𝑯𝑺, to verify whether the indirect solver still identifies a mathematical connection. The results
in Table 4 show the value of the shooting function 𝒇 (𝒙) at different simulation iterations and the
computational time. Number of evaluated steps is the same in both cases, and also CPU time is
similar and limited. Therefore the mapping works and can be used even without scaling factor.
Note that the CPU time throughout the work refers to the average computational time over 10
simulations.

2) The dual variables obtained from the indirect algorithm are mapped according to Equation (21)
and given as input to CasADi by allowing the warm start option of the solver. Table 5 shows the
results related to the cold start case in the first column, denoted with 𝐻𝑆, while those obtained
with the warm start are reported in the second and third column. In particular, 𝒙𝐼𝑁𝐷→𝐻𝑆 are
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the results obtained with initialization of states only, while (𝒙, 𝝀)𝐼𝑁𝐷→𝐻𝑆 are those obtained
with initialization of both states and dual variables. They show a marked improvement in the
computational time and number of iterations required compared to the cold start solution. In
addition to this, the warm start that includes also the dual variables is even more beneficial for
the solver. It can be concluded that this analysis proves the mapping to be successful also in the
passage from indirect to direct methods in terms of computational cost.

Table 4 Direct non-complete 𝝀̃𝐻𝑆 → Indirect solver.

𝝀𝑯𝑺 𝝀𝑯𝑺mapped

Step 0 → 14 0 → 14
f(x) 9.88 → 1.58·10−20 1.19 → 3.97·10−27

CPU Time 0.592 s 0.511 s

Table 5 Indirect solution (𝒙, 𝝀)𝐼𝑁𝐷 → Direct non-complete solver.

HS 𝒙𝐼𝑁𝐷→𝐻𝑆 (𝒙, 𝝀)𝐼𝑁𝐷→𝐻𝑆

# Iterations 59 29 22
CPU Time 1.139 s 0.549 s 0.422 s

Remark: a consistent number of steps is still required to reach the solution in warm start cases. This
is mainly due to the difference in the discretization schemes adopted within the optimization tools. It is
also important to highlight that solutions converge to cold start ones in Figures 5 and 6. Therefore, the
mapping from indirect to direct method lowers the computational cost, but does not improve optimality
of the results.

4.3 Complete step

Fig. 4 Complete step procedure.

The same problem is now solved using PS method
with LGR collocation. As already mentioned, even in
this case the discretization method is different from the
one used in the indirect approach. However, since the
CMT [6] provides the link between dual variables, and
according to [28] it is not necessary to develop the indi-
rect PS collocation method to obtain the performances
of an indirect method while employing a direct one, it
is expected that the limit posed by the discretization is
at least partially overcome. The procedure followed for
the analysis is the same performed in the previous section, and it is shown in Figure 4. The optimized
results obtained with PS algorithm are reported in Figures 5, 6 and 7, and show convergence to the
optimal solution obtained with the indirect formulation. The Lagrange multipliers are more accurate
compared to those obtained in the non-complete framework. However, the same scaling factor of 4.1 is
found. The CMT is then applied to analyze the performances of the complete step. It is used to map the
Lagrange multipliers into the costates and viceversa. If it works correctly, convergence to the optimal
solution shall be reached faster and in fewer iterations with respect to the non-complete step simulations.
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Fig. 6 Controls error with respect to indirect solution in logarithmic scale.

The warm start of the indirect solver with the Lagrange multipliers mapped through the CMT leads to the
results in Table 6. The scaling factor of 4.1 has been applied in the simulation in the second column of
the table, showing a great improvement both in the value of the shooting function 𝒇 (𝒙) and in the number
of iterations needed to reach convergence. Compared to the results obtained in the section 4.2, the value
of the shooting function is significantly lowered, due to the application of the analytical mapping offered
by the CMT. This reflects on the computational time and the steps required to obtain the solution, thus
showing the improvements given by the complete method.

Table 6 CMT → Indirect solver.

𝝀𝑪𝑴𝑻 𝝀𝑪𝑴𝑻mapped

Step 0 → 7 0 → 3
f(x) 0.717 → 1.66·10−19 1.89−4 → 1.98·10−21

CPU Time 0.362 s 0.234 s

Also in the results obtained by warm starting the direct method shown in Table 7, it is observed that the
already low computational time is greatly improved. However, the passage from indirect to direct solver
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Fig. 7 Lagrange multipliers 𝜆̃ of complete method and costates 𝜆 multiplied by 𝑘 = 4.1.

is more sensitive to the difference in the discretization scheme, as a larger number of iterations is needed.
The results are overall better compared to the non-complete solution.

