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Abstract. Frequent changes in demand and production context call for frequent 

modifications in manufacturing systems, which can be realized by reconfigura-

tions. After a modification, a manufacturing system usually fails short in deliv-

ering the expected production performance, due to an increased production of 

defective items and unexpected machine failures caused by incomplete or inade-

quate changes/reconfigurations implemented at physical or control levels. The 

time between the production of the first part and the stable production of good 

parts at the target effective throughput level is called the ramp-up time. Labor-

intensive, time-consuming and expensive interventions are needed to understand 

and address issues that affect ramp-up. This essay provides a comprehensive 

overview on the topic, by addressing the following aspects: (i) definition of 

productivity ramp-up and brief explanation of the problem, (ii) research pre-

sented in the literature as solution approaches, (iii) selection of methodologies 

and their implementation, (iv) examples of applications, (v) research directions. 

Keywords: Ramp-up, Manufacturing Systems, Reconfigurability. 

1 Introduction 

In manufacturing companies, the ability to timely deliver the desired quantities of 

products that are conforming to customer expectations strongly depends on how the 

company is capable to deal with changes in the Product-Process-Production system. 

The increasing product variety and customization have significantly reduced pro-

duction lots, thus making traditional mass production contexts infrequent. Moreover, 

the fast introduction of emerging manufacturing and sensor technologies has signifi-

cantly reduced innovation cycles, causing the need for continuous adaptations of the 

system configuration to integrate advanced technological enablers. Furthermore, recon-

figurability, changeability and co-evolution are nowadays accepted paradigms in indus-

try, enabling a strong coordination between the dynamics of the system lifecycle and 

the dynamics of the product and process lifecycles. As a consequence, manufacturing 

systems continuously evolve during their lifecycle (Monostori 2020). 
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Changeability encompasses an organization's readiness and capability to embrace 

change, both internally and externally. It involves an organization's willingness to ad-

just its strategies, processes, and structures to meet evolving demands and challenges. 

Productivity ramp-up, on the other hand, refers to the transitional period during which 

an organization aims to increase its operational efficiency and output after implement-

ing changes, such as introducing new technologies, launching a new product line, or 

reorganizing its workforce (Nassehi 2022). The link between changeability and produc-

tivity ramp-up is deeply rooted in their symbiotic nature (Andersen 2016). Organiza-

tions that prioritize and cultivate a culture of changeability are more likely to experience 

smoother and more rapid productivity ramp-ups (Schmitt 2020). The ability to respond 

swiftly to emerging opportunities or challenges enables such organizations to capitalize 

on favorable conditions or mitigate risks effectively. Furthermore, a proactive approach 

to change fosters a workforce that is more receptive to new processes and technologies, 

reducing resistance during the productivity ramp-up phase (Minguillon 2019). 

Agility and adaptive capacity are key components of changeability that directly im-

pact productivity ramp-up. Agile organizations possess a dynamic and nimble infra-

structure that can swiftly reallocate resources and recalibrate strategies as circum-

stances evolve. This trait is invaluable during productivity ramp-up, as it allows organ-

izations to seize opportunities with minimal delays and optimally allocate resources 

during the transitional phase (Bergs 2021). Additionally, an adaptive culture encour-

ages employees to embrace change positively, facilitating the integration of new prac-

tices and technologies into their workflow. 

Modern manufacturing systems are complex cyber-physical systems that are increas-

ingly required to adapt to fluctuations in demand. Such adaptation requires reconfigu-

ration and other changes in the machines and processes that comprise the system (Mag-

nanini 2022). The amount of time between consecutive major changes in manufacturing 

systems has been reducing due to the frequent need for reconfiguration, adoption of 

new technologies, and the introduction of new digital innovation solutions for optimal 

operations (Cerqueus 2023). 

After a modification, a manufacturing system usually fails short in delivering the 

expected production performance, due to an increased production of defective items 

and unexpected machine failures caused by incomplete or inadequate changes/recon-

figurations implemented at physical or control levels. Labor-intensive, time-consuming 

and expensive interventions are needed to understand and address issues that affect 

ramp-up time, namely the time between the production of the first part and the stable 

production of good parts at the target effective throughput level (Colledani 2018). 

The increased frequency of ramp-up events has resulted in new research and practi-

cal applications. These activities have identified opportunities to design comprehensive 

methods for effective evaluation and management of ramp-up. Indeed, the growing de-

ployment of cyber-physical solutions such as digital information and communication 

technologies opens new opportunities for productivity management in manufacturing 

companies, with an estimated average increase in productivity of 32% by 2025 due to 

digitalization (Jeske 2018). This increase in productivity can be linked to the way dig-

italization changes the handling of data and information by offering new and extended 
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ways for collecting, transferring, evaluating, and exploiting information, all of which 

are opportunities that allow increases in effectiveness and efficiency. 

This essay aims at structuring the knowledge about the topic of productivity ramp-

up, challenges and main issues towards its management and optimization, as well as 

state-of-the-art methodologies for decision-making. Firstly, Section 2 introduces the 

definition of productivity ramp-up and brief explanation. Secondly, Section 3 reviews 

available methodologies and solution approaches, according to multiple research lines. 

In Section 4, a selection of these methodologies are explained in details to serve as 

starting research problems for researchers and practitioners. Section 5 elaborates on this 

by presenting industrial applications from literature. Then, future research direction are 

outlined in Section 6, and conclusion and remarks are provided in Section 7.  

2 Challenges related to ramp-up 

The goal of this Section is to provide a systematic description of emerging challenges 

related to productivity ramp-up in modern manufacturing systems. First, the concept of 

productivity ramp-up in a manufacturing system is defined. Then, the root-causes avail-

able in the literature for ramp-up generation are presented. Finally, an overview of the 

decision-making problems related to productivity ramp-up is provided, along with a 

discussion of the lifecycle of manufacturing systems. 

 

2.1 Definition of productivity ramp-up 

The ramp-up phase can be defined as the process of bringing a production system up 

to its expected operational characteristics after it has been designed and built and before 

it is taken into full operation (Doltsinis 2020). The ramp-up time, also known as the 

time to volume, is the time span between the production of the first part and the stable 

production of good parts at the target effective throughput level, following the green-

field implementation or a major reconfiguration (brown-field) in the considered manu-

facturing system (Colledani, 2018). 

Ideally, a zero ramp-up time would be desirable, as the target effective production 

rate would be reached without any production loss. However, in real systems this ideal 

condition is not achieved due to several causes for production losses. Hence, the 

productivity ramp-up can be examined by plotting the throughput as a function of time 

as shown in Fig. 1.  
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Figure 1. Schematical representation of productivity ramp-up in manufacturing systems. 

The horizontal red line represents the target effective production rate, or throughput, 

𝑇𝐻𝑇𝑎𝑟𝑔𝑒𝑡 , of the system after a configuration (green field) or reconfiguration (brown 

field) that ends at time 𝑡 =  0. The black curve represents the average effective 

throughput (production rate) 𝑇𝐻𝐸𝑓𝑓  curve observed in the actual system after a recon-

figuration. For example, 𝑇𝐻 can be the average daily, or single shift, throughput. The 

ramp up time indicated as a black arrow on the horizontal axis, is the time the system 

requires to reach the target effective throughput. The shaded area indicates the cumu-

lative production loss, 𝑃𝐿𝑜𝑠𝑠, observed during ramp-up, which can be expressed as fol-

lows: 

𝑃𝐿𝑜𝑠𝑠 = ∫ (𝑇𝐻𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑇𝐻𝐸𝑓𝑓(𝑡)𝑑𝑡
𝑡=𝑡𝑟𝑎𝑚𝑝

𝑡=0
  

Generally, the productivity ramp-up can be complicated to assess, and companies may 

rely on synthetic indicators such as the overall equipment effectiveness and its trend.  

