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Abstract

We introduce a multi-species diffuse interface model for tumor growth, characterized by its incorpora-
tion of essential features related to chemotaxis, angiogenesis and proliferation mechanisms. We establish the 
weak well-posedness of the system within an appropriate variational framework, accommodating various 
choices for the nonlinear potentials. One of the primary novelties of the work lies in the rigorous estab-
lishment of the existence of a weak solution through the introduction of delicate approximation schemes. 
To our knowledge, this represents a novel advancement for both the intricate Cahn–Hilliard–Keller–Segel 
system and the Keller–Segel subsystem with source terms. Moreover, when specific conditions are met, 
such as having more regular initial data, a smallness condition on the chemotactic constant with respect to 
the magnitude of initial conditions and potentially focusing solely on the two-dimensional case, we provide 
regularity results for the weak solutions. Finally, we derive a continuous dependence estimate, which, in 
turn, leads to the uniqueness of the smoothed solution as a natural consequence.
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1. Introduction

Suppose � ⊂Rd , d ∈ {2, 3}, be a smooth and bounded domain, and let T > 0 be a given final 
time. Then, we introduce and analyze a tumor growth model that characterizes the dynamics of 
tumor development in the presence of chemotaxis and angiogenesis. The system assumes the 
form of a multiphase Cahn–Hilliard–Keller–Segel (MCHKS) model and it reads as follows:

∂tϕ − div
(
m(ϕ,ϕa,n)(∇μ − χ

ϕ∇n)
) = S in Q, (1.1)

μ = −�ϕ + F ′(ϕ) in Q, (1.2)

∂tϕa − div
(
ϕan(ϕa, c)∇(log(ϕa) − χ

ac)
) = Sa in Q, (1.3)

∂tn − �n − χ
ϕϕ = Sn in Q, (1.4)

∂t c − �c − χ
aϕa = Sc in Q, (1.5)

where Q := � × (0, T ), m, n are positive mobility functions, F ′ is a local interaction poten-
tial and S, Sa, Sn, and Sc indicate some source terms accounting for the interplay between the 
different variables ϕ, μ, ϕa, n, and c whose meaning will be discussed in the section to follow. 
Meaningful biological for the source terms examples will be depicted in the next sections. Be-
sides, we anticipate that the magnitude of the chemotaxis sensitivities χϕ and χa will play a role 
in the forthcoming mathematical analysis, and will be chosen accordingly. As for the initial and 
boundary conditions, after setting � := ∂� × (0, T ), we require that

∂nϕ = (m(ϕ,ϕa,n)∇μ) · n = (ϕan(ϕa, c)∇(log(ϕa) − χ
ac)) · n

= ∂nn = ∂nc = 0 on �, (1.6)

ϕ(0) = ϕ0, ϕa(0) = ϕ0
a, n(0) = n0, c(0) = c0 in �, (1.7)

with n indicating the outer unit normal vector to ∂�.
Notice that as n ≡ 1, at least for sufficiently regular solutions, equation (1.3) can be rewritten 

in the following equivalent forms:

∂tϕa − div(ϕa∇(log(ϕa) − χ
ac)) = ∂tϕa − �ϕa + χ

a div(ϕa∇c)

= ∂tϕa − div(∇ϕa − χ
a∇c) = Sa. (1.8)

In the following, after deriving the model (1.1)–(1.7) from basic principles of Mixture Theory 
and variational principles of Thermodynamics, we will suggest relevant biological constitutive 
assumptions for the source terms and other nonlinearities in the system. Then, combining a 
Faedo–Galerkin approximation scheme along with further regularizations for the occurring non-
linearities, we will prove, under proper assumptions on the regularity of initial data and on the 
growth laws of the source terms, the existence of global weak solutions. The main challenge 
lies in devising a reliable methodology to address the intricate nonlinear couplings between the 
Cahn–Hilliard system and the Keller–Segel system, which is a novelty in the literature. Here, 
we propose a robust discretization and regularization scheme that not only exploits the intrinsic 
dissipative nature of the equations but also ensures the preservation of critical maximum and 
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minimum principles governing the variables n and c. These properties are needed to recover dis-
crete and regularized energy estimates and to control the chemotactic nonlinear couplings and 
the source terms. Ultimately, we will provide regularity results for the weak solutions, together 
with their continuous dependence from data, under stronger assumptions on initial data and in 
the two-dimensional setting, which lead to the uniqueness of the solution.

1.1. Modeling considerations and relevant biological choices

In this section, we derive the multiphase model for tumor growth with angiogenesis and 
chemotaxis in (1.1)–(1.5). The above model describes a diffuse-interface mixture composed by a 
tumor component, a liquid component and an angiogenetic component, coupled with two mass-
less chemicals representing a perfectly diluted nutrient and an angiogenetic factor. The system 
is a three-phase reduction of the multiphase model introduced and calibrated on patient-specific 
data in [2], which considered the tumor phase as composed by viable and necrotic components, 
typically observed in neuroimaging data, which exchange mass in hypoxic conditions. Since here 
we are interested in obtaining analytical results for the proposed model, we reduce its complexity 
by considering a single tumor component, hence neglecting the dynamics of necrosis formation. 
This does not modify the mathematical structure of the underlying PDEs system, which, as in the 
model proposed in [2], takes the form of a Cahn–Hilliard–Keller–Segel system for the mixture 
components with reaction-diffusion equations for the chemicals; yet, in the present work we will 
state and consider more general constitutive assumptions than the ones considered in [2], iden-
tifying the general conditions which will let us obtain analytical results regarding existence and 
regularity of solutions.

The model (1.1)–(1.5) is derived from variational principles complying with the second law of 
thermodynamics in isothermal situations. In the following, we will only present the main steps 
of the derivation, referring to [2] for more details. Let us consider a saturated, closed and in-
compressible mixture in �, composed by a tumor phase with volume fraction ϕ, a liquid phase 
composed by liquid, healthy cells and normal vasculature, with volume fraction ϕl , and an angio-
genetic phase composed by tumor-induced new vasculature with volume fraction ϕa. We assume 
that all the phases have a constant density γ , equal to the water density (since the cells are mostly 
composed by water). The mixture dynamics is coupled with the evolution of massless chemicals, 
comprising a nutrient species, with concentration (number of moles) n, and an angiogenetic fac-
tor, with concentration (number of moles) c. Each mixture component satisfies a mass continuity 
equation, while the massless nutrient and chemical species satisfy generic transport equations:

∂tϕ + div(ϕv) + div(Jϕ) = 	ϕ(ϕ,ϕl, ϕa,n, c)

γ
, (1.9)

∂tϕa + div(ϕav) + div(Ja) = 	a(ϕ,ϕl, ϕa,n, c)

γ
, (1.10)

∂tϕl + div(ϕlv) + div(Jl ) = 	l(ϕ,ϕl, ϕa,n, c)

γ
, (1.11)

∂tn + div(nv) + Fn = Sn(ϕ,ϕl, ϕa,n, c), (1.12)

∂t c + div(cv) + Fc = Sc(ϕ,ϕl, ϕa,n, c), (1.13)
310



A. Agosti and A. Signori Journal of Differential Equations 403 (2024) 308–367
subject to the constraints ϕ+ϕa +ϕl = 1 and 	ϕ +	a +	l = 0, with fluxes Jϕ = ϕ(vϕ −v), Ja =
ϕa(va − v), and Jl = ϕl(vl − v). Here, 	ϕ, 	a , and 	l stand for source terms, v = ϕvϕ + ϕava +
ϕlvl is the volume-averaged mixture velocity, which satisfies the incompressibility condition

divv = 0, (1.14)

as a consequence of the saturation and the closedness properties of the mixture. The terms −Fn

and −Fc are generic transport terms to be determined in relation with the specific free energy 
of the system, while the source terms Sn and Sc represent source and consumption terms for the 
chemicals and must be constitutively assigned. On the other hand, the source terms 	ϕ and 	a

represent cells proliferation and death, while we take 	l: = − 
(
	ϕ + 	a

)
. We make the following 

modeling assumptions:

• The interaction among tumor cells predominates over the adhesion between tumor cells and 
the host tissue;

• The endothelial cells of the tumor-induced vasculature constitute a self-interacting phase in 
the mixture which can migrate to regions with higher angiogenetic factor concentration, being 
coupled to the angiogenetic factor by a chemotactic term;

• The tumor cells can migrate to regions with higher nutrient concentration, being coupled to 
the nutrient by a chemotactic term.

Remark 1.1. In [12], a prototype tumor growth model with nutrient diffusion and chemotaxis, 
further developed and studied in multiple subsequent works (see, e.g., [8,10,11]), was intro-
duced. There, the nutrient dynamics was constrained as a modeling assumption to satisfy a mass 
continuity equation. This leads to a cross-diffusion term in the nutrient equation, representing a 
nutrient flux towards regions with higher cells concentration, which, as noted in [27] (see also 
[13]), may have an nonphysical interpretation. Moreover, with this term the nutrient equation 
does not satisfy the minimum and maximum principles, and the nutrient concentration may as-
sume nonphysical values. In [27], a different modeling approach was employed by assuming that 
the nutrient dynamics satisfy a mass continuity equation in the form of a Keller–Segel equation, 
coupled with a Cahn–Hilliard equation for the tumor concentration. The latter approach makes 
the nutrient flux towards regions with higher cells concentration proportional to the nutrient con-
centration, representing chemotactic aggregation of nutrients following the cells gradient, and 
also enforces a minimum principle for the nutrient. We observe that this picture of the nutrient 
dynamics is non-standard, since typically the dynamics of massless and passive chemicals are 
driven by random motion, with no self-aggregation, plus advection and source terms. Hence, in 
our modeling approach we constrain the massless chemicals to satisfy generic transport equa-
tions, in the form of reaction-advection-diffusion equations which satisfy both minimum and 
maximum principles, while we enforce the mass continuity equation for the mixture components 
which contribute to the mixture mass.

With the given modeling assumptions, the free energy of the system, expressed as its internal 
energy minus its entropy, takes the following general structure

E(ϕ,ϕa,n, c) =
∫

e(ϕ,ϕa,n, c)=
∫



(
(F (ϕ) + κaϕa(log(ϕa) − 1)

)

� �
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+
∫
�




(
ε2

2
|∇ϕ|2 + Dn

2
|∇n|2 − χ

ϕnϕ + Dc

2
|∇c|2 − χ

aϕac

)
, (1.15)

where e(ϕ, ϕa, n, c) is the free energy density per unit volume. Note that, due to the assumptions 
that the tumor cells prefer to adhere to each other than to the host tissue and that the endothelial 
cells self interact, and also thanks to the relation ϕl = 1 −ϕ −ϕa , the variable ϕl does not appear 
in the free energy (1.15), and there is no need to solve the corresponding continuity equation 
(1.11), which does not enter in the final model. Here, 
 is the Young modulus of the tissue, 
in units of [Pa]. The term −κaϕa(log(ϕa) − 1) is the entropy associated to the self-interacting 
endothelial cells, with κa a positive adimensional coefficient. The term ε2

2 |∇ϕ|2 represents the 
diffuse-interface internal energy between the tumor cells and the host tissue, with ε, in units of 
[m] denoting the interfacial thickness. The terms Dn

2 |∇n|2 and Dc

2 |∇c|2 represent the contribu-
tion to the internal energy from the random motion of the chemical species resulting in diffusive 
behaviors along concentration gradients, where Dn and Dc are the isotropic mean deviations of 
the displacement of the particles, with units of [mm2/Mol2]. The terms −χ

ϕnϕ and −χ
aϕac are 

interaction terms associated to chemotaxis, with positive chemotactic coefficients χϕ and χa in 
units of [Mol−1]. Finally, the term F(ϕ) represents the entropy minus the internal energy asso-
ciated to the binary interaction between the tumor cells and their surrounding. A typical choice 
is represented by the Flory–Huggins potential which can be written as

Fdw(r) :=
{

c1
2 (r log r + (1 − r) log(1 − r))+ c2

2 r(1 − r), if r ∈ [0, 1],
+∞, otherwise,

(1.16)

with 0 < c1 < c2 adimensional parameters and, due to its singularities, it enforces the tumor con-
centration to take values in the physical range [0, 1]. In applications, (1.16) is often substituted 
by its double-well smooth polynomial approximation

Freg(r) := c3

4
r2(r − 1)2, c3 > 0, r ∈ R. (1.17)

Another possibility is to consider singular and nonregular potentials like the double obstacle 
potential

Fdob(r) :=
{

c3r(1 − r), if r ∈ [0, 1],
+∞, otherwise,

(1.18)

with c3 > 0 an adimensional parameter. We observe that the smooth potential (1.17) does not 
enforce the tumor concentration to take values in the physical range [0, 1]. In biological applica-
tions, when cells interaction is predominant with respect to the adhesion between the cells and 
surrounding tissues, a single-well cellular potential of Lennard–Jones type is used, which ex-
presses infinite repulsion when the cells are infinitely tight together (i.e., in the situation ϕ ≡ 1) 
and attraction when they are far apart (i.e., for small values of ϕ). The attraction must go to zero 
with no cells, with the potential having an unstable critical point at ϕ ≡ 0. In [2], the following 
phenomenological form for the single-well potential is used
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Fsw(r) :=
{

−(1 − r∗) log(1 − r) − r3

3 − (1 − r∗) r2

2 − (1 − r∗)r + κ, if r ∈ [0, 1),

+∞, otherwise,

(1.19)

where κ ≥ 0 and r∗ ∈ (0, 1) corresponds to the volume fraction at which the cells would be 
at mutual equilibrium. Note that (1.19) enforces the tumor concentration to take values in the 
physical range [0, 1).
We now give general constitutive assumptions such that the equations (1.9)–(1.14) satisfy the 
second law of thermodynamics in isothermal situations and with source terms, which takes the 
form of the following dissipation inequality (see [12,17])

d

dt

∫
R(t)

e ≤ −
∫

∂R(t)

JE · n +
∫

R(t)

(
	ϕ

γ
mϕ + 	a

γ
ma + Snmn + Scmc

)
, (1.20)

for each material volume R(t) ⊂ �, where n is the outer normal to ∂R(t), with the energy flux 
JE and the multipliers mϕ, ma, mn, and mc to be determined. Following similar calculations as 
those reported in [2, Section 2.1], we obtain

p̄ = p + μϕ + μaϕa + ηn + θc, (1.21)

v = −k (∇p̄ − (μ∇ϕ + μa∇ϕa + η∇n + θ∇c)) , (1.22)

Jϕ = −b(ϕ,ϕa,n, c)∇μ, (1.23)

Ja = −ba(ϕ,ϕa,n, c)∇μa, (1.24)

Fn = αnη, (1.25)

Fc = αcθ, (1.26)

JE = μJϕ + μaJa + ε2(∂tϕ)∇ϕ + (∂tn)Dn∇n + (∂t c)Dc∇c

+ (μϕ + μaϕa + ηn + θc + p − e)v, (1.27)

mϕ = μ, ma = μa, mn = η, mc = θ, (1.28)

where p is the scalar Lagrange multiplier of the constraint (1.14), k is a positive friction param-
eter, with units of [mm2/(Pa s)], αn, αc are positive coefficients related to the time scales of the 
dynamics of the chemical species, in units of [Mol2/Pa s], b, ba are positive mobilities, and

μ := δE

δϕ
= 


(
F ′(ϕ) − ε2�ϕ − χ

ϕn
)

, μa := δE

δϕa

= 
(κa log(ϕa) − χ
ac) , (1.29)

η := δE

δn
= 


(−Dn�n − χ
ϕϕ

)
, θ := δE

δc
= 
(−Dc�c − χ

aϕa) . (1.30)

Inserting (1.21)–(1.27) in (1.9)–(1.14), we get the following system of equations

v = −k
(∇p̄ − (μ∇ϕ + μa∇ϕa + η∇n + θ∇c)

)
in �, (1.31)

divv = 0, in �, (1.32)
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∂tϕ + v · ∇ϕ − div
(
b(ϕ,ϕa,n, c)∇μ

) = 	ϕ

γ
, in �, (1.33)

∂tϕa + v · ∇ϕa − div
(
ba(ϕ,ϕa,n, c)∇μa

) = 	a

γ
in �, (1.34)

μ = 

(
F ′(ϕ) − ε2�ϕ − χ

ϕn
)

in �, (1.35)

μa = 
(κa log(ϕa) − χ
ac) , (1.36)

∂tn + v · ∇n − αnDn�n − αn
χ

ϕϕ = Sn in �, (1.37)

∂t c + v · ∇c − αcDc�c − αc
χ

aϕa = Sc in �, (1.38)

which we endow with the homogeneous boundary conditions

b ∂nμ = ba ∂nμa = ∂nϕ = ∂nn = ∂nc = v = 0 on ∂�, (1.39)

which imply that

JE · n = 0 on ∂�,

and with initial conditions

ϕ(0) = ϕ0, ϕa(0) = ϕ0
a, n(0) = n0, c(0) = c0 in �. (1.40)

Let us point out [21], where a related multiphase system with velocity field subject to Darcy and 
Brinkman laws is analyzed.

A solution of system (1.31)–(1.38), supplemented with the boundary conditions (1.39), for-
mally satisfies the following energy equality

dE

dt
+ 1

k

∫
�

|v|2 +
∫
�

(
b|∇μ|2 + ba|∇μa|2 + αnη2 + αcθ

2
)

(1.41)

=
∫
�

(
	ϕ

γ
μ + 	a

γ
μa + Snη + Scθ

)
.