Table 7 Indirect solution (𝒙, 𝝀)𝐼𝑁𝐷 → Direct complete solver.

PS 𝒙𝐼𝑁𝐷→𝑃𝑆 (𝒙, 𝝀)𝐼𝑁𝐷→𝑃𝑆

# Iterations 136 11 15
CPU Time 0.321 s 0.074 s 0.076 s

Nonetheless, opposite to the non-complete case, the PS method is sensitive to the number of collocation
points adopted, as visible in Figure 8, and therefore a significant user input is required to perform a
trade-off between preventing polynomials ill-conditioning and obtaining good accuracy, thus employing
a sufficient number of nodes. Still, even when a suboptimal solution obtained with 28 collocation points
is used as warm start for the indirect solver, optimality with input 𝝀𝐶𝑀𝑇mapped is reached in only 5 iterations
and CPU time of 0.267 s. However, this is not happening when going from indirect to direct method,
thus requiring a good tuning of the number of nodes if the CMT is to be used in this case.

4.4 Scaling factor analysis
A scaling factor between the Lagrange multipliers and the costates has been observed in both the

non-complete and the complete step. This is still an open issue, which may be related to the scaling
factors that have been applied to the NLP variables. Indeed, efficiency and accuracy of the solution should
be increased by the NLP variables scaling, but sometimes this procedure can induce an undesired effect
on Lagrange multipliers and costates [29]. Therefore, even if the NLP variables become well-scaled, an
opposite effect is obtained on the dual variables. The latter can become large, and their multiplication
with the vector of constraints in the Lagrangian of the problem would lead to a poor, destabilized solution.
This might cause either non-convergence of the solver or convergence to a pseudo-minimizer. The reader
should refer to [30] for a deeper understanding. In the analyzed scenario, the factor of 4.1 does not prevent
the solution to converge to the optimal one obtained with the indirect approach, as visible in Figures 5
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and 6, where the error is due to the nature of direct collocation itself. However, different approaches
have been developed and will be used in future simulations to investigate the mentioned issue. Balancing
techniques can be applied to manually tune the scaling in the direct optimization framework [29], but this
would require significant user input. Therefore, automatic techniques as isoscaling [2], Jacobian rows
normalization, and projected-Jacobian rows normalization [31] have been proposed. While the first one
does not consider the relationship between states and constraints in the scaling procedure, the second only
considers this correlation, ignoring the states normalization. The latter considers both aspects and also
expands the method to dual variables scaling. Note that this further analysis would also allow to verify
that the scaling issue is not due to a different variable scaling applied internally in the indirect solver.

5 Conclusion
The application of the Covector Mapping Principle to non-complete methods within the context of

low-thrust trajectory optimization has been proven successful. It allows to close the gap between direct
and indirect approaches when only solvers employing non-complete methods are available. Indeed, the
empirical link between Lagrange multipliers and costate can be exploited passing from both direct to
indirect methods and viceversa, allowing to lower the computational time and to overcome the intrinsic
limitations of the two families of approaches. The comparison with the complete Pseudospectral method
shows that better performances are obtained by applying the Covector Mapping Theorem, but since
trajectory design is performed off-line, non-complete methods can be used with good accuracy of
the solution and low computational cost. However, accuracy of the results is not improved when
the direct method is warm started, therefore suggesting to use the CMP by first exploiting the larger
convergence basin of direct techniques, and then improving the accuracy of the solution through an
indirect method. Moreover, particular attention concerns the number of collocation points required by
the Pseudospectral method in order to guarantee solution accuracy while preventing ill-conditioning of
Legendre polynomials. Indeed, this issue would affect the application of the Covector Mapping Principle
in the passage from indirect to direct approaches. Additional work is required to confirm the cause of
the scaling factor between Lagrange multipliers and costates, since in different applications it may lead
to poor accuracy solutions, or, in the worst case, to non-convergence of the solver. Moreover, the same
discretization scheme should be employed in all solvers to check if the performances would improve.
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