 

2.2 Root-causes for ramp-up in manufacturing systems 

Manufacturing systems are complex objects which include a variety of resources, 

both hardware and software. When it comes to ramp-up of manufacturing systems, root-

causes can be identified linked to the different aspects dealing with the integration of 

resources and workforce. Indeed, following the advent of Industry4.0, resources of 

manufacturing systems are more and more intertwined, not only from the physical point 

of view but also from the digital point of view (Stark 2019). 

As a consequence, the reasons for productivity ramp-up in modern manufacturing 

systems can be traced to manifold aspects, including technological, organizational and 

software aspects (Colledani 2018). 

Indeed, when the reduction of ramp-up is targeted as production objective, techno-

logical innovations are pushed towards new solutions, which allow for fast implemen-

tation, and also fast reconfiguration (Diaz 2022). From the point of view of implemen-

tation, several reasons for ramp-up can be traced to technological aspects, including 

low process quality, long set up needed for the adjustments to new production, tuning 

of process parameters and fixing the final production cycle when multiple operations 

are involved (Huang 2019). 

time

Th
ro

u
gh

p
u

t

Ramp-up time

Production loss



5 

Problems encountered during this phase include disturbances in process and product 

quality, a lack of reliable planning, unplanned capacity losses, and poor performance 

of suppliers (Islam 2022).  

From the organizational viewpoint, the ramp-up phase can be considered a learning 

process that could be reflected in better usage of the equipment, in the continuous im-

provement of product quality, and in the reduction of labor requirements (Glock 2020). 

Indeed, the ramp-up phase represents the moment where human decision-makers are 

mostly involved during the system life cycle. 

Finally, digitalization both helps and complicates ramp-up. Rapid evolution of digi-

tal solutions has led to a high variety of software for communication and integration 

protocols (Ugarte 2022). Often, the deployment of these solutions at shop-floor level is 

not trivial especially when new connections are involved. As a consequence, software 

aspects cannot be avoided in the ramp-up management. 

 

2.3 Decision-making for optimizing ramp-up 

According to the decision instant, different strategies, as well as a combination of 

all, can be used to reduce the ramp-up in manufacturing systems. Production ramp-up 

is a decision-making process where human experts decide on the best actions to fine-

tune the process. It is a highly complex parameter tuning process with many inter-re-

lated factors leading to a well-defined goal. In the following, an overview is provided, 

according to the timeframe in which the problem is addressed along the manufacturing 

system lifecycle.  

Design phase 

 

In the design phase, especially in the green-field design, it is necessary to anticipate 

problems related to the ramp-up of the manufacturing system. In this phase, most of the 

burden is on the system provider or the machine tool builder. These actors should guar-

antee that the upcoming ramp-up of the manufacturing system goes as smooth as pos-

sible.  

Some reasons include poor understanding of the physical phenomena happening in 

the real system; wrong system requirement definition in the design phase; poor system 

design (hardware and control); unknown internal disturbances as machine failures and 

quality problems. 

Decision-making problems in this case contribute to the reduction of the throughput 

losses by enabling to start the production with a system providing an effective 

throughput which is closer to the target, as depicted in Fig. 2.  
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Figure 2. Effects of design decisions on ramp-up. 

 

As it can be noticed, taking better decisions during the design phase of a 

manufacturing system allows to overall reduce the production loss, even without 

affecting the ramp-up duration. Indeed, the anticipation of potential ramp-up problems 

provides a system design that is more robust to disturbances, thus enabling a 

performance improvement by design. Strategies in this phase may include the 

implementation of virtual commissioning in order to guarantee a smooth integration of 

technologies, as well as optimal configurations by means of model-based methods. 

Operational ramp-up 

 

Once the manufacturing system has been installed at the manufacturing company’s 

premises, ramp-up does exist because unexpected problems occur that had not been 

included in the design phase. Some examples include interface problems related to raw 

materials may have a different physical behavior; suppliers may need to adapt to the 

new system; organizational rules may delay the implementation; and also human-re-

lated issues. In fact, since the human being is autonomous by definition, impossible to 

model and source of innovation and disruption at the same time for the system. At the 

same time, solutions may come from the operators that force to re-think the system. 

Decision-making problems in this case contribute to the reduction of the throughput 

losses in a two-fold way: (i) by shortening the ramp-up time or (ii) by improving the 

ramp-up management. These two effects of decision-making during ramp-up are 

depicted in Fig. 3. 
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Figure 3. Effects of operational decisions on ramp-up. 

 

On one hand, an optimal ramp-up management avoids having much production 

losses because a higher productivity is reached. In order to do so, production 

bottlenecks should be identified and solved, as well as organizational issues as 

workforce training, or supplier management. On the other hand, these improvement 

actions should be performed without any time delay to avoid long ramp-up durations. 

Multiple ramp-up 

 

The effective throughput loss problem is even more significant in the presence of 

multiple reconfigurations of the system. In this case, the production loss may account 

not only for those during the ramp-up, but also during the reconfiguration, as it is de-

picted in Fig. 4. 

 

Figure 4. Effects of multiple reconfigurations on ramp-up. 

 

After the first configuration reaches the target effective throughput level, a system 

reconfiguration takes place. During the reconfiguration time, the system is not deliver-

ing parts and the effective production rate is zero. Once the system is restarted, a new 

ramp-up is observed, that brings the system to the new target effective throughput level 

in the new configuration. Additional production losses are then observed, that directly 
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affect the profitability of the new configuration. It is worth to notice that the not unusual 

case in which the initial effective throughput of the new configuration is lower than the 

target effective throughput of the previous configuration is represented in Fig. 2. Given 

the relevance of the effective throughput losses during the system ramp-up along the 

system life-cycle, it is important to deeply understand the causes for these losses.  

3 Review of available novel solution approaches 

State-of-the-art works related to productivity ramp-up are articulated following a 

high variety of topics. This Section provides an overview of the related works with 

respect to the decision-making problems for reducing productivity ramp-up in manu-

facturing systems, as they were presented in Section 2. 

The articles have been selected with a structured research in Scopus, WoS and 

Google Scholar databases, following these steps: 

1. Implementation of database queries addressing selected keywords and limiting 

the time frame to the last 5 years:  

a. (ramp-up AND (manufacturing OR production) AND systems);  

b. ((changeable OR reconfigurable) AND (manufacturing OR produc-

tion) and systems); 

c. (reconfiguration AND (manufacturing OR production) AND systems) 

2. Filtering of first papers selection based on abstracts, keywords and publication 

journals. 

3. Extension of articles selection by means of referenced works. Only milestone 

works have been considered outside of the 5-year time frame. 