We then need to complement the system (1.31)–(1.38) with particular forms for the mobility 
functions b, ba and to assign biologically meaningful forms to the source terms 	ϕ

γ
, 	a

γ
, Sn, and 

Sc. The former task, following [2], is accomplished by applying the Onsager Variational Prin-
ciple (OVP) [25], which defines the irreversible non-equilibrium dynamics for near-equilibrium 
systems in terms of linear fluxes-forces balance equations. In isothermal situations, the OVP 
takes the following form: given a set of slow state variables xi , i = 1, . . . , n, the dynamics of 
the system is described by the thermodynamic fluxes which minimize the Onsager functional 
O(ẋi ) = �(ẋi ) + Ė(xi , ̇xi ), where � is the dissipation functional, which is quadratic in ẋi as a 
near-equilibrium approximation, and E stands for the free energy of the system. We thus mini-
mize (1.41) with respect to the variables vϕ, va, vl , given the following quadratic approximations 
for the viscous dissipative terms in (1.41):
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∫
�

b(ϕ,ϕa,n, c)|∇μ|2=
∫
�

Mϕk(ϕ,ϕl, n)|vϕ − vl |2, (1.42)

∫
�

ba(ϕ,ϕa,n, c)|∇μa|2=
∫
�

Malkal(ϕa,ϕl, c)|va − vl |2

+
∫
�

Mavkav(ϕa,ϕ, c)|va − vϕ |2, (1.43)

where Mϕ, Mal , and Mav are positive friction parameters, related to the friction between the 
tumor cells and the liquid phase and between the endothelial cells and both the liquid and the 
tumor phases respectively, and k(ϕ, ϕl, n), kal(ϕa, ϕl, c), and kav(ϕa, ϕ, c) are generic friction 
functions, whose form depends on the nature of the filtration processes driven by the drag be-
tween the mixture phases, to be empirically determined. The dependence of k, kal, and kav on 
their arguments will be described later on. We note that here the drag laws (1.42) and (1.43) are 
more general than the ones introduced in [2, Section 2.1], where it was assumed k(ϕ, ϕl, n)=ϕ

and kal(ϕa, ϕl, c) = kav(ϕa, ϕl, c)=ϕa . Substituting (1.42) and (1.43) in (1.41), with similar cal-
culations as those reported in [2, Section 2.1], we find that the first order conditions with respect 
to variations in the variables vϕ, va , and vl take the form of the following Darcy type laws:

vϕ − vl = − (1 − ϕ)ϕ

Mϕk(ϕ,ϕl, n)(1 + ϕa)
∇μ, (1.44)

va − vl = − ϕa

Malkal(ϕa,ϕl, c)
∇μa, va − vϕ = − ϕa

Mavkav(ϕa,ϕ, c)
∇μa. (1.45)

Inserting those in (1.42) and (1.43) produces

b(ϕ,ϕa,n) = ϕ2(1 − ϕ)2

Mϕk(ϕ,ϕl, n)(1 + ϕa)2 , (1.46)

ba(ϕa,n, c) = ϕ2
a

Malkal(ϕa,ϕl, c) + Mavkav(ϕa,ϕ, c)
. (1.47)

Considering (1.42) as the viscous dissipation due to a Darcy flow of the liquid phase through 
the porous-permeable solid matrix associated to the soft material of the tumor phase, a general 
expression for the friction function k can be given as

k(ϕ,ϕl, n) = ϕlνl

ρ(ϕ,ϕl, n)
,

where νl is the viscosity of the liquid phase and ρ(ϕ, ϕl, n) the intrinsic permeability of the tumor 
phase, assumed to depend on the tumor, the liquid and the nutrient concentrations. A possible 
expression for ρ can be derived by assuming that the tumor tissue consists of homogeneous and 
isotropic parallel cylindrical pores, and the Poiseuille formula for a capillary tube [19] yields that

ρ(ϕ,ϕl, n) = ξ(n)
r(ϕ,ϕl)

2ϕl
,

8δ2
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where ξ(n) is an empirical positive and finite geometrical parameter, whose value may depend 
on the nutrient availability, r is the effective radius of the pores, depending on ϕ and ϕl , and δ is 
the tortuosity factor. Since the tumor is a soft tissue, its permeability should also depend on the 
strain level in the material [19], which is neglected in the current modeling framework. A general 
expression for r is of the form (see, e.g., [5])

r(ϕ,ϕl) = C

(
ϕl

ϕ

)λ

,

where C is a positive parameter related to the specific internal surface area of the pores and λ is 
a positive empirical parameter. With the latter relations, (1.46) becomes

b(ϕ,ϕa,n) = Bϕξ(n)ϕ2−2λ(1 − ϕ)2(1 − ϕ − ϕa)2λ

(1 + ϕa)2 , (1.48)

where Bϕ is a positive parameter related to friction and geometrical coefficients.

Remark 1.2. We observe that the degeneracy of (1.48) for ϕ + ϕa = 1 enforces the condition 
ϕ + ϕa ≤ 1 in the dynamics described by (1.31)–(1.38). This, together with the conditions 0 ≤
ϕ < 1, enforced by the cellular potential (1.19), and ϕa ≥ 0, enforced by the particular form of 
μa in (1.29), allow us to interpret the solutions ϕ and ϕa of (1.31)–(1.38) as concentrations, 
implying also the validity of the saturation condition for the underlying mixture model. We also 
observe that, in the case λ = 1, which corresponds to the well-known Kozeny–Carman law for 
the intrinsic permeability [22,4], the mobility (1.48) does not degenerate at ϕ = 0.

To derive general expressions for the friction functions kal and kav , we start by the relations

kal(ϕa,ϕl, c) = ϕlνl

ρal(ϕa,ϕl, c)
, kav(ϕa,ϕ, c) = ϕνϕ

ρav(ϕa,ϕ, c)
,

where νl, νϕ are the viscosity of the liquid and the tumor phase respectively and ρal, ρav are the 
intrinsic permeability of the endothelial cells phase with respect to the liquid and tumor cells 
filtration processes respectively. Assuming that the network of tumor induced vasculature made 
by endothelial cells is described by a random fractal of dimension two with no axis of symmetry 
embedded in the three dimensional space, the permeability of the endothelial cells network takes 
the form [7]

ρal(ϕa,ϕl, c) = A(ϕa, c)
ϕl

ϕa

, ρav(ϕa,ϕ, c) = A(ϕa, c)
ϕ

ϕa

,

where A(ϕa, c) is a positive and finite parameter related to geometrical quantities and to the pore 
cross-sectional area, which may generally depend both on c and ϕa . Introducing the function

n(ϕa, c) := A(ϕa, c)

Malνl + Mavνϕ

,

we can write
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ba(ϕa, c) = ϕan(ϕa, c), (1.49)

with

0 < m0 ≤ n(ϕa, c) < M, (1.50)

for given positive real numbers m0 and M . We finally assign biologically meaningful forms for 
the source terms 	ϕ

γ
, 	a

γ
, Sn, and Sc. Following [2,12], we assume that the tumor cells proliferate, 

with a rate ν, proportionally to the nutrient concentration, as long as the nutrient concentration is 
above the hypoxia threshold δn. Moreover, they die by apoptosis at a rate Rd . Hence, we write

	ϕ

γ
= ν(n − δn)+h(ϕ) − Rdϕ, (1.51)

where h : R → [0, 1] is a continuous function which interpolates linearly between h(0) = 0 and 
h(1) = 1, and is extended as constant outside of the interval [0, 1]. The source term for the 
endothelial cells is expressed as

	a

γ
= (

(c − δa)+(1 − h(ϕ)) + ζ
)
(κ0ϕa − κ∞ϕ2

a), (1.52)

with ζ > 0. This means that new vessels form by accumulation of endothelial cells from the 
existing vasculature following a logistic growth, describing the growth of a population of self-
interacting particles with saturation [26]. This process is driven by random detachment of en-
dothelial cells from their basement membrane, at a (small) rate ζκ0; outside of the tumor mass, it 
is driven by the angiogenetic signal, when the concentration of the angiogenetic factor is greater 
than a proliferation threshold δa . The nutrient supply is described by the law

Sn= Sn(ϕ,ϕa,n) = Rn(n̄ − n)(1 − ϕ) + Ra(n̄ − n)ϕa − Cnϕn, (1.53)

where n̄ is the typical nutrient concentration inside the capillaries. Nutrients are released from 
the normal vasculature at a rate Rn, as long as n < n̄, with the normal capillaries being destroyed 
as the tumor cells proliferate, and consumed at a rate Cn. Moreover, nutrients are supplied by the 
tumor induced vasculature proportionally to ϕa . Finally, for what concerns the source term of the 
angiogenetic factor, it is released by the tumor cells at a rate Rc when the nutrient concentration 
is below the hypoxia threshold and the angiogenetic factor concentration is below its saturation 
level c̄, and it is consumed by endothelial cells at a rate Cc. Hence, we have

Sc = Sc(ϕ,ϕa, n, c) = Rch(ϕ)(δn − n)+(c̄ − c) − Ccϕac. (1.54)

We substitute now (1.48), (1.49) and (1.51)–(1.54) in (1.31)–(1.38). We consider the limit of 
high viscosity of the mixture, which corresponds to k → 0 in (1.31), (which is appropriate for 
the description of the tumor dynamics, see, e.g., [1]). Furthermore, we rearrange the terms by 
introducing a new chemical potential

μ̂ = −ε2�ϕ + F ′(ϕ), (1.55)
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inserting the chemotactic term as a chemotaxis flux in (1.33). In order to derive an adimension-
alized version of (1.31)–(1.38), we also introduce the functions

m̂ := b

Bϕ

, n̂ := (Malνl + Mavνϕ)n, μ̂a := μa



, n̂ := n

n̄
, ĉ := c

c̄
,

the nutrient penetration length

ln :=
√


αnDn

Cn

,

the parameters ̂δn := δn

n̄
, ̂δa := δa

c̄
, m̂ = Rd

ν
, ̂κ0 = κ0

ν
, and ̂κ∞ = κ∞

ν
and the change to adimen-

sional space and time variables ̂x = x
ln

, and ̂t = tν. Then, system (1.31)–(1.38) becomes, without 
reporting the hat superscripts for ease of notation,

∂tϕ − 
Bϕ

νl2
n

div
(
m(ϕ,ϕa,n)∇μ

) + 
χ
ϕBϕn̄

νl2
n

div
(
m(ϕ,ϕa,n)∇n

)
= (n − δn)+h(ϕ) − mϕ in Q,

μ = −ε2

l2
n

�ϕ + F ′(ϕ) in Q,

∂tϕa − 


(Malνl + Mavνϕ)νl2
n

div
(
ϕan(ϕa, c)∇ (κa log(ϕa) − χ

ac̄c)
)

= ((c − δa)+(1 − h(ϕ)) + ζ ) (κ0ϕa − κ∞ϕ2
a) in Q,

ν

Cn

∂tn − �n − αn
χ
ϕ

n̄Cn

ϕ = Rn

Cn

(1 − n)(1 − ϕ) + Ra

Cn

(1 − n)ϕa − ϕn in Q,

ν

Cc

∂t c − αcDcCn

αnDnCc

�c − αc
χ
a

c̄Cc

ϕa = Rc

Cc

h(ϕ)(δn − n)+(1 − c) − ϕac in Q.

Given the values of the optimized parameters reported in [2, Section 4], we observe that the fol-
lowing adimensional combination of parameters, which will play a role in the analysis developed 
in the forthcoming sections, take values of the order of magnitude

αn
χ
ϕ

n̄Cn

∼ 0.01 < 1,
αc
χ

a

c̄Cc

∼ 0.001 < 1. (1.56)

All other adimensional combination of parameters in (1.56) do not play a significant role in the 
analysis, so we can take them, without loss of generality and for ease of notation, as equal to 
one by choosing αn = αc = 1, Dc = Dn, Cn = Cc = ν = Rn = Ra = Rc , n̄ = c̄ = 1, ln = ε = 1, 

 = ν, Bϕ = 1

Malνl+Mavνϕ
= 1, and κa = 1. Therefore, we obtain

∂tϕ − div
(
m(ϕ,ϕa,n)∇μ

) + χ
ϕ div

(
m(ϕ,ϕa,n)∇n

)
= (n − δn)+h(ϕ) − mϕ in Q, (1.57)

μ = −�ϕ + F ′(ϕ) in Q, (1.58)
318



A. Agosti and A. Signori Journal of Differential Equations 403 (2024) 308–367
∂tϕa − div
(
ϕan(ϕa, c)∇ (log(ϕa) − χ

ac)
)

= ((c − δa)+(1 − h(ϕ)) + ζ ) (κ0ϕa − κ∞ϕ2
a) in Q, (1.59)

∂tn − �n − χ
ϕϕ = (1 − n)(1 − ϕ) + (1 − n)ϕa − ϕn in Q, (1.60)

∂t c − �c − χ
aϕa = h(ϕ)(δn − n)+(1 − c) − ϕac in Q, (1.61)

∂nϕ= (m(ϕ,ϕa,n)∇μ) · n = (ϕan(ϕa, c)∇(log(ϕa) − χ
ac)) · n

= ∂nn = ∂nc = 0 on �, (1.62)

ϕ(0)= ϕ0, ϕa(0) = ϕ0
a, n(0) = n0, c(0) = c0 in �, (1.63)

where we still maintain the properties (1.56), i.e., we require that

0 < χ
ϕ < 1, 0 < χ

a < 1. (1.64)

2. Notation, assumptions and main results

To begin with, we assume the set � to be a bounded, connected and smooth open subset 
of Rd , d ∈ {2, 3}, with boundary 	 := ∂�. Given a final time T > 0, we set, for every t ∈ (0, T ],

Qt := � × (0, t), �t := 	 × (0, t), Q := QT , � := �T .

Let X denote a Banach space. We indicate by ‖ · ‖X, X∗, and 〈·, ·〉X its norm, its dual space, 
and the associated duality pairing in the order. As for the classical Lebesgue and Sobolev spaces 
on �, for 1 ≤ p ≤ ∞ and k ≥ 0 we use Lp(�) and Wk,p(�), with the standard convention 
Hk(�) := Wk,2(�) and norms ‖·‖Lp(�) := ‖·‖p , ‖·‖Wk,p(�), and ‖·‖Hk(�). Similar symbols are 
employed to denote spaces and norms constructed on Q, 	 and �. For convenience, we set

H := L2(�), V := H 1(�), W := {v ∈ H 2(�) : ∂nv = 0 a.e. on 	},

and endow them with their corresponding norms ‖·‖ := ‖·‖H , ‖·‖V , and ‖·‖W , respectively. As 
usual, H will be identified to its dual so that we have the following continuous, dense, and 
compact embeddings:

W ↪→ V ↪→ H ↪→ V ∗

along with the identification

〈u,v〉V =
∫
�

uv, u ∈ H,v ∈ V.

Finally, for every v ∈ V ∗, we employ (v)� := 1
|�| 〈v, 1〉V to indicate the generalized mean value 

of v. Sometimes, when no confusion may arise, we simply use v� instead of (v)�. We then use 
V0, H0, and V ∗

0 to denote the closed subspaces of functions with zero spatial mean of V , H , and 
V ∗, respectively. Then, the operator −� with homogeneous Neumann boundary conditions may 
be considered as
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(−�) : V → V ∗, 〈(−�)v, z〉V :=
∫
�

∇v · ∇z, v, z ∈ V .

It follows that it is invertible when restricted to act on functions with zero spatial average. 
Namely, −� : V0 → V ∗

0 is invertible and we denote its inverse by N := (−�)−1 : V ∗
0 → V0. 

It is well-known that

‖v∗‖∗ := ‖∇(Nv∗)‖ = (∇(Nv∗),∇(Nv∗))1/2 = 〈v∗,Nv∗〉1/2
V , v∗ ∈ V ∗

0 ,

yields a Hilbert norm on V ∗
0 . In addition, it holds that

〈−�v,Nv∗〉V = 〈v∗, v〉V , 〈v∗,Nw∗〉V = (v∗,w∗)∗, v ∈ V0, v∗,w∗ ∈ V ∗
0 ,

where the symbol (·, ·)∗ denotes the standard inner product of V ∗. Furthermore, if v∗ ∈
H 1(0, T ; V ∗

0 ), we have, for a.e. t ∈ (0, T ), that

〈∂tv
∗(t),Nv∗(t)〉V = 1

2

d

dt
‖v∗(t)‖2∗ .

Finally, let us introduce the notation (·)± for the positive and negative part function, respectively. 
Namely, (·)± : R → [0, +∞) are defined as

(r)+ := max{r, 0}, and (r)− := −min{r, 0}, r ∈R.

Let us also mention here the following standard result that will be useful later on.

Lemma 2.1. Let f, g ∈ L1(0, T ), g0 ∈R, and, for any � ∈ C∞
c ([0, T )), let

−
T∫

0

�′(τ )g(τ ) dτ +
T∫

0

�(τ)f (τ) dτ − �(0)g0 = 0.

Then, it holds that

g(t) − g(s) +
t∫

s

f (τ )dτ = 0,

for a.e. t, s ∈ [0, T ), including s = 0, provided we replace g(0) with g0.

The proof of Lemma 2.1 is a consequence of the fundamental lemma of the calculus of varia-
tions [20, Lemma 1.2.1], see also [23, Lemma 3.1] for a similar result.

To conclude, let set a useful convention for the appearing constants. From now on, the capital 
C will be used to denote a generic constant whose actual values may change from line to line 
and even within the same line and depend only on structural data of the system. When specific 
constants enter the computations, like δ for instance, we will employ self-explanatory subscripts 
like Cδ to indicate that the constant depends on the parameter δ, in addition.
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Let us now make some preliminary remarks on the qualitative properties satisfied by Sys-
tem (1.57)–(1.61), with the constraint (1.64), which will be justified throughout the forthcoming 
calculations. In particular, we observe that:

• In the case with a smooth potential like (1.17), the variable ϕ is not guaranteed to satisfy the 
pointwise property 0 ≤ ϕ ≤ 1. As a consequence, a solution to (1.60) does not formally satisfy 
the maximum and minimum principles 0 ≤ n ≤ 1;

• A solution of (1.59) formally satisfies the minimum principle ϕa ≥ 0 due to the logarithmic 
term in the free energy;

• A solution to (1.61) formally satisfies the minimum and maximum principles 0 ≤ c ≤ 1. As 
we will see in the following, this property is fundamental to ensure the coercivity of the 
chemotaxis term −χ

a

∫
�

ϕac arising in the free energy E.

Remark 2.2. In [27], a generalized logistic growth for (1.59) of the form

	a

γ
∝ κ0ϕa − κ∞ϕ

p
a with p ∈ (1, 2]

was considered for the Keller–Segel system. Considering the latter growth law in our model, a 
source term for (1.61) of the form

Sc = Sc(ϕ,ϕa, n, c) = Rch(ϕ)(δn − n)+(c̄ − c) − Ccϕ
p−1
a c,

should be considered. In this situation, the property c ≤ 1 would be valid also for 1 < p < 2 only 
if we can ensure that 0 ≤ ϕa ≤ 1. This property is not always trivial to obtain, but can be reached, 
for instance, assuming in System (1.57)–(1.63) a degenerate mobility m(ϕ, ϕa, n) as in (1.48)
(see Remark 1.2). With a non-degenerate mobility m(ϕ, ϕa, n) and p < 2, in order to ensure 
the coercivity of the chemotaxis term −χ

a

∫
�

ϕac, we would need to introduce the property that 
c ≤ 1 as a constraint in equation (1.61), e.g., by adding to the free energy (1.15) the indicator 
function of the set c ≤ 1.

In light of the above properties, we will make different structural assumptions corresponding 
to the cases with a smooth or a singular potential. Before diving into listing the mathematical 
assumptions on the system, let us point out that the following structural assumptions on the 
source terms are motivated by the aforementioned discussion. From a mathematical perspective, 
instead of specifying a particular form for these terms, it suffices to postulate specific growth 
conditions. However, it is worth noticing that this approach is only applicable in certain cases (cf. 
(3.56)–(3.59)), and these conditions may vary when dealing with regular and singular potentials. 
To simplify the technical aspects as much as possible, we opt to adopt a specific structure for the 
sources that maintains a high degree of generality and facilitates the analysis.

A1 In the case of a smooth potential, we postulate that F is defined on the whole real line, 
F ∈ C2(R), and there exists c1 ≥ 0 such that

|F ′(r)| ≤ c1 (F (r) + 1) , F (r) ≥ 0, r ∈R. (2.1)

Besides, F enjoys the decomposition F = β̂ + π̂ , where β̂ is convex and π̂ is concave, and 
there exists c2 ≥ 0 such that
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|π̂ ′′(r)| ≤ c2
(|r|q + 1

)
, r ∈ R, with q ∈ [0, 4). (2.2)

We observe that the smooth potential (1.17) satisfies Assumption (2.1).
In the case of a singular potential, we postulate F to be decomposed in a singular, proper, and 
convex part β̂ and a nonconvex, smooth, perturbation π̂ with a quadratic growth. Namely, 
we require that

F : R→ (−∞,+∞] enjoys the splitting F = β̂ + π̂ , where (2.3)

β̂ :R → [0,+∞] is proper, convex and l.s.c. with subdifferential β := ∂β̂,

and fulfills β(0) � 0, β is C2 in the interior of its domain D(β), (2.4)

whereas

π : R→ R, π ∈ C1(R), π := π̂ ′ is Lipschitz continuous, and (2.5)

|π̂(r)| ≤ c1(|r|2 + 1), |π(r)| ≤ c2(|r| + 1), |π ′(r)| ≤ c3, r ∈R, (2.6)

for some nonnegative constants c1, c2, and c3.

Remark 2.3. We note that both the double well potential (1.16) and the single-well potential 
(1.19) satisfy Assumptions (2.3)–(2.5), while Assumption (2.6) is satisfied by (1.16) only. 
Hence, we will treat the single-well potential (1.19) by adopting a proper truncation proce-
dure to let its truncated form satisfy Assumption (2.6). In particular, the single-well potential 
(1.19) can be decomposed as Fsw = β̂ + π̂ , where

β̂(r) =
{

−(1 − r∗) log(1 − r) if r ∈ [0, 1),

+∞ otherwise,

π̂(r) = − r3

3
− (1 − r∗)

r2

2
− (1 − r∗)r + κ, r ∈ R,

with k ≥ 0 and r∗ ∈ (0, 1). For this latter, the growth of the corresponding perturbation π̂
is of third order instead of second order. Thus, we will consider a quadratic truncation of π̂
which preserves its regularity and concavity, defined as

π(r) :=

⎧⎪⎨⎪⎩
π̂(0) + rπ(0) + r2

2 π ′(0) for r ≤ 0,

π̂(r) for 0 < r < 1,

π̂(1) + (r − 1)π(1) + (r−1)2

2 π ′(1) for r ≥ 1.

Hence, we will consider a truncated form F sw = β̂ + π , which satisfies (2.4)–(2.6). Since 
we will prove that 0 ≤ ϕ < 1, actually Fsw(ϕ) ≡ F sw(ϕ).

It is well-known that β yields a maximal monotone graph in R ×R with corresponding 
domain D(β) = {r ∈ D(β̂) : β(r) �= ∅} with D(β̂) = {r ∈R : β̂(r) < +∞}.
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A2 We suppose the interpolation function h :R → [0, 1] to be continuous and such that

h(r) =

⎧⎪⎨⎪⎩
0, r ≤ 0,

r, r ∈ (0, 1),

1, r ≥ 1.

A3 We assume that Sa possesses a logistic growth of the form

Sa = Sa(ϕ,ϕa, c) = ϑ(ϕ, c)(κ0ϕa − κ∞ϕ2
a), (2.7)

where

ϑ(ϕ, c) := ((c − δa)+(1 − h(ϕ)) + ζ ) , δa ∈ [0, 1], ζ, κ0, κ∞ > 0.

We observe that ϑ = ϑ(ϕ, c) is strictly positive and, due to A2, it is also uniformly bounded 
if the condition 0 ≤ c ≤ 1 is fulfilled. Moreover, we assume that

Sc = Sc(ϕ,ϕa, c) = h(ϕ)(δn − n)+(1 − c) − ϕac. (2.8)

A4 For what concerns the source terms for the variables ϕ and n, since the property 0 ≤ n ≤ 1 is 
valid only in the case with a singular potential, we will need to make different assumptions 
discerning the cases of smooth and singular potentials. In particular, the source terms (1.51)
and (1.53) will be properly truncated in the case with a smooth potential.

For these reasons, we postulate

S= S(ϕ,n) = H(ϕ,n) − mϕ, m > 0, (2.9)

where, for δn ∈ [0, 1],

H = H(ϕ,n) :=
{

(h(n) − δn)+h(ϕ) when the potential is smooth,

(n − δn)+h(ϕ) when the potential is singular.
(2.10)

Besides, when the potential is singular, we require the compatibility condition

− H

m
− (ϕ0)−�,

H

m
+ (ϕ0)+� belong to the interior of D(β),

where H := ‖H‖∞ = ‖(n − δn)+h(ϕ)‖∞. Furthermore, in the case of a smooth potential, 
we assume that

Sn = Sn(ϕ,ϕa,n) = (1 − h(n))(1 − h(ϕ) + ϕa) − ϕh(n), (2.11)

while, in the case with a singular potential, we assume that

Sn = Sn(ϕ,ϕa,n) = (1 − n)(1 − h(ϕ) + ϕa) − ϕn. (2.12)
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A5 We assume m ∈ C0(R3) and n ∈ C0(R2) to be globally Lipschitz continuous and there exist 
positive constants m0 and M such that

0 < m0 ≤m(ϕ,ϕa,n),n(ϕa, c) ≤ M < +∞, ϕ,n, c ∈R, ϕa ≥ 0. (2.13)

A6 For the chemotaxis sensitivities χϕ and χa , we require that

χ
ϕ,χ

a :
{

χ
ϕ ≥ 0, χ

a ∈ (0, 1) with smooth potential,
χ

ϕ ∈ (0, 1), χ
a ∈ (0, 1) with singular potential.

The first result we are going to present concerns the existence of weak solutions in both two 
and three space dimensions.

Theorem 2.4 (Existence of weak solutions, d ∈ {2, 3}). Suppose that A1–A6 hold. Moreover, let 
the initial data fulfill

ϕ0 ∈ V, F (ϕ0) ∈ L1(�), (ϕ0)� ∈ D(β), (2.14)

ϕ0
a ≥ 0 a.e. in �, ϕ0

a log(ϕ0
a) ∈ L1(�), (2.15)

n0 ∈ V, c0 ∈ V ∩ L∞(�), 0 ≤ c0 ≤ 1 a.e. in �. (2.16)

Besides, let the threshold Sobolev exponent

σ := arbitrary in (1,+∞) if d = 2, and σ := 6 if d = 3. (2.17)

Then, the multiphase Cahn–Hilliard–Keller–Segel model (1.1)–(1.7) admits at least a weak so-
lution. Namely, there exists a quintuple (ϕ, ϕa, μ, n, c) such that

ϕ ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L4(0, T ;W) ∩ L2(0, T ;W 2,σ (�)), (2.18)

ϕa(x, t) ≥ 0 for a.e. (x, t) ∈ Q, (2.19)

ϕa ∈ C0([0, T ]; (W 1,4(�))∗) ∩ L
d+2
d+1 (0, T ;W 1, d+2

d+1 (�)), (2.20)

ϕa log(ϕa) ∈ L∞(0, T ;L1(�)), ϕ2
a log(ϕa) ∈ L1(0, T ;L1(�)), (2.21)

μ ∈ L2(0, T ;V ), (2.22)

n ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W), (2.23)

c ∈ L∞(Q) : 0 ≤ c(x, t) ≤ 1 for a.e. (x, t) ∈ Q, (2.24)

c ∈ H 1(0, T ;H) ∩ L∞(0, T ;V )∩L2(0, T ;W). (2.25)

Besides, it fulfills the pointwise formulation

μ = −�ϕ + F ′(ϕ) a.e. in Q,

where, in the case of a singular potential, F ′(ϕ) = ξ + π(ϕ), with
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ξ ∈ L2(0, T ;Lσ (�)), (2.26)

and ξ ∈ β(ϕ) a.e. in Q, along with the weak formulations, recall the definition of the source 
terms in (2.7)–(2.12),

〈∂tϕ, v〉V +
∫
�

m(ϕ,ϕa,n)∇μ · ∇v − χ
ϕ

∫
�

m(ϕ,ϕa,n)∇n · ∇v =
∫
�

Sv, (2.27)

∫
�

ϕa(t)w +
∫
Qt

n(ϕa, c)∇ϕa · ∇w − χ
a

∫
Qt

ϕan(ϕa, c)∇c · ∇w

=
∫
�

ϕ0
aw +

∫
Qt

Saw, (2.28)

∫
�

∂tnv +
∫
�

∇n · ∇v − χ
ϕ

∫
�

ϕv =
∫
�

Snv, (2.29)

∫
�

∂tc v +
∫
�

∇c · ∇v − χ
a

∫
�

ϕav =
∫
�

Scv, (2.30)

for almost every t ∈ (0, T ), every v ∈ V and w ∈Wd , where Wd is defined as

Wd := W 1,d+2(�).

Moreover, the initial conditions in (1.7) are fulfilled in the sense that

ϕ(0) = ϕ0, n(0) = n0, c(0) = c0 a.e. in �, (2.31)

ϕa(0) = ϕ0
a in (W 1,4(�))∗. (2.32)

Remark 2.5. We notice that in case of the regular potential (1.17), the second condition in (2.14)
is already fulfilled. In fact, we have F(r) = O(r4) as |r| → +∞ as well as V ↪→ Lσ (�) with σ
as defined in (2.17).

Besides, in case of singular potentials like (1.16) and (1.18), we have D(β) = [0, 1] and the 
second condition in (2.14) imposes the initial datum ϕ0 to be uniformly bounded and such that 
0 ≤ ϕ0(x) ≤ 1 for almost every x ∈ �. Moreover, the singularity of the potential yields that the 
order parameter ϕ belongs to the physical range, that is,

ϕ ∈ L∞(Q) : 0 ≤ ϕ(x, t) ≤ 1 for a.e. (x, t) ∈ Q.

In that case, it also holds that

n ∈ L∞(Q) : 0 ≤ n(x, t) ≤ 1 for a.e. (x, t) ∈ Q.

Remark 2.6. The prescribed form of S in (2.9) is the typical choice one encounters in the Cahn–
Hilliard–Oono equation, where the function H reduces to a constant H ∈ (−m, m). We are aware 
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of the recent contribution [16], where the authors show that the last average condition in (2.14)
can be actually relaxed a little bit allowing pure phases to be considered as initial data. Due to 
the complexity of our system, the result does not directly apply and we left that problem open 
for possible future research.

Remark 2.7. Let us highlight some differences to the work referenced as [27]. The first one lies in 
the choice of the source Sa , as observed in the Remark 2.2. In contrast, our different formulation 
of the chemotaxis coupling has allowed us to deduce somewhat improved regularities for ϕa (cf. 
(2.20)). This improvement is further manifested in a more consistent variational framework (cf. 
(2.28)): it is worthwhile to compare the two setting of test functions related to the chemotactic 
variable.

Assuming a more regular initial datum ϕ0
a and a smallnes condition for the chemotactic sen-

sitivity χa with respect to the magnitude of the initial datum and other parameters of the model, 
we can derive some regularity results in the two space dimensions.

Theorem 2.8 (Regularity result, d = 2). Suppose that A1–A6 hold and let d = 2. Moreover, in 
addition to (2.14), suppose that

ϕ0
a ∈ H. (2.33)

Suppose further that the following smallness condition on the chemotactic parameter,

χ
a <

(√
1 + C − 1

2

) 1
4

, (2.34)

is satisfied, where C is a positive parameter depending only on the domain �, on the parameters 
κ∞ and m0 and on proper norms of the initial conditions (cf. (4.7)).

Then, the components ϕa and c of the weak solution obtained from Theorem 2.4 enjoy the 
additional regularities

ϕa ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.35)

c ∈ L4(0, T ;W), (2.36)

and the weak formulation (2.28) can be equivalently reformulated as

〈∂tϕa, v〉V +
∫
�

n(ϕa, c)∇ϕa · ∇v − χ
a

∫
�

ϕan(ϕa, c)∇c · ∇v =
∫
�

Sav,

almost everywhere in (0, T ) and for every v ∈ V . Besides the initial condition ϕa(0) = ϕ0
a is 

fulfilled almost everywhere in �.

Next, provided that the initial data is more regular, the mobility functions are constant, and 
the space dimension is two, we can show that there exist more regular weak solutions. Here, the 
first regularity result follows.
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Theorem 2.9 (Regularity result on n and c, d ∈ {2, 3}). Suppose that A1–A6 and (2.34) are 
fulfilled, and assume that, besides to A2, it holds that h ∈ W 1,∞(R). Moreover, in addition to 
(2.14) and (2.33), suppose that

n0 ∈ H 2(�), c0 ∈ H 2(�). (2.37)

Then, there exist components n and c of a weak solution (ϕ, ϕa, ξ, μ, n, c) such that

n ∈ W 1,∞(0, T ;H) ∩ H 1(0, T ;V ) ∩ L∞(0, T ;H 2(�)) ∩ L2(0, T ;H 3(�)), (2.38)

c ∈ H 1(0, T ;H) ∩ L∞(0, T ;H 2(�)) ∩ L2(0, T ;H 3(�)). (2.39)

Theorem 2.10 (Regularity result, d = 2, constant mobilities). Suppose that A1–A6 and (2.34)
hold and let d = 2 and that m≡ n ≡ 1. Besides, in addition to A2, we suppose that h ∈
W 1,∞(R). Moreover, in addition to (2.14), (2.33), and (2.37), suppose that

ϕ0 ∈ W, μ0 := −�ϕ0 + F ′(ϕ0) ∈ V, ϕ0
a ∈ V. (2.40)

Then, there exists a weak solution (ϕ, ϕa, ξ, μ, n, c) such that

ϕ ∈ W 1,∞(0, T ;V ∗) ∩ H 1(0, T ;V ) ∩ L∞(0, T ;W 2,σ (�)), (2.41)

ξ ∈ L∞(0, T ;Lσ (�)), (2.42)

μ ∈ L∞(0, T ;V ), (2.43)

ϕa ∈ H 1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H 2(�)), (2.44)

with σ being defined as in (2.17).

Finally, in the case with a singular potential, if the convex part of the double-well potential 
enjoys the following estimate

∃ cβ > 0 : |β ′(r)| ≤ ecβ(|β(r)|+1), r ∈ D(β), (2.45)

we can obtain another regularity improvement. The above condition is known to be fulfilled in 
the two dimensional setting, for instance, by the singular logarithmic potential (1.16). Notice 
that a similar version holds for the single-well potential (1.19) when its argument is close to one. 
Namely, for (1.19), condition (2.45) holds for every r ∈ (1/2, 1) instead.

Theorem 2.11 (Regularity result, d = 2, separation property). Suppose the assumptions of the 
Theorem 2.10 are fulfilled and the double-well potential enjoys (2.45). Moreover, in addition to 
(2.14), (2.33) and (2.40), suppose that

ϕ0 ∈ H 4(�), μ0 ∈ W. (2.46)

Then, there exists a weak solution (ϕ, ϕa, ξ, μ, n, c) such that
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ϕ ∈ W 1,∞(0, T ;H) ∩ H 1(0, T ;H 2(�)) ∩ L∞(0, T ;H 4(�) ∩ W 2,σ (�)), (2.47)

μ ∈ L∞(0, T ;H 2(�)) ∩ L2(0, T ;H 3(�)), (2.48)

with σ as defined in (2.17). Besides, if (2.45) is fulfilled, then there exist δ∗, δ∗ ∈ (0, 1), δ∗ ≤ δ∗, 
such that the separation property holds:

0 < δ∗ ≤ ϕ(x, t) ≤ δ∗ < 1 for every (x, t) ∈ Q. (2.49)

Finally, in case the potential is single-well and fulfills (2.45) for every r ∈ (1/2, 1), then there 
exist δ∗ such that the separation property holds:

0 ≤ ϕ(x, t) ≤ δ∗ < 1 for every (x, t) ∈ Q. (2.50)

The last result we are going to address concerns the uniqueness of solutions. This is obtained 
as consequence of a suitable continuous dependence estimate that is fulfilled by regular solutions 
that enjoy the regularities listed in the above theorems.

Theorem 2.12 (Uniqueness, d = 2, constant mobilities). Suppose the assumptions of Theo-
rem 2.11 are fulfilled. Besides, the source term Sa possesses the simplified form, compare with 
(2.7), Sa = Sa(ϕa) = κ0ϕa − κ∞ϕ2

a . Then there exists a unique weak solution (ϕ, ϕa, μ, n, c) to 
the system (1.1)–(1.7). Moreover, let {(ϕi, ϕa, μi, ni, ci)}i , i = 1, 2, denote a couple of weak solu-
tions as obtained from Theorem 2.11 associated to initial data {(ϕ0

i , ϕ0
a,i , μ

0
i , n

0
i , c

0
i )}i fulfilling, 

for i = 1, 2, (2.14), (2.33), (2.40), and (2.46). Then, it holds that

‖ϕ1 − ϕ2 − ((ϕ1)� − (ϕ2)�)‖L∞(0,T ;V ∗) + ‖(ϕ1)� − (ϕ2)�‖L∞(0,T )+‖ϕ1 − ϕ2‖L2(0,T ;V )

+ ‖ϕa,1 − ϕa,2 − ((ϕa,1)� − (ϕa,2)�)‖L∞(0,T ;V ∗)∩L2(0,T ;H) + ‖(ϕa,1)� − (ϕa,2)�‖L∞(0,T )

+ ‖n1 − n2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖c1 − c2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ K
(‖ϕ0

1 − ϕ2
2 − ((ϕ0

1)� − (ϕ0
2)�)‖V ∗ + |(ϕ0

1)� − (ϕ0
2)�|)

+ K
(‖ϕ0

a,1 − ϕ0
a,2 − ((ϕ0

a,1)� − (ϕ0
a,2)‖V ∗ + |(ϕ0

a,1)� − (ϕ0
a,2)�|)

+ K
(‖n0

1 − n0
2‖ + ‖c0

1 − c0
2‖

)
, (2.51)

for a positive constant K only depending on the data of the system.

3. Existence of weak solutions

In this section we establish the validity of Theorem 2.4. Our approach begins with the intro-
duction of an approximation for System (1.57)–(1.63), which allows us proving the existence of 
a local in time solution through a Faedo–Galerkin scheme. Subsequently, we expand this local 
solution into a global-in-time solution using a combination of a-priori estimates, which remain 
uniform with respect to the discretization parameter, and temporal continuity arguments. Finally, 
we pass to the limit letting the regularization parameter goes to zero, recovering a solution to 
the original system. Since the Assumptions A1, A3 and A4, and the qualitative properties of 
solutions of System (1.57)–(1.63), differ between the cases of F being smooth or singular, i.e., 
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satisfying (2.1)–(2.2) or (2.3)–(2.5), respectively, we adopt two distinct regularization approaches 
depending on the assumed regularity of the potential F .

In this direction, let us introduce some preliminary tools. To begin with, given L, M ∈R with 
L < M , we define the truncation function TL,M as

TL,M :R→ [L,M], TL,M(r) := max{L, min(r,M)}, r ∈ R, (3.1)

and notice that TL,M ∈ W 1,∞(R). Following standard regularizing approaches in the Keller–
Segel literature (see, e.g., [18]), we define the function EL,M : R → R+, with EL,M ∈ C2(R), 
such that

(E′′
L,MTL,M)(r) = 1, r ∈R. (3.2)

Namely, if L < 1 < M we impose E′
L,M(1) = EL,M(1) = 0, and find that

E′′
L,M(r) :=

⎧⎪⎨⎪⎩
1
L

, r ≤ L,
1
r
, L < r < M,

1
M

, r ≥ M,

E′
L,M(r) :=

⎧⎪⎨⎪⎩
r
L

+ log(L) − 1, r ≤ L,

log(r), L < r < M,
r
M

+ log(M) − 1, r ≥ M,

EL,M(r) :=

⎧⎪⎨⎪⎩
r2−L2

2L
+ (log(L) − 1)r + 1, r ≤ L,

(log(r) − 1)r + 1, L < r < M,
r2−M2

2M
+ (log(M) − 1)r + 1, r ≥ M.