 

An overview of the state of the art is presented in Table 1. In this Table, the selected 

works have been grouped according to the similarity in the solution approach, and clas-

sified according to the ramp-up target phase and objective as in Section 2. It can be 

noticed that the variety of solution approaches spans over manifold aspects of decision-

making for productivity ramp-up, from software management, as in virtual commis-

sioning, to hardware decisions, as technological reconfiguration, to resource and work-

force management, to re-thinking completely manufacturing systems in order to mini-

mize multiple ramp-ups as in matrix production systems and line-less manufacturing. 

 
Table 1. Overview of approaches for ramp-up decision making. 

Solution approach Reference Target phase Objective 

Integrated techno-

logical and opera-

tional strategies 

Andreev, 2021 

Doltsinis, 2020 

Frazzon, 2018 

Jeske, 2019 

Lai, 2021 

Magnanini, 2021 

Operational ramp-

up 

Productivity maximization during 

ramp-up 

Risk-oriented 

ramp-up manage-

ment 

Elstner and Krause, 

2014 

Medini, 2020 

Operational ramp-

up 

Productivity maximization during 

ramp-up  
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Mamaghani, 2021 

Medini, 2021 

Configuration op-

timization 
Islam, 2022 Design phase Improvement of productivity 

Matrix production 

systems design 

and operations 

Stricker, 2021 

Trierweiler, 2021 
Multiple ramp-up 

Reduction of reconfiguration and 

ramp-up time 

Line-less manu-

facturing manage-

ment 

Buckhorst, 2022 

Göppert, 2020 

Göppert, 2021 

Grahn, 2022 

Schmitt, 2021 

Multiple ramp-up 
Reduction of reconfiguration and 

ramp-up time 

Plug-and-produce 

systems 

Wurster, 2021 

Zimmer, 2019 
Multiple ramp-up 

Reduction of reconfiguration and 

ramp-up time 

Reconfiguration 

optimization 

Ahmad, 2020 

Andersen, 2016 

Cerqueus, 2023 

Epureanu, 2021 

Huang, 2019 

Li, 2019 

Schmid, 2022 

Multiple ramp-up 
Reduction of reconfiguration and 

ramp-up time 

Product-oriented 

ramp-up 

Sinnwell, 2019 Design phase Reduction of ramp-up time 

Bergs, 2021 Multiple ramp-up 
Reduction of reconfiguration and 

ramp-up time 

Ngo, 2020 

Schuh, 2015 

Operational ramp-

up 

Productivity and quality maximi-

zation during ramp-up 

Slamanig and Win-

kler, 2011 

Operational ramp-

up 

Reduction of ramp-up time and 

complexity mitigation  

Virtual commis-

sioning 

Dammacco, 2022 

Krystek, 2019 

Ugarte, 2022 

Design Reduction of ramp-up time 

Kampker, 2020 

Kampker, 2021 
Multiple ramp-up 

Reduction of reconfiguration and 

ramp-up time 

Workforce man-

agement 

Neumann and 

Medbo, 2017 

Lanza and Sauer, 

2021 

Di Luozzo, 2021 

Kim, 2021 

Operational ramp-

up 

Productivity maximization during 

ramp-up 

 

A significant piece of literature addresses planning and control of production during 

ramp-up with a focus on productivity and rapidity (Andreev et al., 2021; Magnanini et 

al., 2021). In this body of literature, the productivity maximization during ramp-up is 

addressed by integrating decisions related to technological improvements to resources 

as process machines, and at the same time optimizing the production control and man-

agement. Data-driven decision support and mathematical modelling are among the 

most common solution approaches used in this area (Frazzon et al., 2018; Jeske et al., 

2019; Doltsinis et al., 2020; Lai et al., 2021). 

Complementarily some research works addresses productivity ramp-up projects 

from a cost-benefit perspective with the aim to proactively respond to market needs and 
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mitigate failure risk (Elstner and Krause, 2014; Medini et al. 2020; Medini et al., 2021; 

Mamaghani and Medini, 2021). An empirical research outlined different categories of 

factors to be considered during development projects, which could affect ramp-up and 

operational performance (Islam et al., 2022). In a recent study, Medini (2022) high-

lighted standardization and integration as complementary principles to scale up and 

ramp-up in production.    

In response to increased variety and shortened product life cycle concepts such as 

matrix manufacturing systems have emerged. According to this concept, resources and 

processes and organized into modules, process modules are linked using process flows. 

This architecture allow to flexibly produce variants of the product for which resources 

are available within the system (Trierweiler and Bauernhansl, 2022). Heuristics and 

simulation are among the used approaches to address scheduling and reconfiguration 

problems in matrix manufacturing systems (Stricker et al., 2021).                

Line-less manufacturing and assembly systems share several properties as matrix 

manufacturing systems while strongly relying on recent technological developments 

(Schmitt et la., 2021; Buckhorst et al., 2022). This concept is ruled by three main prin-

ciples namely, clean floor (e.g. removing obstacle to ease resource movements), mobile 

production factors (e.g. moving resources), stations on demand (e.g. establish and dis-

solve stations as per production needs). This concept is enabled through a joint deploy-

ment of robotic systems, automated guided vehicles and decision support models (e.g., 

agent based (Buckhorst et al., 2022), machine learning (Göppert et al., 2020; Grahn et 

al., 2022)).    

The concept of modularity is also as the heart of the fluid automation approach in 

conjunction with a service-oriented architecture allowing for agile production system 

(Wurster et al., 2021). This concept is particularly relevant to productivity ramp-up as 

it allows to reduce reconfigurability efforts through the notion of plug and. Knowledge 

management over ramp-up projects and decision support systems are crucial for the 

successful implementation of this concept (Zimmer al., 2019). 

The idea of modular processes and resources gave also rise to another research 

stream focusing on the study of reconfigurability of production systems (Huang et al., 

2019; Li et al., 2019) and networks (Epureanu et al., 2021). Reconfigurable manufac-

turing systems inherit some characteristics from traditional manufacturing concepts 

augmented with the possibility of capacity scaling-up and performing different func-

tionalities (Andersen et al., 2016). Empirical and case studies fostered the development 

of this research area (Ahmad et al., 2020; Andersen et al., 2016). Most commonly ad-

dressed problems involve design (for scalability) of reconfigurable manufacturing sys-

tems, with several solution approaches including linear programming and combinato-

rial optimization (Li et al., 2019; Cerqueus et al., 2023).       

    Productivity ramp-up was also addressed from product perspective focusing on 

aspects such as complexity, innovation and quality  (Slamanig et al., 2011; Schuh et al., 

2015; Ngo et al., 2020), and using agile and iterative development approaches (Sinn-

well et al., 2019; Huang et al., 2019; Bergs et al., 2021).  

Industry 4.0 related technologies facilitating digitalization opened up new perspec-

tives to support ramp-up particularly in complex manufacturing systems. This fostered 

the development of concepts such as virtual commissioning, which aims in short, to 



11 

validate a (production) system before real implementation (Krystek et al., 2019). To 

this end, approaches such as virtual reality (Dammacco et al., 2022) and digital twins 

(Ugarte et al., 2022) are used to virtually validate productivity ramp-up and more 

largely production system operation. Despite some real case applications mainly as pi-

lot projects, this promising orientation requires further investigation due to its potential 

in significantly reducing effort, mitigating risks and ensure agility.  