We recall the following properties concerning the functions TL,M and EL,M , which are derived 
in [18] and which will be useful in the forthcoming calculations:

EL,M(r) ≥ r2

2L
, r ≤ 0, L ∈ (0, e−1), (3.3)

rE′
L,M(r) ≤ 2EL,M(r) + 1, r ∈ R, L ∈ (0, e−1). (3.4)

Moreover, we give the following properties, which can be directly verified by computation and 
which will be useful later:

|r| ≤ EL,L−1(r) + e − 1, L ∈ (0, e−1), r ∈R, (3.5)

(r)2+E′
L,L−1(r) + (2e)−1 ≥ 0, L ∈ (0, e−1), r ∈R, (3.6)

(r)2+ ≤ C
(
(r)2+E′

L,L−1(r) + (2e)−1
)

+ max

(
e
− 2(1+C)

C

(
C + 4

27C
2

)
, e

2
C

)
, L ∈

(
0, e

− 1+C

C

)
, r ∈R, (3.7)

for any positive constant C.
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3.1. Approximation

The primary challenge in introducing an approximate scheme is associated with the necessity 
of obtaining uniform (in the approximation parameters) a-priori energy estimates for the Keller–
Segel system, which are tipically derived only at a formal level in the literature (see, e.g., [30,27]). 
In our case the energy estimate for the coupled system (1.57)–(1.63) is related to the formal dis-
sipative equality (1.41), and in order to control the chemotactic coupling term −χ

a

∫
�

ϕac in the 
free energy (1.15) the boundedness of c is needed. Moreover, some of the source terms in (1.41)
can be controlled thanks to the boundedness and the nonnegativity of certain variables. Hence, 
another challenge in the design of our approximate scheme is related to the need to maintain the 
physical boundedness (min-max conditions) and nonnegativity characteristics of the aforemen-
tioned variables also at the approximation level. This is achieved starting from the introduction 
of a proper regularization of the entropy density associated to the variable ϕa , following [18]. 
We observe that in [18] the chemotactic coupling between the cell density and the chemical con-
centration was complemented by the introduction of an artificial cell diffusion in the chemical 
concentration equation; this avoided the need to control the chemotactic coupling term in the 
a-priori estimates. The design of our approximation schemes relates on three main ingredients:

• The introduction of a truncation of the variable ϕa in the chemotactic flux in equation (1.59);
• The introduction of proper truncations and positive parts of some variables involved in the 

source terms;
• The introduction of a proper regularization of the possibly singular potential in equation 

(1.58).

In the case with a smooth potential F satisfying (2.1)–(2.2), we introduce the following regular-
ized and truncated version of System (1.57)–(1.63), depending on the regularization parameter 
ε ∈ (0, 1):

∂tϕ − div
(
m(ϕ,ϕa,n)∇μ

) + χ
ϕ div

(
m(ϕ,ϕa,n)∇n

)
= (h(n) − δn)+ h(ϕ) − mϕ in Q, (3.8)

μ = −�ϕ + F ′(ϕ) in Q, (3.9)

∂tϕa − div
(
n(ϕa, c)∇ϕa

) + χ
a div

(
Tε,ε−1(ϕa)n(ϕa, c)∇c

)
= (

(T−ε−1,1+ε−1(c) − δa)+(1 − h(ϕ)) + ζ
)
(κ0ϕa − κ∞(ϕa)2+) in Q, (3.10)

∂tn − �n − χ
ϕϕ = (1 − h(n))(1 − h(ϕ) + (ϕa)+) − ϕh(n) in Q, (3.11)

∂t c − �c − χ
a(ϕa)+

= h(ϕ)(δn − n)+(1 − T−ε−1,1+ε−1(c)) − (ϕa)+T−ε−1,1+ε−1(c) in Q. (3.12)

As for the boundary and initial conditions, they will be selected later on for the unified approx-
imated system. To define the regularization of System (1.57)–(1.63) in the case with a singular 
potential F satisfying (2.3)–(2.6), we introduce the Moreau–Yosida regularizations (see, e.g., [3, 
pp. 28 and 39]) of the functional β̂ and the graph β , depending on a parameter ε ∈ (0, 1), i.e., we 
set
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βε := I − Jε

ε
, Jε := (I + εβ)−1,

0 ≤ β̂ε(r) := min
t∈R

{
1

2ε
|t − r|2 + β̂(t)

}
, r ∈ R,

being I the identity operator. From classical theory of convex analysis and Assumption A1 we 
have that, for every ε ∈ (0, 1),

βε is monotone and
1

ε
-Lipschitz continuous with βε(0) = 0,

|βε(r)| ≤ |β◦(r)| for every r ∈ D(β),

where β◦(r) indicates the element of the section β(r) having minimum modulus. Moreover, it 
readily follows that

β̂ε(r) = ε

2
|βε(r)|2 + β̂(Jε(r)), r ∈ R,

from which, since Jε(r) belongs to the proper domain of β̂ and using the Young inequality, we 
get that

|βε(r)| ≤ C

ε

(
β̂ε(r) + 1

)
, r ∈R, ε ∈ (0, 1). (3.13)

Then, we introduce the following regularized and truncated version of System (1.57)–(1.63), 
depending on the regularization parameter ε ∈ (0, 1):

∂tϕ − div
(
m(ϕ,ϕa,n)∇μ

) + χ
ϕ div

(
m(ϕ,ϕa,n)∇n

)
= (

T−ε−1,1+ε−1(n) − δn

)
+ h(ϕ) − mϕ in Q, (3.14)

μ = −�ϕ + βε(ϕ) + π(ϕ) in Q, (3.15)

∂tϕa − div
(
n(ϕa, c)∇ϕa

) + χ
a div

(
Tε,ε−1(ϕa)n(ϕa, c)∇c

)
= (

(T−ε−1,1+ε−1(c) − δa)+(1 − h(ϕ)) + ζ
)
(κ0ϕa − κ∞(ϕa)2+) in Q, (3.16)

∂tn − �n − χ
ϕ(ϕ)+ (3.17)

= (
1 − T−ε−1,1+ε−1(n)

)
(1 − h(ϕ) + (ϕa)+) − (ϕ)+T−ε−1,1+ε−1(n) in Q, (3.18)

∂t c − �c − χ
a(ϕa)+

= h(ϕ)(δn − n)+(1 − T−ε−1,1+ε−1(c)) − (ϕa)+T−ε−1,1+ε−1(c) in Q. (3.19)

Remark 3.1. We observe that in the source terms of equations (3.12) and (3.19) (and also of 
equation (3.17)), we took the positive part of ϕa , (ϕ, respectively), instead of their truncations 
by two primary reasons: firstly, to maintain the integrity of the min-max principles within the 
equations, and secondly, to enable the reconstruction of the term −χ

a
d
dt

∫
�

ϕac, and the analo-
gous term involving ϕ and n, in the a-priori estimate. The latter point could not be afforded if we 
considered the truncation of the variable ϕa (ϕ, respectively), instead of their positive part in the 
chemotactic terms in equations (3.12) and (3.19) (equation (3.17), respectively).
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For ease of notation, we have omitted to indicate with a subscript ε the dependence of the 
solutions of (3.8)–(3.12) and (3.14)–(3.19) on the regularization parameter ε.
Given ε ∈ (0, 1), we can prove the existence of a solution to (3.8)–(3.12) and (3.14)–(3.19) at 
least locally in time, e.g., by means of a Faedo–Galerkin approximation strategy. To unify the 
discussion, we introduce the functions qε, p and Fε , defined on R, as

qε(r) :=
{

h(r), if F is smooth,

T−ε−1,1+ε−1(r), if F is singular,
p(r) :=

{
r, if F is smooth,

r+, if F is singular,

and

Fε(r) :=
{

F(r) if F is smooth,

β̂ε(ϕ) + π̂(ϕ) if F is singular.

We observe that qε is bounded for any ε ∈ (0, 1) and is Lipschitz continuous. Moreover, thanks 
to (2.1), (3.13) and the polynomial growth (2.6), we have that there exists C > 0, eventually 
depending on ε in the case with a singular potential, such that

|F ′
ε(r)| ≤ C(Fε(r) + 1), Fε(r) ≥ 0, r ∈R. (3.20)

Let us now fix the boundary and initial conditions. For those, we consider no-flux Neumann 
boundary conditions for all the variables and as initial conditions we will consider the H -
projection of the original initial data as detailed below.

Let {ψi}i∈N be a family of eigenfunctions of the Laplace operator with homogeneous Neu-
mann boundary conditions, that is, for i = 0, ..., k, ψi are weak solutions to

−�ψi = αiψi in �, ∂nψi = 0 on 	,

with 0 = α0 < α1 ≤ · · · ≤ αk < ... → ∞ the reordered sequence of eigenvalues. The sequence 
{ψi}i∈N can be chosen as an orthonormal basis in H and an orthogonal Schauder basis in V , and, 
thanks to the properties of 	, it holds that {ψi}i∈N ⊂ W . Then, we introduce the H -projection 
operator

Pk : V → Vk :=span{ψ0,ψ1, . . . ,ψk}, k ∈ N,

and notice that 
⋃∞

k=0 Vk is dense in both V and in H . Accordingly, we make the Galerkin ansatz

ϕk(x, t) =
k∑

i=0

ak
i (t)ψi(x), μk(x, t) =

k∑
i=0

bk
i (t)ψi(x), ϕa,k(x, t) =

k∑
i=0

ck
i (t)ψi(x),

nk(x, t) =
k∑

i=0

dk
i (t)ψi(x), ck(x, t) =

k∑
i=0

ek
i (t)ψi(x), (3.21)

for unknowns vector-valued functions
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ak = (ak
0, ...., ak

k ), bk = (bk
0, ...., bk

k), ck = (ck
0, ...., ck

k),

dk = (dk
0 , ...., dk

k ), ek = (ek
0, ...., ek

k),

to approximate the solutions ϕ, μ, ϕa, n, c of systems (3.8)–(3.12) and (3.14)–(3.19), and project 
the equations onto Vk , obtaining the following Galerkin approximation of systems (3.8)–(3.12)
and (3.14)–(3.19):∫

�

∂tϕk ψi +
∫
�

m(ϕk,ϕa,k, nk)∇ (
μk − χ

ϕnk

) · ∇ψi

=
∫
�

((qε(nk) − δn)+h(ϕk) − mϕk)ψi, (3.22)

∫
�

μk ψi =
∫
�

∇ϕk · ∇ψi +
∫
�

F ′
ε(ϕk)ψi, (3.23)

∫
�

∂tϕa,k ψi +
∫
�

n(ϕa,k, ck)∇ϕa,k · ∇ψi−χ
a

∫
�

Tε,ε−1(ϕa,k)n(ϕa,k, ck)∇ck · ∇ψi

=
∫
�

(
(T−ε−1,1+ε−1(ck) − δa)+(1 − h(ϕk)) + ζ

)
(κ0ϕa,k − κ∞(ϕa,k)2+)ψi, (3.24)

∫
�

∂tnk ψi +
∫
�

∇nk · ∇ψi − χ
ϕ

∫
�

p(ϕk)ψi

=
∫
�

(
(1 − qε(nk))(1 − h(ϕk) + (ϕa,k)+) − p(ϕk)qε(nk)

)
ψi, (3.25)

∫
�

∂tck ψi +
∫
�

∇ck · ∇ψi − χ
a

∫
�

(ϕa,k)+ψi

=
∫
�

(
h(ϕk)(δn − nk)+(1 − T−ε−1,1+ε−1(ck)) − (ϕa,k)+T−ε−1,1+ε−1(ck)

)
ψi, (3.26)

in [0, t], with 0 < t ≤ T , for i = 0, . . . , k and with initial conditions

ϕk(0) = Pk(ϕ0), ϕa,k(0) = Pk(ϕ0
a), nk(0) = Pk(n0), ck(0) = Pk(c0). (3.27)

We note that thanks to the introduction of the functions qε and Fε we have written a unique 
Galerkin approximation (3.22)–(3.27) which is valid for both the systems (3.8)–(3.12) and 
(3.14)–(3.19).

Remark 3.2. The Galerkin ansatz for the variables ϕa and c implies that both ϕa,k and ck satisfy 
homogeneous Neumann boundary conditions. This is compliant with the boundary conditions 
(1.39) employed in the derivation of the model and with the constitutive assumption (2.13). 
Indeed, given the homogeneous Neumann boundary condition for the variable c in (1.39) and the 
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assumed positivity of the mobility function n, the second boundary condition in (1.39) implies 
that ∂nϕa = 0. Nevertheless, we highlight the fact that in the limit system (2.28), the validity of 
the boundary condition for the variable ϕa is lost due to its low space and time regularity.

We observe that equation (3.23) allows us to represent bk solely in terms of ak . Consequently, 
with this substitution, the collective system (3.22)–(3.27) defines a collection of initial value 
problems for a system of coupled normal first-order ODEs in the variables ak(t), ck(t), dk(t), 
and ek(t). Due to the Assumptions A1, A5 on the regularity of the functions m, n, F , and h, the 
regularity of the Moreau–Yosida approximation and the regularity in space of the eigenfunctions 
ψi , the structure function of the ODEs system depends continuously on the independent variables 
and on the coefficients. Hence, we can apply the Cauchy–Peano existence theorem to infer that 
there exist a sufficiently small t1 with 0 < t1 ≤ T and a corresponding local solution (ak

i , . . . , ek
i )

of (3.22)–(3.27), for i = 0, . . . , k. Here, the unknown bk can be readily obtained by using ak and 
equation (3.23). Upon combining (3.21) with the properties of the eigenfunctions, this readily 
produces local solutions ϕk, μk, ϕa,k, nk and ck . We now deduce a-priori estimates, uniform in 
the discretization parameter k, for the solutions of system (3.22)–(3.27), which can be rewritten, 
combining the equations over i = 0, . . . , k, as

∫
�

∂tϕk v +
∫
�

m(ϕk,ϕa,k, nk)∇ (
μk − χ

ϕnk

) · ∇v

=
∫
�

((qε(nk) − δn)+h(ϕk) − mϕk) v, (3.28)

∫
�

μk v =
∫
�

∇ϕk · ∇v +
∫
�

F ′
ε(ϕk)v, (3.29)

∫
�

∂tϕa,k v +
∫
�

n(ϕa,k, ck)∇ϕa,k · ∇v−χ
a

∫
�

Tε,ε−1(ϕa,k)n(ϕa,k, ck)∇ck · ∇v

=
∫
�

(
(T−ε−1,1+ε−1(ck) − δa)+(1 − h(ϕk)) + ζ

)
(κ0ϕa,k − κ∞(ϕa,k)2+)v, (3.30)

∫
�

∂tnk v +
∫
�

∇nk · ∇v − χ
ϕ

∫
�

p(ϕk) v

=
∫
�

(
(1 − qε(nk))(1 − h(ϕk) + (ϕa,k)+) − p(ϕk)qε(nk)

)
v, (3.31)

∫
�

∂tck v +
∫
�

∇ck · ∇v − χ
a

∫
�

(ϕa,k)+v

=
∫
�

(
h(ϕk)(δn − nk)+(1 − T−ε−1,1+ε−1(ck)) − (ϕa,k)+T−ε−1,1+ε−1(ck)

)
v, (3.32)
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for almost every t ∈ [0, t1] and for all v ∈ Vk , with initial conditions defined in (3.27). We take 
v = μk − χ

ϕnk + ϕk in (3.28), v = −∂tϕk in (3.29), v = ϕa,k in (3.30), v = ∂tnk + 2(χ2
ϕ + 1)nk

in (3.31) and v = ∂t ck + ck in (3.32), sum all the equations and manipulate some terms, to obtain 
that

d

dt

(
1

2
‖ϕk‖2 + 1

2
‖∇ϕk‖2 +

∫
�

Fε(ϕk) − χ
ϕ

∫
�

ϕknk + 1

2
‖ϕa,k‖2 + (χ2

ϕ + 1)‖nk‖2

+ 1

2
‖∇nk‖2 + 1

2
‖ck‖2 + 1

2
‖∇ck‖2

)
+ m‖ϕk‖2 + ‖∂tnk‖2 + 2(χ2

ϕ + 1)‖∇nk‖2

+ ‖∂t ck‖2 + ‖∇ck‖2 +
∫
�

m(ϕk,ϕa,k, nk)∇μk · ∇μk

+ χ
ϕ

∫
�

m(ϕk,ϕa,k, nk)∇nk · ∇nk +
∫
�

n(ϕa,k, ck)∇ϕa,k · ∇ϕa,k

+ κ∞
∫
�

(
(T−ε−1,1+ε−1(ck) − δa)+(1 − h(ϕk)) + ζ

)
(ϕa,k)3+︸ ︷︷ ︸

≥0

+ 2(χ2
ϕ + 1)

∫
�

(
1 − h(ϕk) + (ϕa,k)+

)
qε(nk)nk

︸ ︷︷ ︸
≥0

+
∫
�

(
h(ϕk)(δn − nk)+ + (ϕa,k)+

)
T−ε−1,1+ε−1(ck)ck

︸ ︷︷ ︸
≥0

= 2χ
ϕ

∫
�

m(ϕk,ϕa,k, nk)∇μk · ∇nk −
∫
�

m(ϕk,ϕa,k, nk)∇μk · ∇ϕk

+ χ
ϕ

∫
�

m(ϕk,ϕa,k, nk)∇nk · ∇ϕk +
∫
�

(qε(nk) − δn)+h(ϕk)(μk − (μk)�)

+
∫
�

(qε(nk) − δn)+h(ϕk)(μk)� − χ
ϕ

∫
�

(qε(nk) − δn)+h(ϕk)nk

+
∫
�

(qε(nk) − δn)+h(ϕk)ϕk − m

∫
�

ϕk(μk − (μk)�) − m|�|(ϕk)�(μk)�

+ χ
ϕ(m + 2(χ2

ϕ + 1))

∫
�

ϕknk − χ
a

∫
�

Tε,ε−1(ϕa,k)n(ϕa,k, ck)∇ck · ∇ϕa,k

+ κ0

∫ (
(T−ε−1,1+ε−1(ck) − δa)+(1 − h(ϕk)) + ζ

)
ϕ2

a,k
�
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+
∫
�

(1 − qε(nk))
(
1 − h(ϕk) + (ϕa,k)+

)
∂tnk

+ 2(χ2
ϕ + 1)

∫
�

(
1 − h(ϕk) + (ϕa,k)+

)
nk

−
∫
�

p(ϕk)qε(nk)(∂tnk + 2(χ2
ϕ + 1)nk) + χ

ϕ

∫
�

(p(ϕk) − ϕk) (∂tnk + 2(χ2
ϕ + 1)nk)

+ χ
a

∫
�

(ϕa,k)+∂t ck + χ
a

∫
�

(ϕa,k)+ck

+
∫
�

(
h(ϕk)(δn − nk)+(1 − T−ε−1,1+ε−1(ck))

)
∂t ck

+
∫
�

h(ϕk)(δn − nk)+ck −
∫
�

(ϕa,k)+T−ε−1,1+ε−1(ck)∂t ck. (3.33)

To bound the fifth and eighth terms on the right hand side of the above identity, we need to obtain 
estimates for |(μk)�| and |(ϕk)�|. Taking v = |�|−1 in (3.29), which is allowed since it belongs 
to V0, and using the property (3.20), we easily obtain that

|(μk)�| ≤ C

⎛⎝∫
�

Fε(ϕk) + 1

⎞⎠ . (3.34)

Similarly, taking v = |�|−1 in (3.28), using Assumption (2.9) and introducing the variable y :=
(ϕk)� and the constant H := ‖(qε(nk) − δn)+h(ϕk)‖L∞(Qt1 ), we obtain the differential Gronwall 
inequality

−H ≤ y′ + my ≤ H,

which gives that

y(0)e−mt + (
1 − e−mt

)(−H

m

)
≤ y(t) ≤ y(0)e−mt + (

1 − e−mt
)(H

m

)
, (3.35)

for every t ∈ [0, t1]. Hence, given the assumed regularity on ϕ0, and the properties of the projector 
operator, we obtain that

|(ϕk)�| ≤ C(t).

Using these facts in (3.33), together with the Poincaré–Wirtinger, the Cauchy–Schwarz and the 
Young inequalities, integrating in time (3.33) between 0 and t ∈ [0, t1] and employing Assump-
tions A3–A6, the regularity properties of the Moreau–Yosida approximation and of the initial 
data (2.14)–(2.16), we obtain that
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1

2
‖ϕk(t)‖2 + 1

2
‖∇ϕk(t)‖2 +

∫
�

Fε(ϕk(t)) + 1

2
‖ϕa,k(t)‖2 + (χ2

ϕ + 1)‖nk(t)‖2 + 1

2
‖∇nk(t)‖2

+ 1

2
‖ck(t)‖2 + 1

2
‖∇ck(t)‖2 +

t∫
0

(
m‖ϕk‖2 + ‖∂tnk‖2 + ‖∇nk‖2 + ‖∂t ck‖2

)

+
t∫

0

(
‖∇ck‖2 + m0‖∇μk‖2 + χ

ϕm0‖∇nk‖2 + m0‖∇ϕa,k‖2
)

≤ C(ϕ0, ϕ0
a, n0, c0) + 1

4
‖ϕk‖2

+ χ2
ϕ‖nk‖2 +

t∫
0

(
m0

2
‖∇μk‖2 + m0

2
‖∇ϕa,k‖2 + 1

2
‖∂tnk‖2 + 1

2
‖∂t ck‖2

)

+ C(ε)

t∫
0

(
1

4
‖ϕk‖2 + 1

2
‖∇ϕk‖2 +

∫
�

Fε(ϕk) + 1

2
‖ϕa,k‖2 + ‖nk‖2

)

+ C(ε)

t∫
0

(
1

2
‖∇nk‖2 + 1

2
‖ck‖2 + 1

2
‖∇ck‖2

)
+ C, (3.36)

for any t ∈ [0, t1]. An application of the Gronwall lemma then yields, for any t ∈ [0, t1], that

‖ϕk‖L∞(0,t;V ) + ‖Fε(ϕk)‖L∞(0,t;L1(�)) + ‖ϕa,k‖L∞(0,t;H)∩L2(0,t;V )

+ ‖∇μk‖L2(0,t;H) + ‖nk‖H 1(0,t;H)∩L∞(0,t;V ) + ‖ck‖H 1(0,t;H)∩L∞(0,t;V ) ≤ C. (3.37)

The bound (3.37), together with (3.34) and the Poincaré–Wirtinger inequality, gives that, for any 
t ∈ [0, t1],

‖μk‖L2(0,t;V ) ≤ C. (3.38)

A comparison argument in (3.28) and (3.30) finally produces, for any t ∈ [0, t1],

‖∂tϕk‖L2(0,t;V ∗) ≤ C, ‖∂tϕa,k‖L2(0,t;V ∗) ≤ C. (3.39)

Next, we take v = −�nk in (3.31), v = −�ck in (3.32) and sum the two contributions, using 
(3.37), integrating in time between 0 and t ∈ [0, t1] and employing Assumption A4 and the 
regularity properties of the initial data (2.16). We obtain that

1

2
‖∇nk(t)‖2 + 1

2
‖∇ck(t)‖2 +

t∫ (
‖�nk‖2 + ‖�ck‖2

)
≤ C(n0, c0)
0
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+ C

t∫
0

(
‖ϕk‖2 + ‖nk‖2 + ‖ϕa,k‖2

)
+ 1

2

t∫
0

(
‖�nk‖2 + ‖�ck‖2

)

≤ C + 1

2

t∫
0

(
‖�nk‖2 + ‖�ck‖2

)
,

from which, using also the assumption on the initial data c0 and n0, along with elliptic regularity 
theory, we get the bounds, for any t ∈ [0, t1],

‖nk‖L2(0,t;W) + ‖ck‖L2(0,t;W) ≤ C. (3.40)

Taking now v = −�ϕk in (3.29), we obtain that∫
�

|�ϕk|2 +
∫
�

β ′
ε(ϕk)|∇ϕk|2

︸ ︷︷ ︸
≥0

≤ ‖∇μk‖‖ϕk‖ −
∫
�

π ′(ϕk)|∇ϕk|2.

In the case with a smooth potential, thanks to Assumption (2.2), we have that∫
�

|π ′(ϕk)||∇ϕk|2 ≤ C

∫
�

(
1 + |ϕk|q

) |∇ϕk|2,

with q ∈ [0, 4). Observing that 4
q

> 1 when q < 4, using standard Sobolev embeddings, the 
Young inequality and (3.37), we obtain that∫

�

|ϕk|q |∇ϕk|2 ≤ ‖ϕk‖q∞‖∇ϕk‖2 ≤ C‖ϕk‖
4+q

2
V

(
‖ϕk‖ q

2 + ‖�ϕk‖ q
2

)

≤ C‖ϕk‖2+q
V + ‖ϕk‖

2(q+4)
4−q

V + 1

2
‖�ϕk‖2 ≤ C + 1

2
‖�ϕk‖2.

In the case with a singular potential, thanks to Assumption (2.6), we have that∫
�

|π ′(ϕk)||∇ϕk|2 ≤ C‖∇ϕk‖2.

Due to the previous computations and using (3.37), we obtain that

‖�ϕk‖2 ≤ C(‖∇μk‖ + 1).

Squaring both sides, using again (3.37) along with elliptic regularity theory yield, for any t ∈
[0, t1],

‖ϕk‖L4(0,t;W) ≤ C. (3.41)
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The constants in the right hand side of (3.37)–(3.39) depend on the initial data, on the do-
main �, on the regularization parameter ε but not on the discretization parameter k. Thanks 
to the a-priori estimates (3.37)–(3.39), we may extend by continuity the local solution of sys-
tem (3.22)–(3.27) to the interval [0, T ] and pass to the limit in a standard way as k → ∞ in 
(3.28)–(3.32), obtaining the existence of a weak solution (ϕ, μ, ϕa, n, c) to the regularized sys-
tem (3.8)–(3.12) on the whole time interval [0, T ]. This solution has the regularity

ϕ ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L4(0, T ;W),

μ ∈ L2(0, T ;V ),

ϕa ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ),

n ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W),

c ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W), (3.42)

and satisfies the limit system

〈∂tϕ, v〉V +
∫
�

m(ϕ,ϕa,n)∇ (
μ − χ

ϕn
) · ∇v =

∫
�

((qε(n) − δn)+h(ϕ) − mϕ)v, (3.43)

∫
�

μv =
∫
�

∇ϕ · ∇v +
∫
�

F ′
ε(ϕ)v, (3.44)

〈∂tϕa, v〉V +
∫
�

n(ϕa, c)∇ϕa · ∇v−χ
a

∫
�

Tε,ε−1(ϕa)n(ϕa, c)∇c · ∇v (3.45)

=
∫
�

(
(T−ε−1,1+ε−1(c) − δa)+(1 − h(ϕ)) + ζ

)
(κ0ϕa − κ∞(ϕa)2+)v,

∫
�

∂tnw −
∫
�

�nw − χ
ϕ

∫
�

p(ϕ)w

=
∫
�

((1 − qε(n))(1 − h(ϕ) + (ϕa)+) − p(ϕ)qε(n))w, (3.46)

∫
�

∂tc w −
∫
�

�c w − χ
a

∫
�

(ϕa)+w (3.47)

=
∫
�

(
h(ϕ)(δn − n)+(1 − T−ε−1,1+ε−1(c)) − (ϕa)+T−ε−1,1+ε−1(c)

)
w,

for almost every t ∈ [0, T ], for all v ∈ V, w ∈ H , with initial conditions defined in (3.27). We 
now want to obtain a-priori estimates for the solutions of System (3.43)–(3.47) which are uniform 
in ε, in order to study the limit problem as ε → 0 and obtain an existence result for the original 
System (1.57)–(1.63). In the process of obtaining these estimates we will sometimes need to 
consider separately the cases with a smooth potential or with a singular potential. We start by 
339



A. Agosti and A. Signori Journal of Differential Equations 403 (2024) 308–367
obtaining a maximum and a minimum principle for equation (3.47), valid both in the cases with a 
smooth or a singular potential, which gives that c ∈ [0, 1] almost everywhere in Q. This condition 
is expected in view of the physical interpretation of c as a concentration, and allows us to prove 
the coercivity of the chemotaxis term −χ

a

∫
�

ϕac in the free energy of the system uniformly in 
ε.

Minimum principle. To begin with, let us address the minimum principle. Let us define f− :=
c− = −cχ {c<0} and point out that {c < 0} := {x ∈ � : c(x) < 0}. Then, we take w = −f− in 
(3.47) to find that

1

2

d

dt
‖f−‖2 + ‖∇(c−)‖2 +

∫
�

h(ϕ)(δn − n)+(1 − T−ε−1,1+ε−1(c))f−

−
∫
�

(ϕa)+T−ε−1,1+ε−1(c)f− = 0.

Besides, it holds that the fourth and the fifth integrals on the left-hand side are nonnegative as 
well. In fact, we have that∫

�

h(ϕ)(δn − n)+(1 − T−ε−1,1+ε−1(c))f−

=
∫

�∩{c<0}
h(ϕ)(δn − n)+︸ ︷︷ ︸

≥0

(1 − T−ε−1,1+ε−1(c))︸ ︷︷ ︸
>1

(−c)︸︷︷︸
>0

≥ 0,

and similarly

−
∫
�

(ϕa)+T−ε−1,1+ε−1(c)f− = −
∫

�∩{c<0}
(ϕa)+︸ ︷︷ ︸

≥0

(T−ε−1,1+ε−1(c))︸ ︷︷ ︸
≤0

(−c)︸︷︷︸
>0

≥ 0.

Going back to the first identity, this entails that

f−(t) = 0 for every t ∈ [0, T ] and a.e. in �

from which we conclude that

c(x, t) ≥ 0 for a.e.(x, t) ∈ Q. (3.48)

Maximum principle. Next, we set f+ := (c − 1)+ = (c − 1)χ {c>1} and take w = f+ in (3.47)
to find that

1

2

d

dt
‖f+‖2 +

∫
�∩{c>1}

|∇c|2 +
∫

�∩{c>1}
(ϕa)+(T−ε−1,1+ε−1(c) − χ

a)(c − 1)

︸ ︷︷ ︸

≥0
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+
∫

�∩{c>1}
h(ϕ)(δn − n)+

(
T−ε−1,1+ε−1(c) − 1

)
(c − 1)

︸ ︷︷ ︸
≥0

= 0,

where in the third term on the left hand side of the last equality we used the compatibility condi-
tion χa ∈ (0, 1) in A6. Similarly as above this yields that

f+(t) = 0 for every t ∈ [0, T ] and a.e. in �,

meaning that

c(x, t) ≤ 1 for a.e.(x, t) ∈ Q. (3.49)

Upon combining (3.48) and (3.49), we finally infer that

0 ≤ c(x, t) ≤ 1 for a.e.(x, t) ∈ Q, (3.50)

uniformly in ε. Note that, as a consequence of (3.50) and the definition (3.1), we have that

T−ε−1,1+ε−1(c) ≡ c,

uniformly in ε.

Remark 3.3. We observe that in (3.47) the choice of taking the positive part (ϕa)+ in the chemo-
tactic and in the source terms implies the validity of the minimum and the maximum principles 
for c for any value of ε. Indeed, given ε ∈ (0, 1), a solution ϕa for the regularized system 
(3.43)–(3.47) is not necessarily nonnegative, hence to enforce the minimum and maximum prin-
ciples for c we need to truncate ϕa to nonnegative values in the chemotactic and in the source 
terms.

In the case with a singular potential it is possible to obtain also a maximum and a minimum 
principle for equation (3.46). This condition is also expected in view of the physical interpre-
tation of n as a concentration. Recalling p(ϕ)=(ϕ)+, qε(n)=T−ε−1,1+ε−1(n), χϕ ∈ (0, 1), and 
observing that 1 − h(ϕ) + (ϕa)+ ≥ 0, we may apply the same calculations as the one employed 
to prove the maximum and minimum principles for equation (3.47), obtaining that

0 ≤ n(x, t) ≤ 1 for a.e.(x, t) ∈ Q. (3.51)

We again observe that the choice pε(ϕ)=(ϕ)+ implies the validity of the minimum and the max-
imum principles also at the approximation level, where the singular potentials are approximated 
by polynomial type potentials. In fact, given ε ∈ (0, 1), a solution ϕ is not necessarily nonnega-
tive, nor confined in the physical range [0, 1]. In the limit ε → 0 the solution ϕ will turn out to 
be nonnegative only in the case with a singular potential, so the property n ∈ [0, 1] is valid only 
in the latter case. Due to (3.51) and the definition (3.1), we have that

T−ε−1,1+ε−1(n) ≡ n,
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uniformly in ε, and accordingly

qε(n)=q(n)=
{

h(n) if F is smooth,

n if F is singular,

with q(n) ∈ [0, 1]. We then redefine the source terms in (3.43)–(3.47) as follows

S(ϕ,n) = (q(n) − δn)+h(ϕ) − mϕ=:P(ϕ,n) − mϕ, (3.52)

Sa(ϕ,ϕa, c) = (
(c − δa)+(1 − h(ϕ)) + ζ

)
(κ0ϕa − κ∞(ϕa)2+)

=ϑ(ϕ, c)(κ0ϕa − κ∞(ϕa)2+), (3.53)

Sn(ϕ,ϕa,n) = (1 − q(n))(1 − h(ϕ) + (ϕa)+) − p(ϕ)q(n), (3.54)

Sc(ϕ,ϕa, n, c) = h(ϕ)(δn − n)+(1 − c) − (ϕa)+c, (3.55)

and observe that there exist constants C1, C2, C3 ≥ 0 such that

|P(ϕ,n)| ≤ C1, ϕ,n ∈R, (3.56)

ζ ≤ |ϑ(ϕ, c)| ≤ 1 + ζ, ϕ ∈ R, c ∈ [0, 1], (3.57)

|Sn(ϕ,ϕa,n)| ≤ C2 (|ϕ| + (ϕa)+ + 1) , ϕ,ϕa, n ∈R, (3.58)

|Sc(ϕ,ϕa, n, c)| ≤ C3 ((ϕa)+ + |n| + 1) , ϕ,ϕa, n ∈ R, c ∈ [0, 1]. (3.59)

We now move to obtain a-priori estimates for System (3.43)–(3.47).

Remark 3.4. In order to rigorously obtain a-priori estimates uniform in the regularization param-
eter ε for System (3.43)–(3.47), we should need to consider a time regularization of (3.43)–(3.47)
with time regularized functions ϕτ , ϕaτ , depending on a regularization parameter τ , where, given 
a function u : Q → R, we define:

uτ (x, t) := 1

τ

t∫
t−τ

u(x, τ ) dτ,

with uτ (x, t): = u0(x) for t ≤ 0. In this way, if u ∈ H 1(0, T ;V ∗) ∩ L2(0, T ;V ), we have that

T∫
0

〈∂tuτ , v〉V =
∫
Q

∂tuτ v.

Since, with the given regularities of ϕ and ϕa in (3.42), it readily follows that ϕτ → ϕ strongly 
in C0([0, T ]; V ), ϕaτ → ϕa strongly in L2(0, T ; V ) and ∂tϕτ → ∂tϕ, ∂tϕaτ → ∂tϕa strongly in 
L2(0, T ; V ∗) as τ → 0, we should easily pass to the limit as τ → 0 in the aforementioned τ -time 
regularized version of (3.43)–(3.47). Since this procedure is standard, see, e.g., [9, Lemma 2], in 
the following we implicitly assume to have performed a time regularization of (3.43)–(3.47) to 
obtain a-priori estimates, avoiding to report all the details for simplicity.
342



A. Agosti and A. Signori Journal of Differential Equations 403 (2024) 308–367
First estimate. We now take v = μ − χ
ϕn + ϕ in (3.43), v = −∂tϕ in (3.44), v = E′

ε,ε−1(ϕa) −
χ

ac in (3.45), w = ∂tn + 2(χ2
ϕ + 1)n in (3.46) and w = ∂t c + c in (3.47), sum all the equations 

and rearrange some terms as in (3.33). Using the identity

Tε,ε−1(ϕa)∇E′
ε,ε−1(ϕa) = ∇ϕa, ε ∈ (0, 1), (3.60)

we find that

d

dt

(
1

2
‖ϕ‖2 + 1

2
‖∇ϕ‖2 +

∫
�

Fε(ϕ) − χ
ϕ

∫
�

ϕ n +
∫
�

Eε,ε−1(ϕa) − χ
a

∫
�

ϕa c

+ (χ2
ϕ + 1)‖n‖2 + 1

2
‖∇n‖2 + 1

2
‖c‖2 + 1

2
‖∇c‖2

)
+ m‖ϕ‖2 + ‖∂tn‖2

+ 2(χ2
ϕ + 1)‖∇n‖2 + ‖∂t c‖2 + ‖∇c‖2 +

∫
�

m(ϕ,ϕa,n)∇μ · ∇μ

+ χ
ϕ

∫
�

m(ϕ,ϕa,n)∇n · ∇n + κ∞
∫
�

ϑ(ϕ, c)(ϕa)2+E′(ϕa)

+
∫
�

Tε,ε−1(ϕa)n(ϕa, c)∇
(
E′

ε,ε−1(ϕa) − χ
ac

)
· ∇

(
E′

ε,ε−1(ϕa) − χ
ac

)

+ 2(χ2
ϕ + 1)

∫
�

(1 − h(ϕ) + (ϕa)+) q(n)n

︸ ︷︷ ︸
≥0

+
∫
�

(h(ϕ)(δn − n)+ + (ϕa)+) c2

︸ ︷︷ ︸
≥0

= 2χ
ϕ

∫
�

m(ϕ,ϕa,n)∇μ · ∇n −
∫
�

m(ϕ,ϕa,n)∇μ · ∇ϕ

+ χ
ϕ

∫
�

m(ϕ,ϕa,n)∇n · ∇ϕ +
∫
�

P (ϕ,n)(μ − μ�) +
∫
�

P (ϕ,n)μ�

− χ
ϕ

∫
�

P (ϕ,n)n +
∫
�

P (ϕ,n)ϕ − m

∫
�

ϕ(μ − μ�) − m|�|ϕ� μ�

+ χ
ϕ(m + 2(χ2

ϕ + 1))

∫
�

ϕn + χ
a

∫
�

((ϕa)+ − ϕa) ∂t c + κ0

∫
�

ϑ(ϕ, c)ϕaE
′(ϕa)

− κ0χ
a

∫
�

ϑ(ϕ, c)ϕac + κ∞χ
a

∫
�

ϑ(ϕ, c)(ϕa)2+c +
∫
�

Sn(ϕ,ϕa,n)∂tn

+ 2(χ2
ϕ + 1)

∫
(1 − h(ϕ) + (ϕa)+)n + χ

a

∫
(ϕa)+c − 2(χ2

ϕ + 1)

∫
p(ϕ)q(n)n
� � �
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+ χ
ϕ

∫
�

(p(ϕ) − ϕ) (∂tn + 2(χ2
ϕ + 1)n) +

∫
�

Sc(ϕ,ϕa, n, c)∂t c

+
∫
�

h(ϕ)(Fδn − n)+c. (3.61)

Here, we need uniform estimates for μ� and ϕ� in order to bound the fifth and ninth terms on 
the right hand side of (3.61). We obtain them separately for the case with a smooth potential and 
the case with a singular potential. In the former case, we proceed with similar arguments as in 
(3.34) and (3.35), taking v = |�|−1 in (3.43) and (3.44) and using Assumption (2.1). We are then 
lead to

|μ�| ≤ C

⎛⎝∫
�

Fε(ϕ) + 1

⎞⎠ , (3.62)

and

|ϕ�(t)| ≤ C for every t ∈ [0, T ], (3.63)

uniformly in ε. For what concerns the singular potential case, the compatibility condition in A4
plays a crucial role in constraining the mass dynamics. Setting y := ϕ�, H := ‖P(ϕ, n)‖L∞(Q)

and testing (3.43) by v =|�|−1, we arrive at the inequalities in (3.35), from which, thanks to the 
compatibility in A4, produces