Because of ramp-up complexity and high uncertainty, the state of the art also ad-

dresses learning effects (Kim et al., 2021) and human performance impact (Di Luozzo 

et al., 2021) during production ramp-up. The main addressed problems involves plan-

ning and performance improvement using simulation (Lanza and Sauer, 2012; Neu-

mann and Medbo, 2017), mathematical modelling (Kim et al., 2021) and performance 

indicators (Di Luozzo et al., 2021). 

4 Description of how to implement novel approaches 

In this Section, a selection of novel approaches for decision-making in productivity 

ramp up is proposed, with respect to the workflow that shall be used in each methodol-

ogy, the possible implementation software and required inputs. The following novel 

approaches have been selected in order to approach early researchers to the field and 

provide clear instructions to the implementation. 

 

4.1 Optimal sequencing of improvement actions 

When a manufacturing system faces productivity ramp-up, decisions as minor techno-

logical improvement of machines, implementation of control policies, improvement of 

resource management as reduction of repair time are usually addressed by the company. 

Each of these improvement actions may have a positive effect on system performance. 

However, not all improvement actions can be implemented at the same time, for time 

and resource constraints. Hence, the production manager should decide the sequence of 

improvement actions in order to maximize the total productivity during the ramp-up, 

considering the time effort that takes when implementing improvement actions. The 

complete work can be found in Magnanini (2022). 

This method is valid under the following assumptions: 

a) Improvement actions are independent among each other; 

b) Each improvement action of the set must be implemented; 

c) Only one improvement action at a time can be implemented. 

d) Each improvement action is characterized by a duration before being fully 

activated on the system. 

 

The approach is based on the integration of a performance evaluation model and an 

optimization algorithm. The performance evaluation model is used to model the man-

ufacturing system, as in Discrete Event Simulation (Nassehi 2022) or in analytical mod-

els (Magnanini 2023). Each resource in the manufacturing system may be described 

with characteristics parameters, such as cycle time, time to repair and time to failure. 

Hence, each improvement action should be described as improvement with respect to 
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one (or more) of these parameters. The performance evaluation model is used to provide 

key performance indicators, as system throughput, for a given combination of resource 

parameters, i.e. a configuration. 

The problem is approached by means of dynamic programming. Some specific fea-

tures of the problem make this solution approach viable. Indeed, it can be noticed that 

the performance in terms of throughput in a given configuration, i.e. for a given sub-

set of already implemented improvement actions, does not depend on the specific se-

quence used to implement the actions. This can be noticed in Figure 5, where the last 

two steps of two alternative sequence with same set actions is shown. In particular, all 

actions from 2 to 7 have been implemented, and only actions 1 and 8 are missing. It is 

shown that the throughput of the first sequence (blue line) when only 1 and 8 are miss-

ing is the same as the one of the second sequence (red line) where the same actions 

have not been implemented yet (indicated as 𝑡ℎ(1,8) in Figure). Even if both sequence 

at the end bring the same value of throughput, it can be seen that one permutation dom-

inates the other one. That is, the area above the piecewise linear throughput function is 

smaller when action 8 is performed first, and then action 1 is performed as last (se-

quence 1: red line), with respect to that one of sequence 2 (blue line), where action 1 is 

performed first and action 8 as last one.  

 
Figure 5. Representation of the approach. 

Hence, the problem can be transformed in a minimization problem, where the goal is 

to minimize the area above the piece-wise linear throughput function. This area can be 

obtained by simply multiplying the duration and the throughput increment of the se-

lected improvement action, with respect to the previous one. 

Formulation 1 (maximization). For a finite set of improvement actions 𝐴 =

{𝑎1, … , 𝑎𝑗}  acting on the set of configuration parameters 𝛸(𝑠) and requiring an imple-

mentation time equal to 𝑑(𝑎𝑗), find the sequence 𝑈(𝑆) = {𝑢1, 𝑢𝑠, … , 𝑢𝑆, 𝑢𝑠 ∈ 𝐴} which 

maximizes the cumulated throughput 𝑇𝐻𝑈(𝑆). 
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Formulation 2 (minimization). For a finite set of actions 𝐴 = {𝑎1, … , 𝑎𝑗}  acting on 

the set of configuration parameters 𝛸(𝑠) and requiring an implementation time equal 

to 𝑑(𝑎𝑗), find the sequence 𝑈(𝑆) = {𝑢1, 𝑢𝑠, … , 𝑢𝑆 , 𝑢𝑠 ∈ 𝐴} which minimizes the cu-

mulated lost throughput  𝑇𝐻̅̅ ̅̅
𝑈(𝑆). 

Therefore, the following dynamic programming approach is used to solve Formula-

tion 2 (minimization). 

Step 1. At each decision time s, for all possible combinations 𝑧𝑘(𝑠) ∈ 𝑍(𝑠), the 

throughput 𝑡ℎ𝑧𝑘(𝑠) is computed by means of the performance evaluation model.  

Step 2. For each combination 𝑧𝑘(𝑠) ∈ 𝑍(𝑠) and for each combination 𝑧𝑖(𝑠 + 1) ∈
𝑍(𝑠 + 1), so that 𝑧𝑖(𝑠 + 1) ⊂ 𝑧𝑘(𝑠), there exists only one arc 𝜏𝑘,𝑖, corresponding to the 

action 𝑎(𝜏𝑘,𝑖) with duration 𝑑(𝑎(𝜏𝑘,𝑖)). The cost of the arc 𝜏𝑘,𝑖 is computed as 

𝑐(𝜏𝑘,𝑖) = 𝑡ℎ𝑧𝑘(𝑠) ⋅ 𝑑 (𝑎(𝜏𝑘,𝑖)) 

Step 3. Starting from decision time 𝑆 and going backward to the first decision time 

𝑠 = 1, the cost-to-go function for each combination 𝑧𝑘(𝑠) at each decision time s is 

computed as 

𝐶(𝑧𝑘(𝑠)) = min
I,zi(𝑠+1)⊂𝑧𝑘(𝑠)

(𝑐(𝜏𝑘,𝑖) + 𝐶(𝑧𝑖(𝑠 + 1))) 

The sequence of the minimum cost-to-go functions on 𝑠 minimizes the cumulated lost 

throughput  𝑇𝐻̅̅ ̅̅ (𝑆), and according to Formulation 2 of the problem it returns the opti-

mal sequence of improvement actions 𝑈(𝑆). 

Data-driven productivity improvement 

In this paragraph, a traditional productivity improvement method is explained, which 

can be later compared to the sequencing of improvement actions presented in the pre-

vious paragraph. 

The data-driven productivity improvement is based on dynamic bottleneck identifica-

tion, enabled by data gathering solutions through IoT. In particular, the examined meth-

odology is based on the Turning Point Method (Lai 2021). This method can be applied 

to general manufacturing systems with any layout. This approach follows the traditional 

bottleneck identification method, in which the bottleneck machine is iteratively identi-

fied and improvement actions are implemented. All these methods can be defined as 

‘Bottleneck Release methods’, since they iteratively identify the bottleneck, solve it and 

move to the following bottleneck machine. More details can be found in Li (2009). 