ϕ�(t) belongs to the interior of D(β) for every t ∈ [0, T ]. (3.64)

To control the mean of μ, we test (3.44) by v=1 to find that

|�||μ�| ≤ ‖F ′
ε(ϕ)‖1. (3.65)

Let us notice from Assumptions (2.3)–(2.6) it holds that

‖F ′
ε(ϕ)‖1 ≤ ‖βε(ϕ)‖1 + ‖π(ϕ)‖1 ≤ ‖βε(ϕ)‖1 + C(‖ϕ‖2 + 1). (3.66)

Thus, it is enough to control the term involving the regularized singular part βε. We test (3.44)
by ϕ − ϕ� to find that∫

�

βε(ϕ)(ϕ − ϕ�) +
∫
�

π(ϕ)(ϕ − ϕ�) + ‖∇ϕ‖2 =
∫
�

μ(ϕ − ϕ�). (3.67)

On the other hand, using the mass property in (3.64) and arguing as in [24], we find positive 
constants CF and cF such that∫

�

βε(ϕ)(ϕ − ϕ�) ≥ CF ‖βε(ϕ)‖1 − cF . (3.68)
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Thus, using (3.67) in (3.68) and Assumption (2.6), the Poincaré–Wirtinger and the Young in-
equalities we deduce that

CF ‖βε(ϕ)‖1 ≤ C‖∇μ‖‖∇ϕ‖ + cF + C(‖ϕ‖2 + 1). (3.69)

Hence, collecting (3.56) and (3.65)–(3.69) and using the Young inequality, we obtain that

∫
�

P (ϕ,n)μ� ≤ C1|�||μ�| ≤ C1‖F ′
ε(ϕ)‖1 ≤ m0

4
‖∇μ‖2 + C‖∇ϕ‖2 + C(‖ϕ‖2 + 1). (3.70)

Using (3.50), (3.51), and (3.64), (3.70) in (3.61), together with the Poincaré–Wirtinger, the 
Cauchy–Schwarz and the Young inequalities, integrating in time between 0 and t ∈ [0, T ] and 
employing Assumptions A3–A6 and the regularity properties of the initial data (2.14)–(2.16), we 
obtain that

1

2
‖ϕ(t)‖2 + 1

2
‖∇ϕ(t)‖2 +

∫
�

Fε(ϕ(t)) +
∫
�

Eε,ε−1(ϕa(t))

− χ
a

∫
�

ϕa(t) c(t) + (χ2
ϕ + 1)‖n(t)‖2 + 1

2
‖∇n(t)‖2

+ 1

2
‖c(t)‖2 + 1

2
‖∇c(t)‖2 +

t∫
0

(
m‖ϕ‖2 + ‖∂tn‖2 + ‖∇n‖2 + ‖∂t c‖2 + ‖∇c‖2

+ m0‖∇μ‖2 + χ
ϕm0‖∇n‖2

)
+ κ∞

t∫
0

∫
�

ϑ(ϕ, c)(ϕa)2+E′
ε,ε−1(ϕa)

+
t∫

0

∫
�

Tε,ε−1(ϕa)n(ϕa, c)∇
(
E′

ε,ε−1(ϕa) − χ
ac

)
· ∇

(
E′

ε,ε−1(ϕa) − χ
ac

)

≤ C(ϕ0, ϕ0
a, n0, c0) + 1

4
‖ϕ(t)‖2 + χ2

ϕ‖n(t)‖2 +
t∫

0

(
m0

2
‖∇μ‖2 + 1

4
‖∂tn‖2 + 1

4
‖∂t c‖2

)

+ C

t∫
0

(
1

4
‖ϕ‖2 + 1

2
‖∇ϕ‖2 +

∫
�

Fε(ϕ) + 1

2
‖n‖2 + 1

2
‖∇n‖2

)
+ C

+ χ
a

t∫
0

∫
�

((ϕa)+ − ϕa) ∂t c

︸ ︷︷ ︸
+κ0

t∫
0

∫
�

ϑ(ϕ, c)ϕaE
′
ε,ε−1(ϕa)

︸ ︷︷ ︸
−κ0χ

a

t∫
0

∫
�

ϑ(ϕ, c)ϕac

︸ ︷︷ ︸

=:I1 =:I2 =:I3
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+ κ∞χ
a

t∫
0

∫
�

ϑ(ϕ, c)(ϕa)2+c

︸ ︷︷ ︸
=:I4

+
∫
�

Sn(ϕ,ϕa,n)∂tn +
∫
�

Sc(ϕ,ϕa, n, c)∂t c

︸ ︷︷ ︸
=:I5

+ χ
a

t∫
0

∫
�

(ϕa)+c + 2(χ2
ϕ + 1)

∫
�

(ϕa)+n +
t∫

0

∫
�

(ϕa)+c ∂t c

︸ ︷︷ ︸
=:I6

, (3.71)

for any t ∈ [0, T ]. The term I1 can be bounded using (3.3), the Cauchy–Schwarz and the Young 
inequality. Namely, it holds that

|I1| ≤ χ
a

t∫
0

∫
�

|(ϕa)−| |∂t c| ≤ 1

8

t∫
0

‖∂t c‖2 + 4χ2
aε

t∫
0

∫
�

Eε,ε−1(ϕa).

Using (3.4) and (3.50), we can bound I2 as

|I2| ≤ 2κ0(ζ + 1)

t∫
0

∫
�

Eε,ε−1(ϕa) + κ0(ζ + 1)|�|T .

For what concerns the term I3, we rewrite it as

I3 = −κ0χ
a

t∫
0

∫
�

ϑ(ϕ, c)(ϕa)+c

︸ ︷︷ ︸
≥0

+κ0χ
a

t∫
0

∫
�

ϑ(ϕ, c)(ϕa)−c,

hence, using (3.3), (3.50), the Cauchy–Schwarz and the Young inequality, we obtain that

|I3| ≤ κ0χ
a(ζ + 1)ε

t∫
0

∫
�

Eε,ε−1(ϕa) + κ0χ
a(ζ + 1)

2
|�|T .

The term I4 can be bounded using (3.7) and (3.50), leading to

|I4| ≤ κ∞χ
a(1 + ζ )

t∫
0

∫
�

(ϕa)2+ ≤ κ∞ζ

4

t∫
0

∫
�

(
(ϕa)2+E′

ε,ε−1(ϕa) + (2e)−1
)

+ C|�|T .

Finally, I5 can be bounded using (3.7), (3.50), (3.58), (3.59), the Cauchy–Schwarz and the Young 
inequality, obtaining that
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|I5|+|I6| ≤ 1

4

t∫
0

‖∂tn‖2 + 1

8

t∫
0

‖∂t c‖2 + C

t∫
0

(
‖ϕ‖2 + ‖n‖2 + 1

)

+ κ∞ζ

4

t∫
0

∫
�

(
(ϕa)2+E′

ε,ε−1(ϕa) + (2e)−1
)

+ C|�|T .

Thanks to (3.5), we can treat the chemotactic term in (3.71) by noticing that

χ
a

∫
�

ϕa c ≤ χ
a

∫
�

|ϕa | ≤ χ
a

∫
�

Eε,ε−1(ϕa) + χ
a(e − 1)|�|.

Using the previous results in (3.71), adding to both sides the quantity

κ∞
2e

t∫
0

∫
�

ϑ(ϕ, c)

and considering (3.6), we obtain that

1

4
‖ϕ(t)‖2 + 1

2
‖∇ϕ(t)‖2 +

∫
�

Fε(ϕ(t)) + (1 − χ
a)

∫
�

Eε,ε−1(ϕa(t))

+ ‖n(t)‖2 + 1

2
‖∇n(t)‖2 + 1

2
‖c(t)‖2

V

+
t∫

0

(
m‖ϕ‖2 + 1

2
‖∂tn‖2 + ‖∇n‖2 + 1

2
‖∂t c‖2 + ‖∇c‖2 + m0

2
‖∇μ‖2 + χ

ϕm0‖∇n‖2
)

+ κ∞ζ

2

t∫
0

∫
�

(
(ϕa)2+E′

ε,ε−1(ϕa) + (2e)−1
)

︸ ︷︷ ︸
≥0

+κ0χ
a

t∫
0

∫
�

ϑ(ϕ, c)(ϕa)+c

︸ ︷︷ ︸
≥0

+
t∫

0

∫
�

Tε,ε−1(ϕa)n(ϕa, c)∇
(
E′

ε,ε−1(ϕa) − χ
ac

)
· ∇

(
E′

ε,ε−1(ϕa) − χ
ac

)

≤ C(ϕ0, ϕ0
a, n0, c0) + C + C

t∫
0

(
1

4
‖ϕ‖2 + 1

2
‖∇ϕ‖2 +

∫
�

Fε(ϕ)

)

+C

t∫
0

(
(1 − χ

a)

∫
�

Eε,ε−1(ϕa) + ‖n‖2 + 1

2
‖∇n‖2 + 1

2
‖c‖2 + 1

2
‖∇c‖2

)
, (3.72)
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for any t ∈ [0, T ]. An application of the Gronwall lemma and of the properties (3.5), (3.7), then 
yields that

‖ϕ‖L∞(0,T ;V ) + ‖Fε(ϕ)‖L∞(0,T ;L1(�)) + ‖ϕa‖L∞(0,T ;L1(�)) + ‖(ϕa)+‖L2(0,T ;H)

+ ‖∇μ‖L2(0,T ;H) + ‖n‖H 1(0,T ;H)∩L∞(0,T ;V ) + ‖c‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ C. (3.73)

Also, as a consequence of property (3.3) and of (3.72), we have that

‖(ϕa)−‖L∞(0,T ;H) ≤ 2ε

∫
�

Eε,ε−1(ϕa) ≤ Cε. (3.74)

Combining (3.73) with (3.74), we get that

‖ϕa‖L2(0,T ;H) ≤ C. (3.75)

In the case with a smooth potential, the bound (3.73), together with (3.62), gives that 
‖μ�‖L∞(0,T ) ≤ C, whereas, in the case with a singular potential, the bounds (3.65), (3.66), 
(3.69) and (3.73) just give that ‖μ�‖L2(0,T ) ≤ C. Hence, the bound (3.73), together with the 
Poincaré–Wirtinger inequality, gives, in both cases, that

‖μ‖L2(0,T ;V ) ≤ C. (3.76)

Second estimate. Next, taking w = −�n in (3.46), w = −�c in (3.47), which are feasible test 
functions due to (3.42), and summing the two contributions, using (3.73) and (3.75), integrating 
in time between 0 and t ∈ [0, T ] and employing (3.58), (3.59) and the regularity properties of the 
initial data (2.16), we obtain that

1

2
‖∇n(t)‖2 + 1

2
‖∇c(t)‖2 +

t∫
0

(
‖�n‖2 + ‖�c‖2

)
≤ C(n0, c0)

+ C

t∫
0

(
‖ϕ‖2 + ‖n‖2 + ‖ϕa‖2

)
+ 1

2

t∫
0

(
‖�n‖2 + ‖�c‖2

)

≤ C + 1

2

t∫
0

(
‖�n‖2 + ‖�c‖2

)
,

from which, using also elliptic regularity, we get the bounds

‖n‖L2(0,T ;W) + ‖c‖L2(0,T ;W) ≤ C. (3.77)

Third estimate. A comparison argument in (3.43) then produces

‖∂tϕ‖L2(0,T ;V ∗) ≤ C. (3.78)
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Fourth estimate. We observe that the estimate (3.41) is uniform in ε, so we get that

‖ϕ‖L4(0,T ;W) ≤ C. (3.79)

In the case with a smooth potential, thanks to (3.79), given the assumed regularity of F and the 
bound (3.76), we have that ‖μ − F ′(ϕ)‖L2(0,T ;Lσ (�)) ≤ C, with σ as defined in (2.17). Hence, 
elliptic regularity theory applied to (3.44) gives that

‖ϕ‖L2(0,T ;W 2,σ (�)) ≤ C. (3.80)

In the case with a singular potential, we can consider (3.44) as a family of time-dependent elliptic 
problems with maximal monotone perturbations as follows:{

−�ϕ + βε(ϕ) = fϕ := μ − π(ϕ) in �,

∂nϕ = 0 on 	.

Since Assumption (2.6) and the above computations ensure that the forcing term fϕ ∈
L2(0, T ; V ), standard arguments (cf., e.g., [14, Thm. 2.2]) allow us to infer that

‖ϕ‖L2(0,T ;W 2,σ (�)) + ‖βε(ϕ)‖L2(0,T ;Lσ (�)) ≤ C, (3.81)

where we also use elliptic regularity theory and the continuous embedding V ↪→ Lσ (�) with σ
as defined in (2.17).

Fifth estimate. To conclude, we test (3.45) by E′
ε,ε−1(ϕa) to obtain that

d

dt

∫
�

Eε,ε−1(ϕa) + m0

∫
�

E′′
ε,ε−1(ϕa)|∇ϕa|2 + ζκ∞

∫
�

(ϕa)2+E′
ε,ε−1(ϕa)

≤ −χ
a

∫
�

ϕa �c + κ0(1 + ζ )

∫
�

ϕaE
′
ε,ε−1(ϕa)

≤ C(‖�c‖2 + ‖ϕa‖2) + κ0(1 + ζ )

∫
�

|ϕa|E′
ε,ε−1(ϕa)

≤ 2κ0(1 + ζ )

∫
�

Eε,ε−1(ϕa) + C ≤ C.

This allows us to deduce the additional bound

‖(E′′
ε,ε−1(ϕa))1/2 ∇ϕa‖L2(0,T ;H) ≤ C. (3.82)

Sixth estimate. Let us now obtain some information on the time derivative of ϕa . In this direc-
tion, let us notice that (3.72) yields, recalling (2.13), in particular that
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‖Tε,ε−1(ϕa)n(ϕa, c)∇(E′
ε,ε−1(ϕa) − χ

ac)‖
L

4
3 (Q)

≤ M‖(Tε,ε−1(ϕa)
)1/2‖L4(Q)‖

(
Tε,ε−1(ϕa)

)1/2 ∇(E′
ε,ε−1(ϕa) − χ

ac)‖L2(Q) ≤ C. (3.83)

On the other hand, we obtain that, for z ∈ W 1,4(�), it holds that∫
�

Tε,ε−1(ϕa)n(ϕa, c)∇(E′
ε,ε−1(ϕa) − χ

ac) · ∇z

≤ ‖Tε,ε−1(ϕa)n(ϕa, c)∇(E′
ε,ε−1(ϕa) − χ

ac)‖ 4
3
‖∇z‖4

≤ M‖Tε,ε−1(ϕa)‖1/2‖(Tε,ε−1(ϕa))1/2 ∇(E′
ε,ε−1(ϕa) − χ

ac)‖‖z‖W 1,4(�) ≤ C.

Besides, we owe to the continuous embedding W 1,4(�) ↪→ L∞(�), to derive that∫
�

ϑ(ϕ, c)(κ0ϕa − κ∞(ϕa)2+)z ≤ C(1 + ‖ϕa‖2
2)‖z‖∞ ≤ C(1 + ‖ϕa‖2

2)‖z‖W 1,4(�).

Combining the above estimate it is then a standard matter to derive from (3.45) that

‖∂tϕa‖L1(0,T ;(W 1,4(�))∗)≤ C. (3.84)

3.2. Passing to the limit

In this section, we aim at detailing the passage to the limit ε → 0. Hence, we now employ a 
rigorous notation (ϕε, ϕε

a, με, nε, cε) to indicate the approximate solutions. Given that the limit 
passage as ε → 0 is standard for the majority of terms, our emphasis will be directed towards the 
novelties that necessitated ad hoc treatment. Consequently, our primary attention will be focused 
on the equation involving the chemotactic variable ϕa.

First, let us recall that ϕε, ϕε
a, με, nε , and cε satisfy the estimates established in the previous 

section with a positive constant C that it is independent of ε. From those, Banach–Alaoglu the-
orem entails the existence of limit functions ϕ, ϕa, μ, n, and c such that, up to a not relabelled 
subsequence, as ε → 0,

ϕε → ϕ weakly-star in L∞(0, T ;V ),

and weakly in H 1(0, T ;V ∗) ∩ L4(0, T ;W) ∩ L2(0, T ;W 2,σ (�)),

ϕε
a→ ϕa weakly in L2(0, T ;H),

με → μ weakly in L2(0, T ;V ),

nε → n weakly-star in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W),

cε → c weakly-star in H 1(0, T ;H) ∩ L∞(0, T ;V )∩L2(0, T ;W) ∩ L∞(Q),

and, in the case with a singular potential, the existence of a limit function ξ such that, up to a not 
relabelled subsequence, as ε → 0,
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βε(ϕ
ε) → ξ weakly in L2(0, T ;Lσ (�)),

with exponent σ be defined as in (2.17). Besides, the min-max property in (3.50) is valid for c, 
whereas the min-max property (3.51) is valid for n in case of singular potentials. Then, standard 
compactness arguments imply that, as ε → 0,

ϕε, cε, nε → ϕ, c,n strongly in C0([0, T ];H 1−η(�)) ∩ L2(0, T ;V ) for every η > 0,

and almost everywhere in Q. From the strong convergence of ϕε and the pointwise convergences 
at disposal, it is a standard matter to recover in the limit the inclusion ξ ∈ β(ϕ) a.e. in Q. Now, 
to pass to the limit in the nonlinear terms involving ϕε

a in (3.45), also strong convergence of ϕε
a

to ϕa has to be shown. This can be achieved upon combining (3.84) with some information on 
the gradient ∇ϕε

a and the Aubin–Lions theorem. Thus, from the aforementioned bounds and the 

interpolation L∞(0, T ; H) ∩ L2(0, T ; V ) ↪→ L
2(d+2)

d (Q), we infer that

‖∇cε‖
L

2(d+2)
d (Q)

≤ C.

Besides, from the above estimates, we infer that ‖Tε,ε−1(ϕε
a)‖L2(Q) ≤ C which yields, using the 

above bound, that

‖Tε,ε−1(ϕ
ε
a)∇cε‖

L
d+2
d+1 (Q)

≤ C.

It is worth noticing that, for d ∈ {2, 3}, 1 < 5
4 ≤ d+2

d+1 ≤ 4
3 . Combining this latter with the bound 

(3.83) and the identity (3.60), we obtain that

‖∇ϕε
a‖

L
d+2
d+1 (Q)

≤ C. (3.85)

Therefore, (3.84) and (3.85), along with the generalized Aubin–Lions theorem in the form [29, 
Cor. 4, Sec. 8], produce, as ε → 0,

ϕε
a → ϕa strongly in L

d+2
d+1 (0, T ;Lq(�)), q ∈ [

1,
d(d+2)

d2−2

)
.

The range of exponents mentioned above, for which 2 < 15
7 ≤ d(d+2)

d2−2
≤ 4, is actually not so 

crucial as the above strong convergence allows us to infer that ϕε
a → ϕa also almost everywhere 

in Q, in particular. Thus, in view of the previous bounds along with Vitali’s theorem, as ε → 0,

ϕε
a → ϕa strongly in Lp(Q), p < 2.