The Turning Point Method utilizes the manufacturing system blockage and starva-

tion data to define a bottleneck. The blockage and starvation pattern captures the man-

ufacturing system dynamics by reflecting the nature of workpiece flowing across the 

production line. Bottleneck stations are ones that tend to cause the upstream stations to 

be blocked and downstream stations to be starved. Besides, bottleneck stations usually 

have higher utilizations compared to nearby stations, therefore with a lower total block-

age plus starvation time than its adjacent stations. 

Therefore, the “turning point” can be defined at the stations where the trend of block-

age and starvation turns from higher blockage over starvation to higher starvation over 

blockage. Besides, the “turning point” stations must also satisfy having less total 
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blockage plus starvation time over its two neighboring stations. The mathematical def-

inition is shown below: 

Definition: Station  is the turning point in an  station segment with finite buffers 

during a period if: 

 

(𝑇𝐵𝑖 − 𝑇𝑆𝑖) > 0 ∶ 𝑖 ∈ [1, … , 𝑗 − 1], 𝑗 ≠ 1, 𝑗 ≠ 𝑛 

(𝑇𝐵𝑖 − 𝑇𝑆𝑖) < 0 ∶ 𝑖 ∈ [𝑗 + 1, … , 𝑛], 𝑗 ≠ 1, 𝑗 ≠ 𝑛 

𝑇𝐵𝑗 + 𝑇𝑆𝑗 < 𝑇𝐵𝑗−1 + 𝑇𝑆𝑗−1, 𝑗 ≠ 1, 𝑗 ≠ 𝑛 

𝑇𝐵𝑗 + 𝑇𝑆𝑗 < 𝑇𝐵𝑗+1 + 𝑇𝑆𝑗+1, 𝑗 ≠ 1, 𝑗 ≠ 𝑛 

𝑖𝑓 𝑗 = 1 ∶ (𝑇𝐵1 − 𝑇𝑆1) > 0 𝑎𝑛𝑑 (𝑇𝐵2 − 𝑇𝑆2) < 0 𝑎𝑛𝑑 𝑇𝐵1 + 𝑇𝑆1 < 𝑇𝐵2 + 𝑇𝑆2 

𝑖𝑓 𝑗 = 𝑛 ∶ (𝑇𝐵𝑛−1 − 𝑇𝑆𝑛−1) > 0 𝑎𝑛𝑑 (𝑇𝐵𝑛 − 𝑇𝑆𝑛) < 0 𝑎𝑛𝑑 𝑇𝐵𝑛 + 𝑇𝑆𝑛

< 𝑇𝐵𝑛−1 + 𝑇𝑆𝑛−1 

 

Where 

𝑇𝐵𝑗 ∶ blockage time of station 𝑗 

𝑇𝑆𝑗 ∶ starvation time of station 𝑗 

 

The blockage time and starvation time can be computed by means of data-driven 

approaches, as in real manufacturing systems where IoT data are gathered (Lai 2021), 

or also using performance evaluation models such as Discrete Event Simulation. 

 

4.2 Multi-agent systems for assessing production ramp-up strategies 

Multi-agent systems have been applied to various problems in manufacturing in con-

junction with other production management concepts. Agents’ autonomy and interac-

tion are among the key features, which increased their potential for high uncertainty 

situations such as ramp-up (Rodrigues et al., 2018; Medini et al., 2021). This section 

reports on a multi-agent system to support ramp-up planning. The system was designed 

and implemented following the GAIA methodology (Wooldridge, 2000). The proposed 

approach aims to enlighten decisions regarding ramp-up planning strategies identified 

from the literature (Schuh et al., 2005; Slamanig and Winkler, 2011). Variety and vol-

ume are among the key criteria defining a strategy. For instance, selecting a high-vol-

ume low-mix or low-volume high-mix strategy depends on a variety of factors includ-

ing complexity, cost and selling prices. The multi-agent system will help model the real 

production system and simulate its behavior considering different planning strategies.  

The designed system consists of a set of autonomous agents interacting together and 

representing processes involved in production within a single echelon make-to-order 

supply chain. An agent can be seen as a computer system located in an environment 

that operates autonomously and flexibly to achieve the objectives for which it was de-

signed (Jennings et al., 1998). The methodology is ruled by the following hypotheses: 

the focus is put on a focal company within the supply chain, internal organization of 

the customer and suppliers is not addressed; the methodology is intended for single and 

multivariant production contexts. A simplified overview of agents’ roles is shown here-

after. These roles are inspired by the SCOR (Supply Chain Operations Reference) 
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model which provides a standard representation of processes across supply chains (Me-

dini and Rabénasolo, 2014).    

• Customer: generates and sends orders to Company.    

• Company: receives and processes Customer orders, manages inventories, 

and generates production and supply orders.      

• Production: receives, processes and delivers production orders from Com-

pany and updates production load.   

• Performance: tracks and updates performance indicators.  

• Supplier: receives, processes and delivers Company supply orders.    

 

The sequence of interactions among agents is represented in Figure 6 using a sequence 

diagram. This example represents a typical scenario for order processing and does not 

cover issues and unplanned events.  

    

 
Figure 6. Agents interactions sequence 

 

 

Agents allow collectively to implement the following model intended for evaluating 

different planning strategies of production ramp-up. A strategy is represented by a ma-

trix 𝑆 with 𝑝𝑖
𝑡 is the production volume of product 𝑖 at planning period 𝑡, 𝑇 and 𝑀 are 

respectively total planning periods and total number of products within focal company’s 

portfolio. The strategy is defined and implemented by Company and Production agents. 

Customer and Supplier allows to replicate supply chain operation consistently with SCOR 

model.    

  
𝑆 = (𝑝𝑖

𝑡)𝑖=1…𝑀,𝑡=1…𝑇  

 

𝑝𝑖
𝑡 is calculated according to the following equation, where 𝑠𝑖

𝑡 is the share of product 𝑖 in 

product mix at period 𝑡, 𝑃𝑡is the aggregate production capacity at period 𝑡. 𝑠𝑖
𝑡 depends on 
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product complexity 𝐶𝑖 , planned aggregate capacity 𝑃𝑡 and it is valued by decision makers 

involved in ramp-up management.   

 

𝑝𝑖
𝑡 = 𝑠𝑖

𝑡 × 𝑃𝑡 

 

Since the model is consistent with a make-to-order configuration, the effective produc-

tion volumes depends on received customer orders as shown in the following equation with 

𝑒𝑖
𝑡 ≤ 𝑝𝑖

𝑡.   

𝑒𝑖
𝑡 = ∑ 𝑑𝑖

𝑡

𝑖

  

        Three main performance aspects are covered by the model, cost, lead-time and 

sales revenue. These are addressed through several indicators updated by Performance 

agent. Indicators are updated at predefined points of time. Total cumulative cost at pe-

riod 𝑡 is calculated according to the following equation with 𝐶𝑇
0 = 0,  𝑐𝑆

𝑡, 𝑐𝑃
𝑡 , and 𝑐𝐼

𝑡 are 

respectively the costs related to supply, production and inventory captured at period 𝑡.  

  

𝐶𝑇
𝑡 = 𝐶𝑇

𝑡−1 + (𝑐𝑆
𝑡 + 𝑐𝑃

𝑡 + 𝑐𝐼
𝑡)  ∀𝑡 ∈ {1. . 𝑇} 

 

Average cost and lead-time are incrementally updated according the following equa-

tions, respectively, LtT is the average lead-time at t with 𝐿𝑇
0 = 0.  

 

𝐶𝐴
𝑡 =

𝐶𝐴
𝑡−1+(𝑐𝑆

𝑡 +𝑐𝑃
𝑡 +𝑐𝐼

𝑡)

2
 ∀𝑡 ∈ {1. . 𝑇} 

 

𝐿𝐴
𝑡 =

𝐿𝐴
𝑡−1+𝐿𝑡

2
 ∀𝑡 ∈ {1. . 𝑇} 

Similarly, cumulative sales turnover, 𝑠𝑇
𝑡 , is updated according to the following equa-

tion, with 𝑠𝑇
0 = 0, 𝑠𝑡

𝑣 and 𝑞𝑡
𝑣 refer respectively to selling price of variant 𝑣 and quantity 

per order.  

  

𝑠𝑇
𝑡 =  𝑠𝑇

𝑡−1 + (𝑠𝑡
𝑣  × 𝑞𝑡

𝑣) ∀𝑡 ∈ {1. . 𝑇 

5 Exemplary detailed implementation of the solution 

approaches 

In this Section, exemplary applications of the solution approaches presented in Section 

4 are provided. The aim of this Section is to provide practitioners and young researchers 

with viable examples to be implemented in the field, before addressing more complex 

applications as will be shown in later Sections. 

 

 

5.1 Sequencing of ramp-up actions in automated assembly lines  

This section reports an exemplary implementation of the methodology explained in 

Section 4.1. Further details can be found in Magnanini (2022). The reference system 
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which is considered is a multi-stage automated assembly line, with inter-operational 

buffers. A simple system is used as test bed for the application of the methodologies. 

On the other hand, different experiments are conducted in order to compare the results 

of the methodologies according to the system characteristics. 

The completely balanced line example is composed of 3 stages and 2 buffers. Each 

machine is presented with deterministic cycle time (CT), time to repair exponentially 

distributed with main parameter Mean Time to Repair (MTTR) and time to failure ex-

ponentially distributed with main parameter Mean Time to Failure (MTTF). The iso-

lated availability can be obtained as 
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝑅+𝑀𝑇𝑇𝐹
, while the isolated throughput can be 

obtained as 
1

𝐶𝑇
⋅

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝑅+𝑀𝑇𝑇𝐹
. The parameters of the stages are represented in Table 2. 

Performance evaluation of the resulting manufacturing system can be obtained by 

means of Discrete Event Simulation (Nassehi 2022), or Markovian modelling (Magna-

nini 2023). 

 
Table 2. Improvement Actions for the first case of the completely balanced line 

 

The first set of improvement actions includes the same percentage change for each 

stage parameter and their duration of implementation is equal. Therefore, the duration 

of implementation is becoming a non-constraint parameter for this case.  

In Table 3, the improved machine parameters and corresponding machines are rep-

resented. The improvements are only one percent increase in the machine and each 

improvement action takes 1 week to be implemented. 

Each improvement action has a positive effect on the system throughput with respect 

to what it was at decision time before it was implemented as in Figure 4. The set of 

improvement actions may include the replacement of pneumatic actuators with electric 

ones, having positive effect on the cycle time, or the implementation and refinement of 

predictive maintenance algorithms, having a positive effect on time to failure, or organ-

izational improvement, having positive effect on time to repair. Further examples of 

improvement actions targeting similar manufacturing systems can be found in Magna-

nini (2021), Islam (2022), Frazzon (2018). 
Improvement 

action 

Improved 

machine 

Target 

parameter 

Effect on the 

parameter 
Duration 

1 𝑀1 CT −1% 1 week 

Stage 
CT 

(s) 

MTTF 

(s) 

MTTR  

(s) 

Isolated 

Throughput 

 (parts/s) 

Isolated 

 Availability 

M1 3 3000 1500 0.22 0.67 

M2 3 4000 2000 0.22 0.67 

M3 3 5000 2500 0.22 0.67 

Table 3. Improvement actions for the first case of the completely balanced line 
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2 𝑀2 CT −1% 1 week 

3 𝑀3 CT −1% 1 week 

4 𝑀1 MTTR −1% 1 week 

5 𝑀2 MTTR −1% 1 week 

6 𝑀3 MTTR −1% 1 week 

7 𝑀1 MTTF −1% 1 week 

8 𝑀2 MTTF −1% 1 week 

9 𝑀3 MTTF −1% 1 week 

 

When the duration of implementation is not a concern, bottleneck release can give 

the optimal sequence since it can also identify the best improvement to increase system 

throughput the most at each step. 

Optimal sequence :  1 → 2 → 3 → 5 → 6 → 4 → 8 → 9 → 7 

Since the average buffer capacities of the system are not operating at the full capac-

ity, the system wants firstly to push and increase the stages cycle times iteratively start-

ing from the first machine. Furthermore, the middle machine acts as the bottleneck in a 

completely balanced line. Therefore, improvement of the meantime to repairs are start-

ing from the middle machine and so does the improvement of mean time to failures.  

 

 
Figure 7. Sequence of improvement actions for first case. 

It is interesting to explore also the case in which the improvement actions are defined 

only on one parameter, i.e. cycle time, as included in Table 4. 

 
Table 4. Improvement Actions for the second case of the completely balanced line 

Improvement 

action 

Improved 

machine 

Target 

parameter 

Effect on the 

parameter 
Duration 

1 𝑀1 CT −1% 1 week 

2 𝑀2 CT −1% 1 week 

3 𝑀3 CT −1% 1 week 
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4 𝑀1 CT −3% 3 week 

5 𝑀2 CT −3% 3 week 

6 𝑀3 CT −3% 3 week 

7 𝑀1 CT −7% 7 week 

8 𝑀2 CT −7% 7 week 

9 𝑀3 CT −7% 7 week 

 

The bottleneck release sequence seems to be very obvious since there is only one 

parameter to be improved and the bottleneck release identifies the bottleneck machine 

and tries to improve the system throughput at most. 

However, the optimality of the cumulative production cannot be always achieved 

with the straightforward approach where most of the companies prefer this approach. 

The optimal sequence and the bottleneck release sequence are presented below. 

Optimal sequence :  7 → 8 → 3 → 9 → 2 → 4 → 5 → 6 → 1 
Bottleneck Release Sequence :  7 → 8 → 9 → 4 → 5 → 6 → 1 → 2 → 3 

 
Figure 8. Sequence of improvement actions for second case. 

It is worth noticing that both approaches do not account for the action cost, hence a 

completely different approach should be used in case both cost and implementation 

time is required to be considered.  

 

5.2 Ramp-up strategies assessment for a kitchen manufacturer 

 

This section reports on a prototypical implementation of the model presented in sec-

tion 4.2 using a case company in the furniture sector. In this sector, manufacturers are 

compelled to diversity their offering in order to align with various customer require-

ments. SMEs (Small and Medium-sized Enterprises) in particular, require decision-

making support on the strategic and tactical levels. The case company is an SME lo-

cated in Europe proposing a large panel of kitchen types. A modular architecture is a 

characteristic of most of the offered kitchens, with the cabinet being a key module in 

all kitchen types. Unlike several competitors, the case company offers the option to 

customize the dimensions of kitchen cabinets, which is generally more difficult to im-

plement.  
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The model is implemented using JADE platform (Java Agent Development Envi-

ronment) allowing for modelling and simulating supply chain processes by setting 

agents’ behaviors and populating the model with data from the case company.  