Upon combining the properties in A5 with the above strong and almost everywhere conver-
gences, we find that, as ε → 0,

m(ϕε,ϕε
a, nε) →m(ϕ,ϕa,n), n(ϕε

a, cε) → n(ϕa, c) strongly in Lq(Q), q ∈ [1,∞),

and a.e. in Q. Next, we consider w ∈ Wd , multiply (3.45) by a function � ∈ C∞
c ([0, T )) and 

integrate in time between 0 and T , obtaining, after integration by parts, that
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−
∫
Q

�′ϕε
aw +

∫
Q

�n(ϕε
a, cε)∇ϕε

a · ∇w−χ
a

∫
Q

� Tε,ε−1(ϕ
ε
a)n(ϕε

a, cε)∇cε · ∇w

= �(0)

∫
�

ϕε
a(0)w +

∫
Q

� Sa(ϕε,ϕε
a, cε)w. (3.86)

Then, let us show how to pass to the limit in all the delicate terms. The first terms on the left-hand 
and right-hand sides readily pass to the limit by using the above strong convergence for ϕε

a and 
that Wd ↪→ L∞(�), considering also that � ∈ C∞

c ([0, T )). As the second integral is concerned 
we first notice that, combining the pointwise convergences above with A5 and the Lebesgue 
dominated convergence theorem, n(ϕε

a, cε)∇w → n(ϕa, c)∇w strongly in Lq(0, T ; Ld+2(�)), 
q ∈ [1, ∞). Then, it readily follows that, as ε → 0,

∫
Q

�n(ϕε
a, cε)∇ϕε

a · ∇w →
∫
Q

�n(ϕa, c)∇ϕa · ∇w, w ∈ Wd .

We now move to the third integral and notice that, as ε → 0,

χ
a

∫
Q

� Tε,ε−1(ϕ
ε
a)n(ϕε

a, cε)∇cε · ∇w → χ
a

∫
Q

� ϕan(ϕa, c)∇c · ∇w, w ∈Wd .

Actually, to pass to the limit, using the weak-strong convergence principle, it suffices that 
w ∈ W 1,3+γ (�) for some γ > 0. In fact, we can combine the following properties: Tε,ε−1(ϕε

a)

converges strongly in Lp(Q) for any p < 2, n(ϕε
a, cε) converges pointwise and strongly in any 

Lp(Q), whereas ∇cε , due to (3.73) and (3.77), converges weakly in Lq1(0, T ; Lq2(�)) for some 
q1 > 2, q2 < 6, so that it is enough that ∇w ∈ L3+γ (�) for some γ > 0. The other integrals can 
be treated arguing straightforwardly. In particular, the last one, which is quadratic in ϕε

a due to 
(2.7) can be dealt with by using the pointwise convergence of ϕε

a and the dominated convergence 
theorem. Thus, letting ε → 0 in (3.86) leads to

−
∫
Q

�′ϕaw +
∫
Q

�n(ϕa, c)∇ϕa · ∇w−χ
a

∫
Q

� ϕan(ϕa, c)∇c · ∇w

= �(0)

∫
�

ϕa(0)w +
∫
Q

� Sa(ϕ,ϕa, c)w, w ∈Wd, � ∈ C∞
c ([0, T )),

which, thanks to the application of Lemma 2.1, gives (2.28) for almost every t ∈ (0, T ). Thus, 
we can pass to the limit as ε → 0 in (3.43)–(3.47) to obtain (2.27)–(2.30), fulfilling the initial 
conditions (2.31).

Let us then show how to use (3.84) to infer some continuity in time property of the variable ϕε
a

and recover the initial condition in the sense of (2.32). The strategy is largely inspired by [27] so 
that we just briefly repeat the main argument adapting the technique to our framework. Starting 
from (3.45) using similar computations as above and that Wd ↪→ L∞(�), we have
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‖∂tϕ
ε
a‖(W 1,4(�))∗ ≤ C‖(Tε,ε−1(ϕa))1/2‖4‖(Tε,ε−1(ϕa))1/2∇(E′

ε,ε−1(ϕa) − χ
ac)‖ + C

+ C‖(ϕε
a)+‖2 ≤ f ε

1 + C + f ε
2 ,

where we also used (3.74), and it holds that ‖f ε
1 ‖

L
4
3 (0,T )

≤ C for a positive constant independent 

of ε. Next, for r ≥ 0, we set �(r) = rE′
ε,ε−1(e+√

r), observing that � is convex and increasing. 
Applying � to the estimate above and integrating in time leads us to

T∫
0

�
(‖∂tϕ

ε
a‖(W 1,4(�))∗)

) ≤
T∫

0

�(f ε
1 + C + f ε

2 )

≤ C

T∫
0

�(f ε
1 ) + C + C

T∫
0

�(f ε
2 )

≤ C + C

T∫
0

�
(
C‖ϕε

a‖2) ≤ C, (3.87)

where in the last step we used (3.72), and the latter C > 0 represents a computable constant that 
relies solely on the known data associated with the problem. Consider now 0 ≤ τ < t ≤ T and 
notice that

‖ϕε
a(t) − ϕε

a(τ )‖(W 1,4(�))∗

|t − τ | ≤
t∫

τ

1

|t − τ | ‖∂tϕ
ε
a(r)‖(W 1,4(�))∗ dr.

Using that � is nondecreasing and convex, and applying Jensen’s inequality, we obtain

�

(‖ϕε
a(t) − ϕε

a(τ )‖(W 1,4(�))∗

|t − τ |
)

≤ �

( t∫
τ

1

|t − τ | ‖∂tϕ
ε
a(r)‖(W 1,4(�))∗ dr

)

≤
t∫

τ

1

|t − τ |�
(‖∂tϕ

ε
a(r)‖(W 1,4(�))∗

)
dr

≤ 1

|t − τ |
T∫

0

�
(‖∂tϕ

ε
a(r)‖(W 1,4(�))∗

)
dr ≤ C

|t − τ | ,

with the same C > 0 as in (3.87). Subsequently, using the strict monotonicity of � once more, 
we infer that

‖ϕε
a(t) − ϕε

a(τ )‖(W 1,4(�))∗

|t − τ | ≤ �−1
( C

|t − τ |
)
,

whence
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‖ϕε
a(t) − ϕε

a(τ )‖(W 1,4(�))∗ ≤ |t − τ |�−1
( C

|t − τ |
)
.

Upon recognizing that �−1 is strictly sublinear at infinity, verified through a direct check, we 
obtain an equicontinuity property: for any ε > 0, there exists δ > 0 such that for every ε ∈ (0, 1)

and every 0 ≤ τ < t ≤ T

|t − τ | < δ ⇒ ‖ϕε
a(t) − ϕε

a(τ )‖(W 1,4(�))∗ < ε.

Due to (3.73), we also have

‖ϕε
a‖L∞(0,T ;L1(�)) ≤ C.

Hence, observing that L1(�)⊂⊂(W 1,4(�))∗ with compact embedding, if we take as Z a generic 
(reflexive) Banach space such that

L1(�) ⊂⊂ Z ⊂ (W 1,4(�))∗),

using some interpolation one checks that Ascoli’s theorem can be applied to the sequence {ϕε
a}

in the space C0([0, T ]; Z) so to obtain

ϕε
a → ϕa strongly in C0([0, T ];Z)

and, in particular, in C0([0, T ]; (W 1,4(�))∗).
We finalize the proof by demonstrating how the remaining regularity properties mentioned in 

the theorem can be achieved. From (3.74), letting ε → 0, we infer by semicontinuity of norms 
that

(ϕa)− = 0 a.e. in Q, so that ϕa ≥ 0 a.e. in Q,

which proves (2.19). Using this, along with the bound at disposal, allows us to employ the dom-
inate convergence theorem to infer that

κ∞
∫
�

ϕ2
a log(ϕa) = κ∞

∫
�

(ϕa)2+ log(ϕa) = κ∞ lim
ε→0

∫
�

(ϕε
a)2+E′

ε,ε−1(ϕ
ε
a) ≤ C

so that (2.21) follows. Let us incidentally notice that this entails that ϕa ∈ L2(0, T ; H), in partic-
ular. This concludes the proof.

4. Regularity results

In this section, our focus turns to exploring the regularity characteristics of weak solutions. 
The proofs we are going to derive are related to the regularity of weak solutions and rely on suit-
able higher-order a-priori estimates. To derive these estimations, we follow a formal approach, 
directly handling the original system (1.1)–(1.7), thus avoiding any unnecessary additional tech-
nicalities. Nevertheless, a rigorous approach would entail incorporating the previously introduced 
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approximation. In this direction, let us also remark that similar results for a comparable system 
have been obtained in [27]. Finally, let us recall that the results to follow are restricted to the two 
dimensional setting d = 2, where better Sobolev embedding estimates hold.

Proof of Theorem 2.8. To begin with, we test equation (1.3) by ϕa to infer that

1

2

d

dt
‖ϕa‖2 + m0‖∇ϕa‖2 + κ∞‖ϕa‖3

3 ≤ C‖ϕa‖2 + χ
a

∫
�

ϕa∇c · ∇ϕa. (4.1)

To handle the last term on the right-hand side we use the Young and Ladyžhenskaya inequalities 
(for d = 2) to obtain that

χ
a

∫
�

ϕa∇c · ∇ϕa

≤ χ
a‖ϕa‖4‖∇c‖4‖∇ϕa‖ ≤ χ

aC2
1,�‖ϕa‖1/2‖ϕa‖1/2

V ‖c‖1/2
V ‖c‖1/2

H 2(�)
‖∇ϕa‖

≤ χ
aC2

1,�C
1
2
2,�‖c‖1/2

V ‖ϕa‖1/2(‖ϕa‖1/2 + ‖∇ϕa‖1/2)(‖�c‖1/2 + 1)‖∇ϕa‖
≤ χ

aC�‖c‖1/2
V ‖ϕa‖‖∇ϕa‖ + χ

aC�‖c‖1/2
V ‖ϕa‖‖�c‖1/2‖∇ϕa‖

+ χ
aC�‖c‖1/2

V ‖ϕa‖ 1
2 ‖∇ϕa‖ 3

2 + χ
aC�‖c‖1/2

V ‖ϕa‖ 1
2 ‖�c‖1/2‖∇ϕa‖ 3

2 , (4.2)

where C1,� is the positive constant in the Ladyžhenskaya inequality and C2,� is the positive 
constant in the elliptic regularity estimates, both depending only on the geometry of the domain, 

and C� := C2
1,�C

1
2
2,�. We now observe that some a-priori estimates in (3.73) remain valid also 

in the limit, as ε → 0, by the weak convergence and weak lower semicontinuity of norms. In 
particular, we have that

‖ϕa‖L∞(0,T ;L1(�)) + ‖n‖L∞(0,T ;V ) + ‖c‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ C0, (4.3)

where C0 := C(ϕ0, ϕ0
a, n0, c0) + C arose from (3.72) and depends only on proper norms of the 

initial conditions and on |�|. Next, we test (1.5) by −�c to infer

‖�c‖2 = −
∫
�

(∂t c + χ
aϕa + Sc)�c.

Recalling Theorem 2.4, (2.8) and using the Cauchy–Schwarz and Young inequalities lead us to

‖�c‖2 ≤ (χ2
a + 1)‖ϕa‖2 + ‖∂t c‖2 + ‖n‖2 + 3

4
‖�c‖2,

which gives, employing (4.3), that

‖�c‖2 ≤ 4(χ2
a + 1)‖ϕa‖2 + 4C2

0 . (4.4)
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Using (4.3) and (4.4) in (4.2), the Young inequality and keeping track of the exact values of some 
constants when needed, we obtain that, upon introducing a positive constant ι < 1, that

χ
a

∫
�

ϕa∇c · ∇ϕa ≤ m0ι‖∇ϕa‖2 + C‖ϕa‖2 +
χ2

aC2
�C0

m0ι
‖ϕa‖2‖�c‖

+ 27C2
0C4

�
χ4

a

4m3
0ι3

‖ϕa‖2‖�c‖2

≤ m0ι‖∇ϕa‖2 + C‖ϕa‖2 + C +
(

27C2
0C4

�
χ4

a(χ2
a + 1)

m3
0ι3

+ ε0

C0

)
‖ϕa‖4,

where ε0 is an arbitrarily small positive constant. We then observe that the following interpolation 
estimate is valid

‖ϕa‖4 =
⎛⎝∫

�

ϕ
3
2
a ϕ

1
2
a

⎞⎠2

≤ ‖ϕa‖3
3‖ϕa‖1 ≤ C0‖ϕa‖3

3 (4.5)

where in the last step we used (4.3). Collecting the previous results in (4.1), we end up with

1

2

d

dt
‖ϕa‖2 + (m0 − ι)‖∇ϕa‖2 +

(
κ∞ − ε0 − 27C3

0C4
�

χ4
a(χ2

a + 1)

m3
0ι3

)
‖ϕa‖3

3

≤ C‖ϕa‖2 + C. (4.6)

Defining the constant

C := (κ∞ − ε0)m3
0ι3

27C3
0C4

�

, (4.7)

which depends only on the parameters κ∞, m0, on the initial conditions through C0 and on the 
domain through C�, in the smallness hypothesis (2.34) we may integrate (4.6) over time, use 
condition (2.33) on the initial data and the Gronwall’s lemma to get

‖ϕa‖L∞(0,T ;H)∩L2(0,T ;V )∩L3(Q) ≤ C.

Moreover, squaring the inequality (4.4), using (4.5) and (4.6), employing also elliptic regularity 
theory we obtain that

‖c‖L4(0,T ;H 2(�)) ≤ C.

From this it is a standard matter to derive from a comparison argument in (1.5) that

‖∂tϕa‖L2(0,T ;V ∗) ≤ C

concluding the proof. �
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Remark 4.1. Unfortunately, even when the mobility n is constant, e.g., n ≡ 1, we are unable to 
establish the aforementioned theorem in three dimensions. Of course the crucial term is the last 
on the right-hand side of (4.1). The same strategy fails to work due to the different Sobolev’s 
embeddings in dimension three. Once can also notice that, using integration by parts,

χ
a

∫
�

ϕa∇c · ∇ϕa = χ
a

2

∫
�

∇c · ∇(ϕ2
a) = −χ

a

2

∫
�

�c ϕ2
a,

but this does not help as for �c we just have the L2-bound given in Theorem 2.4. This con-
trasts with the situation described in [27, Thm. 2.2], where the role of the variable c in the 
cross-diffusion term is played by an order parameter ϕ which solves a (singular) Cahn–Hilliard 
equation instead of a parabolic one. Given that the Cahn–Hilliard equation is fourth-order in 
space, it offers additional regularity for �ϕ, enabling the utilization of the aforementioned argu-
ment.

Let us now provide further details on the rigorous steps that should be undertaken in the proof 
of Theorems 2.9, 2.10 and 2.11. The rigorous procedure would require acting on the approximate 
problem introduced in the previous section. Given our smoothness assumption on �, the eigen-
functions {ψi}i∈N introduced in the proof of Theorem 2.4 exhibit sufficient spatial regularity to 
validate the selection of test functions incorporating fourth-order spatial differential operators, 
such as �2c. Regarding justification of differentiating some of the equations or testing by time 
derivatives of certain variables, one should employ some temporal regularization arguments (cf. 
Remark 3.4) or a finite difference scheme. Given that these passages primarily delve into techni-
cal details without introducing any novel insights, we have chosen to proceed formally only by 
sketching out the main ideas.

Proof of Theorem 2.9. To begin with, we start with proving more regularity for the chemotactic 
and nutrient variables. Consider equation (1.5) and observe that, due to the above results, it holds 
that fc := Sc + χ

aϕa ∈ L2(0, T ; V ). Testing then (1.5) by �2c = −�(−�c), integrating by 
parts, using A4, and Young’s inequality produces

1

2

d

dt
‖�c‖2 + ‖∇�c‖2 =

∫
�

∇fc · ∇�c ≤ 1

2
‖∇�c‖2 + 1

2
‖∇fc‖2.

Thus, it readily follows after integration over time, using the second assumption on the initial 
condition in (2.37), and elliptic regularity theory that c ∈ L∞(0, T ; H 2(�)) ∩ L2(0, T ; H 3(�)).

Next, we move to the chemotactic variable and differentiate (1.4) with respect to time, inte-
grate over time for an arbitrary t ∈ [0, T ], and test the resulting equation by ∂tn to obtain

1

2

∫
�

|∂tn(t)|2 +
∫
Qt

|∇∂tn|2 = 1

2

∫
�

|∂tn(0)|2 +
∫
Qt

∂t (Sn)∂tn + χ
ϕ

∫
Qt

∂tϕ ∂tn.

Now, the first term on the right-hand side can be readily bounded using comparison in equation 
(1.4) and owing to the first condition in (2.37), whereas by Young’s inequality we bound the 
second one as
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∫
Qt

∂t (Sn)∂tn =
t∫

0

〈∂tn, ∂t (Sn)〉 ≤ 1

4

∫
Qt

‖∂tn‖2
V + C

t∫
0

‖∂t (Sn)‖2∗.

The second term on the right-hand side can be bounded, recalling A4 and using the assumption 
on h, by

t∫
0

‖∂t (Sn)‖2∗ ≤ C(‖∂tϕ‖2∗ + ‖∂tϕa‖2∗ + ‖∂tn‖2).

Finally, for the last term, we observe that

χ
ϕ

∫
Qt

∂tϕ ∂tn = χ
ϕ

t∫
0

〈∂tn, ∂tϕ〉 ≤ 1

4

t∫
0

‖∂tn‖2
V + C

t∫
0

‖∂tϕ‖2∗.