• Customer behaviors: OneShotBehaviour for the initialization (e.g. loading 

bill of material data, possible product configurations (solution space), order 

arrival rate), TickerBehaviour for order generation, these behaviors are ex-

ecuted in a sequence through a SequentialBehavior.   

• Company behaviors: OneShotBehaviour for the initialization (e.g. master 

production data, product portfolio), CyclicBehaviour for processing orders, 

TickerBehaviour for production orders generation and inventory update; 

these are executed in parallel through a ParallelBehaviour. 

• Production behaviors: WakerBehaviour for confirming production orders 

delivery based on workload and production lead-time.     

• Supplier behaviors: include SimpleBehaviour to receive and process orders.   

• Performance behaviors: TickerBehaviour for updating indicators values 

(simulation is also terminated by Performance agent).     

The main data from the case company involves six cabinet variants having different 

sizes, unit cost, production lead-time and selling prices. Variants are referred to by 0, 

1, 2, 3, 4 and 5, with selling prices of €550, €500, €350, €400, €600, €650, respectively. 

These prices depends on assemble time and cost.  

The two scenarios compared are HV-LM (High Volume - Low Mix) consisting of 

focusing primarily on variants 2 and 3, which are relatively standard and cost-efficient 

ones, and LV-HM (Low Volume - High Mix) consisting of launching all variants with 

a share of 10% for each of variants 0 and 6 and 20% for each of the other variants.    

 

 
Figure 9. Performance results of two strategies 

 

Comparing the results from the two scenarios HV-LM and LV-HM indicates that 

the former seems to be more profitable for the company, around 10% higher than LV-

HM. Sales turnover is also higher when adopting a HV-LM strategy. These results can 

be explained by the decrease of productivity and increase of costs due to higher com-

plexity of variants 0.1,4 and 5, when adopting a LV-HM strategy. The third scenario, 

corresponds to a LV-HM strategy but with a slight increase in selling prices (around 

6%). This scenario outperforms the HV-LM with 10% of higher profit although sales 

turnover is still lower than first scenario. This indicates the relevance of pursuing an 
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HV-LM strategy while revising selling prices to enhance the economies of scope (Low 

Volume – High Mix – higher Price (HV-LM-P)). This is evidenced further by the rate 

of return, which climbs from 0.54 in the HV-LM scenario to 0.61 in LV-HM-P. 

6 Industrial applications 

In this Section, examples from industrial applications are provided in order to give an 

overview of the implementation challenges which may arise.  

 

6.1 Decision Support System integrating learning effect   

In this Section, an example of decision support system integrating learning effects 

and aspects for rapid ramp-up is presented. The example is taken from Doltsinis (2020). 

Ramp-up requires different decision support strategies that incorporate both model-

based and model-free learning. These learning methods are activated through two op-

erating modes, the offline and online. This is a result of the process data flow and de-

pends on the systems ramp-up state and the previously acquired experience. The over-

view of the proposed decision support system integrating the data flow and the building 

blocks is shown in Figure 10. 
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Figure 10. Decision Support System for ramp-up with learning effect (from Doltsinis 2020). 

This DSS monitors ramp-up and formalizes captured data into experience. The ex-

periences are stored and fed to a learning model, which in turn used by the decision 

support mechanism to provide the operator with performance information and a pro-

posed action for every ramp-up state. The core functionalities of the proposed DSS are 

analysing and learning from experiences. This supportive functionalities are enabled 

through capturing experience; a learning model and the decision support mechanism. 

The DSS was evaluated in a CPS enabled microscale assembly station. Results indicate 

that supporting human operators during system ramp-up with performance measures 

can significantly reduce both the required time and the number of steps to ramp-up 
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completion. Providing further support by recommending the most appropriate set of 

ramp-up actions further reduced both the time and number of steps required for ramp-

up. Additional details can be found in the original publication.  

 

6.2 Virtual Commissioning    

In this Section, an example of virtual commissioning procedure for ramp-up man-

agement in scalable production systems is presented. The example is taken from 

Kampker (2021). Virtual commissioning speeds up the commissioning process by al-

lowing for the pre-setting up of production systems in a simulation environment. This 

approach, among other things, involves early development and validation of program-

mable logic controllers through simulation. With the completion of the model, basic 

kinematics of the production system can be evaluated to detect any collisions or design 

faults. It is important that the Virtual Commissioning model is well aligned to the sig-

nals from the real process. Hence in the following an application showing the adaptation 

of the integration between Virtual Commissioning and real data is shown. The process 

model for connecting real data to virtual commissioning of scalable production systems 

involves six steps, as depicted in Figure 11. The model starts with defining the target, 

followed by selecting system variables, recording signal curves on the real system, up-

dating the virtual commissioning setting, recording simulated signal curves on the 

model, and comparing both signal curves to formulate a recommendation for adjusting 

the model parameters. The target definition forms the basis of the procedure and the 

real plant data is recorded and analyzed, followed by adapting the virtual commission-

ing setting. The virtual model is then connected to the simulation, and both signal 

curves are compared to provide a recommendation for model parameter adaptation. 

 
Figure 11. Methodological steps for Virtual Commissioning integration to real data (from 

Kampker 2021). 

The process model defined here detects the deviation of the simulation model from 

reality regardless of the possible causes and creates the basis for bringing the determin-

istic model behavior closer to reality by adapting the model parameters. The process 
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model ends with the discussion of a concrete parameter recommendation. A process 

model for virtual commissioning was validated using an example from the materials 

handling technology in electric motor production. The improvement goal was a reduc-

tion in cycle time and the scope was a 15-step cycle within the selected material han-

dling process. 14 meaningful signals were recorded and an average cycle of 23.2 sec-

onds was formed from three repetitions. The virtual simulation model was updated by 

exchanging certain module components and adjusting discrepancies in size and posi-

tion, as it can be noticed in Fig. 12. The virtual cycle time was 17.5 seconds, roughly 

75% of the real runtime. Further research found an average deviation of 4.1 seconds, 

with the simulation model being ahead of reality when not considering the overall du-

ration. 

 

 
Figure 12. Deviations of VC model from real data (from Kampker 2021). 

This case study shows that the implementation of VC can be used to proactively 

reduce the system cycle time before even going into regime production. As a conse-

quence, VC can be considered as one of the key enabling technologies for productivity 

ramp-up. 

7 Research directions 

In this Section, possible future research directions to extend and deepen the 

knowledge of decision-making problems in productivity ramp-up of modern manufac-

turing systems are provided. 

Section 2 has shown that root-causes for productivity ramp-up are manifold and de-

scend from various sources, both organizational and technological. As a consequence, 

also decision-making for productivity ramp-up shall address technological and organi-

zational strategies. As reviewed in Section 3, current research has been focusing sepa-

rately on  enabling technologies for reducing ramp-up, as Virtual Commissioning and 
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plug-and-produce systems (Ugarte 2022), configuration and reconfiguration optimiza-

tion according to target production mix and production volumes (Magnanini 2022), 

novel manufacturing technologies for matrix-based production systems (Stricker 2021) 

and line-less manufacturing (Göppert, 2021), as well as analysis on the key importance 

of human aspect for ramp-up, by means of learning aspects and workforce management 

and dedicated decision-support systems (Doltsinis 2020). 

Within the concept of productivity ramp-up of future manufacturing systems, some 

research areas can be identified.  

Starting from the relation between products, processes and resulting manufacturing 

system, the integration between automation and cognitive models may provide inter-

esting fields of research and applications for self-adjusting production systems, that 

automatically identify the most suitable decisions in order to minimize or even elimi-

nate the ramp-up. With this respect, the necessary tools that a researcher should adopt 

range from the latest technological innovations in reconfigurable manufacturing, to 

evolutionary machine learning techniques. 

Moreover, when considering an evolving manufacturing system during its life-cycle, 

only few examples of System Digital Twins can be actually found in literature, and 

their integration into optimization algorithms to proactively anticipate ramp-up issues 

is a research area not yet fully explored. This is coupled with the important topic related 

to the human aspect, which is at the foundation of Industry5.0. Indeed, decision-making 

for minimizing the productivity ramp-up should also account for the relevance of the 

workforce, its training, evolution and collaboration with existing technologies. With 

this respect, the ramp-up and therefore reconfiguration of manufacturing systems char-

acterized by hybrid automation has not reached its full potential yet.  

Additionally, when it comes to enabling technologies, cyber-physical approaches as 

virtual commissioning and plug-and-produce systems may benefit from further re-

search, especially when it comes to applications that do not relate to discrete manufac-

turing, as for instance in continuous processes. 

Given its importance and fundamental role, several promising research avenues can 

be mentioned to keep up with cutting-edge technologies and global circumstances, ex-

tending the concept of productivity ramp-up to integrate services and logistics in order 

to address global customers (Verhaelen 2023).     

For instance, COVID 19 crisis uncovered several urgent challenges in manufactur-

ing such as the need for quick production ramp-up of medical equipment to keep-up 

with the pressure on healthcare sector (Ahmad et al., 2020; Das, 2020). These chal-

lenges involve the ramp-up of the production of goods (e.g. masks, grocery) and ser-

vices (e.g. healthcare services, maintenance services) (Nazir et al., 2020). Yet, ramp-

up in service domain is even more critical than in product domain (Heraud et al., 2022). 

Service intrinsic characteristics requires further research to address service ramp-up 

projects (Akkermans et al., 2019; Lenfle & Midler, 2009). For example, service deliv-

ery and production, and therefore ramp-up, occur simultaneously while mere product 

ramp-up process is conducted prior to its delivery. In this sense service ramp-up is more 

critical as any failure during the ramp-up process is visible to customers. In addition, 

as service operation involves several actors, the ramp-up process needs to be coordi-

nated at a value network level (Cavalieri & Pezzotta, 2012; Maull et al., 2012; Medini 
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& Boucher, 2016). Under these circumstances, it is important to pinpoint service ramp-

up intricacies as well as mutual influences between product and service. This will sup-

port more efficient planning and implementation of ramp-up projects through proper 

requirements identification and scope definition.   

Furthermore, within VUCA environments, in order to improve ramp-up perfor-

mance, i.e. time-to-market, time-to-volume, time-to-quality, time-to-cost, it is im-

portant to carefully build, integrate and share knowledge across ramp-up projects. This 

requires, for instance, identifying mechanisms for transforming individual know-how 

and experience into explicit and sharable knowledge (Riffi-Maher & Medini, 2021). 

Moreover, it is important to support continuous learning and improvement during fast-

paced and rapidly changing ramp-up projects’ environments. An efficient exploitation 

of information and a corporate knowledge management requires organized coordina-

tion and collaborative learning between several stakeholders within and beyond the 

company (Yeleneva et al., 2018). Furthermore, agile methods exhibit a high potential 

to deal with the uncertainty and lack of information underlying ramp-up projects. 

Therefore, they are a good alternative to mere plan-driven methods. This orientation 

started to gain interest in the particular domain of ramp-up culminating so far at guide-

lines or recommendations for iteratively conducting ramp-ups (Bergs et al., 2021; 

Heraud et al., 2023). This is likely to enhance customer integration, unpredicted devel-

opment efforts and omit development/design freeze. Yet, it is still important to assess 

data reliability and combine data from several sources during ramp-up projects to sup-

port informed decisions.     

Reaping the benefits of effective knowledge management and agile ramp-up man-

agement is also dependent on the supporting information system. This latter can even 

be seen as the foundation for successful ramp-up projects. The ramp-up process in-

volves multidisciplinary teams and various components of the corporate information 

system such as Product Data Management and Enterprise Resource Planning. Integra-

tion and automated data migration are then important (Surbier et al., 2014), since mod-

els are usually not interpreted in the same way among these components. Industry 4.0 

design principles and enabling technologies such as Cyber-Physical Systems are ex-

pected to enable a leap in achieving agility within information systems (Medini, 2022; 

Schmitt et al., 2018). Further empirical research is needed to gain insights into (best) 

practices and guide the theoretical developments in this area. 

To conclude, the challenges highlighted by the analysis of state of the art in Section 

3, as well as methodologies shown in Sections 4 and 5, together with case studies from 

Section 6, show that the manifold root-causes for productivity ramp-up are quite inter-

twined, hence future disruptive research areas should address how key enabling tech-

nologies, evolutionary algorithms, advanced software solutions, attention to the human 

intuition and workforce management can be jointly considered for resilient and sustain-

able manufacturing systems. 
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8 Conclusion 

Productivity ramp-up has gained momentum as research problem. The literature is 

still sparse and problems related to productivity ramp-up are articulated under different 

definitions in state of the art. Moreover, technological and digital solutions allow for 

integrated approaches as decision-support systems to improve different aspects of 

productivity ramp-up, starting with design decisions aiming to reduce the reconfigura-

tion and recurrent ramp-up time. It can be also noticed that during ramp-up many prob-

lems may arise, including sourcing issues, need for learning for the workforce, and 

planning of the right improvement actions with respect to productivity and available 

data. 

To conclude, research shows a great interest towards problems related to ramp-up, 

as the manufacturing global context is not only dynamic, but also extremely uncertain. 

Moreover, ramp-up is by definition a non-sustainable phase in the life-cycle of manu-

facturing systems. Indeed, during ramp-up, resources are not performing at their best, 

or are prevented from being fully operational and optimized due to unknown condi-

tions, that can be tracked to multiple sources, as technology adaptability and integra-

tion, software connections and performance, workforce learning. Decisions related to 

the identification, management and optimization of these actions in complex manufac-

turing systems require data and models, as well as suitable decision-support methods 

integrating optimization algorithms. Many challenges are still ahead, tackling the iden-

tification of root-cause for ramp-up, the co-evolution of product-process-system in or-

der to avoid non-sustainable phases of manufacturing system’s life-cycle, as ramp-up 

is, and novel key enabling technologies to ease productivity ramp-up. Hence, the ob-

jective of minimizing the ramp-up effect is strategical for the sustainable development 

of manufacturing. 
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