Therefore, Gronwall’s lemma yields that n ∈ W 1,∞(0, T ; H) ∩ H 1(0, T ; V ). Moreover, arguing 
exactly as above, we also infer that n ∈ L∞(0, T ; H 2(�)) ∩ L2(0, T ; H 3(�)) concluding the 
proof. �
Proof of Theorem 2.10. First, we differentiate equation (1.2) with respect to time to derive

∂tμ = −�∂tϕ + β ′(ϕ)∂tϕ − λ∂tϕ in Q. (4.8)

Then, we test (1.1) by ∂tμ, the above (4.8) by ∂tϕ, (1.3) by ∂tϕa , and add the resulting identities 
to infer that

1

2

d

dt
‖∇μ‖2 + ‖∂tϕ‖2

V +
∫
�

β ′(ϕ)|∂tϕ|2 + ‖∂tϕa‖2 + 1

2

d

dt
‖∇ϕa‖2

=
∫
�

S(ϕ,n)∂tμ − χ
ϕ

∫
�

∇n · ∇(∂tμ) + (1 + λ)‖∂tϕ‖2

− χ
a

∫
�

(∇ϕa · ∇c + ϕa�c)∂tϕa +
∫
�

ϑ(ϕ, c)(κ0ϕa − κ∞ϕ2
a)∂tϕa =

5∑
i=1

Ii . (4.9)

We point out that above, for convenience, we also add to both sides the term ‖∂tϕ‖2. Then, we 
estimate the integrals on the right-hand side. Using integration by parts we obtain that

I1 =
∫
�

S(ϕ,n)∂tμ = d

dt

∫
�

S(ϕ,n)μ −
∫
�

∂t (S(ϕ,n))μ. (4.10)

Now, the first term on the right-hand side can be moved on the left-hand side of the above identity, 
whereas the other can be bounded by the Young inequality as
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−
∫
�

∂t (S(ϕ,n))μ ≤ δ(‖∂tϕ‖2 + ‖∂tn‖2) + Cδ‖μ‖2,

for every δ > 0, due to the properties of S required in A4 which entails that H is uniformly 
bounded. Besides, using the Young and Hölder inequalities, we find

I3 ≤ δ‖∂tϕ‖2
V + Cδ‖∂tϕ‖2∗,

I4 ≤ C‖∇ϕa‖‖∇c‖∞‖∂tϕa‖ + C‖ϕa‖4‖�c‖4‖∂tϕa‖
≤ δ‖∂tϕa‖2 + Cδ‖ϕa‖2

V ‖c‖2
W 2,4(�)

,

I5 ≤ δ‖∂tϕa‖2 + Cδ(1 + ‖ϕa‖4
V ),

where we also employ the embedding H 3(�) ↪→ W 2,4(�) ↪→ L∞(�) that entails t �→
‖c(t)‖2

W 2,4(�)
∈ L1(0, T ) due to Theorem 2.9. For I2 we need to integrate by parts. Thus, we 

integrate (4.9) over time and notice that

t∫
0

I2 = χ
ϕ

∫
Qt

∇(∂tn) · ∇μ − χ
ϕ

∫
�

∇n(t) · ∇μ(t) + χ
ϕ

∫
�

∇n0 · ∇μ0

≤ C

∫
Qt

(|∇∂tn|2 + |∇μ|2)+1

4

∫
�

|∇μ(t)|2 + C

∫
�

|∇n(t)|2 + C(‖∇n0‖2 + ‖∇μ0‖2)

for an arbitrary t ∈ [0, T ]. Then, for the first term on the right-hand side of (4.10) it holds that

−
∫
�

S(ϕ,n)μ =
∫
�

S(ϕ,n)(μ − μ�) −
∫
�

S(ϕ,n)μ� ≥ −1

8
‖∇μ‖2 − |μ�| − C

≥ −1

8
‖∇μ‖2 − c1(‖β(ϕ)‖1 + ‖ϕ‖1)

≥ −1

8
‖∇μ‖2 − c1‖β(ϕ)‖1 − c2

for computable positive constants c1, c2. On the other hand, arguing as above by using (3.68) and 
testing (1.2) by ϕ − ϕ�, we infer that

CF ‖β(ϕ)‖1 ≤ C(1 + ‖∇μ‖)

with the same constant CF .
To recover the full V -norm of ϕa we also test (1.3) by ϕa to get, after similar manipulations,

1

2

d

dt
‖ϕa‖2 ≤ C‖ϕa‖2 + χ

a‖ϕa‖6‖∇ϕa‖‖∇c‖3 ≤ C(1 + ‖c‖2
H 2(�)

)‖ϕa‖2
V .

Upon adding the above estimates, and integrating over time, we have
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1

2

(1

2
‖∇μ(t)‖2 − 2

∫
�

S
(
ϕ(t), n(t)

)
μ(t) + ‖ϕa(t)‖2

V

)

+ (1 − δ)

t∫
0

‖∂tϕ‖2
V + (1 − 3δ)

∫
Qt

|∂tϕa|2

≤ C
(‖μ0‖2

V + ‖ϕ0‖2 + ‖ϕ0
a‖2

V + ‖n0‖2
V

)
+ Cδ

t∫
0

‖∂tϕ‖2∗ + Cδ

t∫
0

(1 + ‖c‖2
W 2,4(�)

+ ‖c‖2
H 2(�)

+ ‖ϕa‖2
V )‖ϕa‖2

V .

Furthermore, due to the above observation we have

1

2
‖∇μ(t)‖2 − 2

∫
�

S
(
ϕ(t), n(t)

)
μ(t) + ‖ϕa(t)‖2

V

≥ 3

8
‖∇μ(t)‖2 − C(‖∇μ(t)‖ + 1) + 1

2
‖ϕa(t)‖2

V

≥ 1

4
‖∇μ(t)‖2 + 1

2
‖ϕa(t)‖2

V − C∗

for a computable positive constant C∗. We then add to both sides the constant C∗, adjust δ ∈ (0, 1)

small enough, and invoke Gronwall’s lemma to infer that

‖∇μ‖L∞(0,T ;H) + ‖ϕa‖H 1(0,T ;H)∩L∞(0,T ;V ) + ‖ϕ‖H 1(0,T ;V ) ≤ C.

Next, comparison argument in (1.2) readily shows that μ� is bounded in L∞(0, T ) so that, 
using Poincaré’s inequality we find

‖μ‖L∞(0,T ;V ) ≤ C.

Once this is at disposal, we can read (1.2) as an elliptic equation with forcing term bounded 
in L∞(0, T ; V ) and thus obtain that

‖ϕ‖L∞(0,T ;W 2,σ (�)) + ‖β(ϕ)‖L∞(0,T ;Lσ (�)) ≤ C

with σ as in the statement. Finally, comparison in (1.1) readily entails that

‖∂tϕ‖L∞(0,T ;V ∗) ≤ C,

and elliptic regularity in (1.2) that

‖ϕa‖L2(0,T ;H 2(�)) ≤ C,

completing the proof. �
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Proof of Theorem 2.11. Here, we pursue a strategy akin to the one employed in the proof of 
[27, Thm. 2.4]. Indeed, despite our model is of multiphase nature, the current result is mainly 
focused on the Cahn–Hilliard structure so that the main ideas can be extended to the current 
scenario.

First, using (2.45), we readily obtain that

‖β ′(ϕ)‖L∞(0,T ;Lσ (�)) ≤ C for any σ ∈ [1,∞).

Then, we differentiate (1.1), using (2.9), with respect to time to obtain

∂ttϕ − �∂tμ = ∂t (S(ϕ,n)) = −m∂tϕ + ∂ϕH(ϕ,n)∂tϕ + ∂nH(ϕ,n)∂tn in Q.

Now, as concerns partial derivatives of H, we have

∂ϕH(ϕ,n) =
{

(h(n) − δn)+h′(ϕ) when the potential is regular,

(n − δn)+h′(ϕ) when the potential is singular,

∂nH(ϕ,n) =
{

h′(n)h(ϕ)χ {h(n)>δn} when the potential is regular,

h(ϕ)χ {n>δn} when the potential is singular,

and notice that, due to the assumption on h, ‖∂ϕH(ϕ, n) + ∂nH(ϕ, n)‖L∞(Q) ≤ C for some 
positive constant C. Testing it by ∂tϕ leads us to

1

2

d

dt
‖∂tϕ‖2 +

∫
�

∇∂tμ · ∇∂tϕ ≤ C(‖∂tϕ‖2 + ‖∂tn‖2).

For the second term on the left-hand side, we notice that∫
�

∇∂tμ · ∇∂tϕ = ‖�∂tϕ‖2 −
∫
�

β ′(ϕ)∂tϕ�∂tϕ + λ‖∇∂tϕ‖2.

Combining the above lines, we infer that

1

2

d

dt
‖∂tϕ‖2 + ‖�∂tϕ‖2 ≤ C(‖∂tϕ‖2

V + ‖∂tϕa‖2) +
∫
�

β ′(ϕ)∂tϕ�∂tϕ.

On the other hand it holds that∫
�

β ′(ϕ)∂tϕ�∂tϕ ≤ C‖β ′(ϕ)‖4‖∂tϕ‖4‖�∂tϕ‖ ≤ C‖∂tϕ‖2
V + 1

2
‖�∂tϕ‖2.

Then, we integrate over time, and use that ∂tϕ(0) = �μ0 − χ
ϕ�n0 + S(ϕ0, n0) ∈ H to find that

‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;H 2(�)) ≤ C.
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Thus, we now consider (1.1) as an elliptic equation in term of μ and observe that the forcing 
term is bounded in L∞(0, T ; H) ∩ L2(0, T ; V ) due to Theorems 2.9 and 2.10. It then follows 
that

‖μ‖L∞(0,T ;H 2(�))∩L2(0,T ;H 3(�)) ≤ C

which also entails that, by Sobolev’s embeddings,

‖μ‖L∞(Q) ≤ C

Once this regularity is proved it is a standard matter to derive the separation principle by argu-
ing as done, e.g., in [6,28]. Of course, if the potential is of single-well type, we can derive the 
separation just where the convex part of the potential explodes and infer (2.50). In this direction, 
it worth noticing that H 1(0, T ; W) is continuously embedded in C0(Q) so that the separation 
property holds for every point of the parabolic cylinder and not just almost everywhere. �
Proof of Theorem 2.12. For the uniqueness result, we proceed following the same lines of ar-
gument employed in the proof of [27, Thm. 2.8] having care to handle the additional equation 
involving n and c. First, we set the notation

ϕ := ϕ1 − ϕ2, ϕa := ϕa,1 − ϕa,2, μ := μ1 − μ2, n := n1 − n2, c := c1 − c2,

Si := S(ϕi, ni), Si
n := Sn(ϕi, ϕa,i , ni), Si

c := Sc(ϕi, ϕa,i , ci) for i = 1, 2.

Recall that, due to Assumption A4, there exists a positive constant C such that

|S1 − S2| ≤ C(|ϕ| + |n|), |S1
n − S2

n| ≤ C(|ϕ| + |ϕa | + |n|),
|S1

c − S2
c | ≤ C(|ϕ| + |ϕa|+|c|).

Using this notation, we write (1.1)–(1.7) for the differences to realize that

∂tϕ − �μ + χ
ϕ�n = S1 − S2 in Q, (4.11)

μ = −�ϕ + F ′(ϕ1) − F ′(ϕ2) in Q, (4.12)

∂tϕa − �ϕa + χ
a div(ϕa∇c1 + ϕa,2∇c) = κ0ϕa − κ∞ϕa(ϕa,1 + ϕa,2) in Q, (4.13)

∂tn − �n − χ
ϕϕ = S1

n − S2
n in Q, (4.14)

∂t c − �c − χ
aϕa = S1

c − S2
c in Q, (4.15)

∂nϕ = ∂nμ = ∂nϕa = ∂nn = ∂nc = 0 on �, (4.16)

ϕ(0) = ϕ0
1 − ϕ0

2 , ϕa(0) = ϕ0
a,1 − ϕ0

a,2,

n(0) = n0
1 − n0

2, c(0) = c0
1 − c0

2 in �. (4.17)

We observe that testing (4.11) by the constant |�|−1 produces the identity
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ϕ′
� = d

dt
ϕ� = 1

|�|
∫
�

(S1 − S2) = (S1 − S2)�. (4.18)

Multiplying the above by ϕ�, one gets

1

2

d

dt
|ϕ�|2 ≤ |ϕ�|2 + C(‖ϕ‖2 + ‖n‖2). (4.19)

Then, we subtract (4.18) from (4.11) and test the resulting identity by N(ϕ − ϕ�) leading to

1

2

d

dt
‖ϕ − ϕ�‖2∗ +

∫
�

(μ − μ�)(ϕ − ϕ�) =
∫
�

(
S1 − S2 − (S1 − S2)�

)
N(ϕ − ϕ�)

≤ C(‖ϕ‖2 + ‖n‖2 + ‖ϕ − ϕ�‖2∗), (4.20)

where we also used that 
∫
�

μ�(ϕ − ϕ�) = μ�

∫
�

(ϕ − ϕ�) = 0. On the other hand, for every 
δ > 0, it holds that

C‖ϕ‖2 ≤ C(‖ϕ − ϕ�‖2 + |ϕ�|2) ≤ C(‖ϕ − ϕ�‖V ‖ϕ − ϕ�‖∗ + |ϕ�|2)

≤ δ‖∇ϕ‖2 + Cδ‖ϕ − ϕ�‖2∗ + C|ϕ�|2. (4.21)

Moreover, the second term on the left-hand side of (4.20) can be bounded as∫
�

(μ − μ�)(ϕ − ϕ�) = ‖∇ϕ‖2 +
∫
�

(F ′(ϕ1) − F ′(ϕ2))(ϕ − ϕ�)

so that, combining with (4.19), we obtain

1

2

d

dt

(‖ϕ − ϕ�‖2∗ + |ϕ�|2) + (1 − 2δ)‖∇ϕ‖2

≤ Cδ‖ϕ − ϕ�‖2∗ + C(‖n‖2 + |ϕ�|2) +
∫
�

|β(ϕ1) − β(ϕ2)||ϕ�|,

where we also estimate the nonconvex contribution of the potential as∫
�

|π(ϕ1) − π(ϕ2)||ϕ − ϕ�| ≤ δ‖∇ϕ‖2 + Cδ‖ϕ − ϕ�‖2∗ + C|ϕ�|2.

Next, we test (4.14) by n and (4.15) by c. Adding the resulting equalities leads us to obtain

1

2

d

dt

(‖n‖2 + ‖c‖2
)

+ ‖∇n‖2 + ‖∇c‖2

=
∫

(S1
n − S2

n)n + χ
ϕ

∫
ϕ n +

∫
(S1

c − S2
c)c + χ

a

∫
ϕac
� � � �
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≤ δ‖∇ϕ‖2 + Cδ‖ϕ − ϕ�‖2∗ + C|ϕ�|2 + C(‖n‖2 + ‖c‖2)

+ C(‖ϕa − (ϕa)�‖2 + |(ϕa)�|2),

where we used the Hölder and Poincaré inequalities, A4, as well as (4.21). Adding this to the 
above inequality produces

1

2

d

dt

(‖ϕ − ϕ�‖2∗ + |ϕ�|2 + ‖n‖2 + ‖c‖2) + (1 − 3δ)‖∇ϕ‖2 + ‖∇n‖2 + ‖∇c‖2

≤ Cδ‖ϕ − ϕ�‖2∗ + C(|ϕ�|2 + |(ϕa)�|2) + C∗‖ϕa − (ϕa)�‖2

+ C(‖n‖2 + ‖c‖2) +
∫
�

|β(ϕ1) − β(ϕ2)||ϕ�|, (4.22)

for an explicit and computable constant that we term C∗.
We then repeat similar arguments as above to handle the mean value of ϕa . Namely, we 

multiply (4.13) by |�|−1 obtaining

(ϕa)′� = d

dt
(ϕa)� = κ0(ϕa)� − κ∞(ϕ2

a,1 − ϕ2
a,2)�. (4.23)

Then, we test the above by (ϕa)� to infer that

1

2

d

dt
|(ϕa)�|2 ≤ η‖ϕa − (ϕa)�‖2 + Cη(‖ϕa,1‖2 + ‖ϕa,2‖2 + 1)|(ϕa)�|2,

for a positive constant η, yet to be selected. Then, we subtract (4.23) to (4.13) and test the 
difference by N(ϕa − (ϕa)�) to infer that

1

2

d

dt
‖ϕa − (ϕa)�‖2∗ + ‖ϕa − (ϕa)�‖2

≤ χ
a

∫
�

(ϕa∇c1 + ϕa,2∇c) · ∇N(ϕa − (ϕa)�) + κ0‖ϕa − (ϕa)�‖2∗

− κ∞
∫
�

(
ϕ2

a,1 − ϕ2
a,2 − (ϕ2

a,1)� + (ϕ2
a,2)�

)
N(ϕa − (ϕa)�).

In the order, using the same computations as in the proof of [27, Thm. 2.8], we have

χ
a

∫
�

(ϕa∇c1 + ϕa,2∇c) · ∇N(ϕa − (ϕa)�)

≤ η(‖∇c‖2 + ‖ϕa − (ϕa)�‖2) + Cη|(ϕa)�|2 + Cη(‖c1‖2
W 2,6(�)

+ ‖c2‖4
6)‖ϕa − (ϕa)�‖2∗,

and
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− κ∞
∫
�

(
ϕ2

a,1 − ϕ2
a,2 − (ϕ2

a,1)� + (ϕ2
a,2)�

)
N(ϕa − (ϕa)�)

≤ η‖ϕa − (ϕa)�‖2 + Cη(‖c1‖4 + ‖c2‖4 + 1)‖ϕa − (ϕa)�‖2∗ + C|(ϕa)�|2,

so that

1

2

d

dt

(‖ϕa − (ϕa)�‖2∗ + |(ϕa)�|2) − η‖∇c‖2 + (1 − 2η)‖ϕa − (ϕa)�‖2

≤ Cη(‖c1‖2 + ‖c2‖2 + 1)|(ϕa)�|2
+ Cη(‖c1‖4 + ‖c2‖4

6 + ‖c1‖2
W 2,6(�)

+ 1)‖ϕa − (ϕa)�‖2∗. (4.24)

We then choose δ = 1/6 in (4.22). Then we add the resulting inequality tested by a positive 
constant ω yet to be selected to find that

1

2

d

dt

(
ω‖ϕ − ϕ�‖2∗ + ω|ϕ�|2 + ‖ϕa − (ϕa)�‖2∗ + |(ϕa)�|2 + ω‖n‖2 + ω‖c‖2

)
+ ω

2
‖∇ϕ‖2 + ω‖∇n‖2 + (ω − η)‖∇c‖2

+ (1 − 2η)‖ϕa − (ϕa)�‖2

≤ ωC‖ϕ − ϕ�‖2∗ + ωC(|ϕ�|2 + |(ϕa)�|2) + ωC∗‖ϕa − (ϕa)�‖2

+ ωC(‖n‖2 + ‖c‖2) + ω

∫
�

|β(ϕ1) − β(ϕ2)||ϕ�|

+ Cη(‖c1‖2 + ‖c2‖2 + 1)|(ϕa)�|2
+ Cη(‖c1‖4 + ‖c2‖4

6 + ‖c1‖2
W 2,6(�)

+ 1)‖ϕa − (ϕa)�‖2∗.

Finally, we select ω = ω∗ := 1/2 min{1, 1/C∗} so to absorb the term involving C∗ on the left-
hand side, and highlight that all the above constants C are now independent of ω∗ as it is fixed. 
It is clear that the only term that need to be handled is the last one on the right-hand side. The 
simplest case occurs when H = H(ϕ, n) is a constant function and this has been analyzed in 
[15] to deal with the Cahn–Hilliard–Oono equation, see the forthcoming Remark 4.2 below. 
However, the scenario for more general h is more delicate and forced us to assume (2.49) or 
(2.50), respectively. That entails that

β(ϕ1) − β(ϕ2) = "ϕ, with " :=
1∫

0

β ′(sϕ1 + (1 − s)ϕ2)ds.

Thus, by the Hölder and Young inequalities we find that∫
�

|β(ϕ1) − β(ϕ2)||ϕ�| ≤ ‖"‖‖ϕ‖|ϕ�| ≤ ‖"‖(‖ϕ − ϕ�‖ − |ϕ�|)|ϕ�|

≤ ‖"‖(‖ϕ − ϕ�‖ + |ϕ�|)|ϕ�| ≤ ‖"‖(‖∇ϕ‖ + |ϕ�|)|ϕ�|
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≤ ω∗

4
‖∇ϕ‖2 + C|ϕ�|2(‖"‖2 + 1) ≤ ω∗

4
‖∇ϕ‖2 + C|ϕ�|2(‖β ′(ϕ1)‖2 + ‖β ′(ϕ2)‖2 + 1).

We can now adjust η small enough, for instance η = 1/2 min{ω∗/2, 1/4}, and apply Gronwall’s 
lemma to conclude. �
Remark 4.2. When H = H(ϕ,n) is a constant function, (4.18) reduces to

ϕ′
� + mϕ� = 0.

This is the scenario one encounters, e.g., in the Cahn–Hilliard–Oono equation (see [15]). Testing 
by signϕ� produces

1

2

d

dt
|ϕ�|2 + |ϕ�| = 0.

Thus, observing that∫
�

|β(ϕ1) − β(ϕ2)||ϕ�| ≤ C(‖β(ϕ1)‖1 + ‖β(ϕ2)‖1)|ϕ�|,

one realizes that the above integral can be controlled by the Gronwall lemma provided to make 
use of the above identity and no additional properties are required for β .
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