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Abstract— Robotic rehabilitation has demonstrated slight
positive effects compared to traditional care, but there is still
a lack of targeted high-level control strategies in the current
state-of-the-art for minimizing pathological motor behaviors.
In this study, we analyzed upper-limb motion capture data
from healthy subjects performing a pick-and-place task to
identify task-specific variability in postural patterns. The results
revealed consistent behaviors among subjects, presenting an
opportunity to develop a novel extraction method for variable
volume references based solely on observations from healthy
individuals. These human-centered references were tested on a
simulated 4 degrees-of-freedom upper-limb exoskeleton, show-
ing its compliant adaptation to the path considering the
variance in healthy subjects’ motor behavior.

Index Terms— Upper-Limb, Exoskeleton, Path, Multi-Body,
Motor-Control

I. INTRODUCTION

Upper-Limb impairments can be the result of different
causes such as musculoskeletal disorders or neurological
accidents. Even though the two causes lead to different
form of impairments and rehabilitative journeys, both the
affected patients suffer from the loss of ability in performing
activities of daily living (ADLs) [1]–[3]. Robotic platforms
represent a powerful tool to promote motor strengthening
and neuro-plasticity, by providing intensive and repetitive
exercises [1]–[7]. However, some studies reported only minor
improvements in robotic-assisted therapy with respect to
usual care [6] [8], especially in terms of motor functionality.
Brewer et al. highlight how thanks to robotic systems it will
be possible to standardize movements and rigorously test
them [7], but we still miss proper scales of measurements
to correctly differentiate genuine upper-limb motor recovery
from functional one due to compensation strategies [9]–
[12]. From studies on upper-limb motor behaviour of healthy
subjects it is established that, despite the characteristic re-
dundancy of the arm, the human motor control strategy for
reaching a point in the space is reproducible, and show sim-
ilar and repetitive characteristics in terms of hand paths and
velocity profiles [14]–[17–27]. On the contrary, such patterns
seem to be initially altered in post-stroke patients, but after
a rehabilitative period kinematic profiles tend to converge
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toward the physiological one investigated on healthy sub-
jects [18]. This important finding opens the possibility to
exploit kinematic measurements for the evaluation of ADLs
recovery [7] [18]. During complex movements like pick-
and-place tasks commonly used in Occupational Therapy,
several phases are involved. After picking up the object, the
hand accelerates towards the target, followed by a corrective
control strategy to refine object placement. These phases
result in varying levels of variability in healthy postural
patterns. Previous studies have proposed path-based control
strategies with fixed-radius haptic tunnels, utilizing specific
geometrical patterns [19]–[21]. However, such approaches
may be limiting when applied to ADL. The correction
and assistance provided by the robot should be adaptable
to the characteristics of each task. Currently, there is a
lack of optimal robotic strategies that specifically address
compensating for kinematic discrepancies in ADLs tasks for
impaired individuals, while considering the variability seen
in the able-bodied population [7].

In this study we present a novel approach in which,
starting from the observation of 14 healthy subjects while
performing a pick-and-place task, it is possible to create
scalable volume-specific references for the control of a
simulated 4 deegres-of-freedom (DOF) exoskeleton, a new
prototype developed by Istituto Italiano di Tecnologia [22].
Partiuclarly, we simulated a force-field algorithm based on
the generated volumes, to provide both a correction normal
to the desired trajectory and a corrective-assistance toward
the completion of the task, tailored on healthy movements
variability while performing the specific case study.

II. MATERIALS AND METHODS

A. Participants

The Vicon Nexus 2.12.1 motion capture system (MoCap)
was used to acquire kinematic data from subjects (Fig.1A).
The subjects wore twelve infra-red reflective markers on
their right arm, useful to create a biomechanical model of
the right upper-limb (Fig.1B). This work was conducted in
accordance with Protocol ”IIT REHAB HT01 N. Registro
CER Liguria: 363/2022 - DB id 12494”. For the acquisition
of human-based references we recruited 14 right-handed
healthy subjects, 7 male and 7 females between 25 and
30 years-old. People from the 23rd female to 99th male
height percentiles were selected in order to investigate the
performance of movements in a highly variable subjects’
population.



Fig. 1: Experimental set-up. (A) Environment where MoCap acquisitions were performed. Highlighted in orange 9 Neuxs Vicon infrared cameras used.
At the centre of the room a representation of the library used to perform the pick-and-place task. (B) Positioning of IR-reflective markers on subjects.
[1]C7, [2]T10, [3]Scapula, [4]Shoulder, [5]Arm, [6]Elbow, [7]Forearm, [8]Outer Wrist, [9]Inner Wrist, [10] Collar bone, [11]Sternum, [12]Knuckle (C)
Visualization of the task: movements from table to shelf (MOV1, MOV2, MOV3), from shelf to table (MOV4, MOV5, MOV6), and from table to table
(MOV7, MOV8, MOV9).

B. Experimental Protocol

Subjects performed a pick-and-place task involving three
plastic boxes (10x8x9.5 cm, 0.2 kg each) on a movable struc-
ture resembling a table and a shelf (Fig.1A). The shelf height
was adjusted to shoulder height, with the table positioned 40
cm below the shelf for all subjects. The experimental session
began with an explanation of the study’s objective. Subjects
were instructed to pick boxes from a designated location on
the library and place them in a specific target. The task was
repeated three times, and participants were encouraged to
perform the movements in a relaxed and comfortable manner,
without time and path constraints. Nine movements were
tested (Fig.1C):

• From table to shelf (MOV1, MOV2, and MOV3);
• From shelf to the table (MOV4, MOV5, and MOV6);
• From the late position back to their starting position on

table (MOV7, MOV8, and MOV9).

C. Data analysis

We focused solely on the acquired knuckle trajectories
(Fig.1B), which are considered a reliable representation of
the arm end-effector path. Data analysis was conducted
using MATLAB R2021b. To determine if the duration of
all trials followed a normal distribution, a Shapiro-Wilk test
was performed. Results for each movement showed a slight
positive skew, therefore data timing distribution is not normal
for all movements. However, this outcome could be attributed
to the small dataset size. Since the goal of the study is
to explore the average behaviour of healthy subjects, we
decided to include in our calculations only the data points
with duration falling inside one standard deviation from
the mean movement time (µ ± 1σ). Finally, the data were
averaged across repetitions and subjects, resulting in 9 mean
trajectories representing the 9 movements.

D. Reference volumes and Vector-Field generation

In this paper we will address the resultant trajectory for
each movement averaged on repetitions and subjects as Γ.
For each task we calculated the standard deviation σ in x,

y, and z across trials. These data were exploited to create a
volumetric shape centred in Γ and variable radius R (Fig.2C),
calculated as the average between σx, σy , and σz for each
point of Γ:

CR
Γ (iΓ) ∈ (Π ⊥ Γ⃗(iΓ+1)−Γ⃗(iΓ), for iΓ ∈ [0, size(Γ)] (1)

where CR
Γ (iΓ) represents a circular section of the tunnel.

Once the volumetric shapes were optimized, we imple-
mented a compliant control strategy. Given the position of
the exoskeleton end-effector P⃗EE in the space, the control
calculates the corrective (F⃗C) and corrective-assistive (F⃗A)
forces needed to minimize the error between the actual
position P⃗EE and the desired one belonging to Γ:

F⃗control =


F⃗C if ||P⃗EE − Γ⃗(i)|| −R(i) > 0

F⃗A otherwise
(2)

where Γ⃗(i) the closest point of the trajectory Γ to the end-
effector position P⃗EE such as min∥P⃗EE − Γ⃗(i)∥, calculated
through a k-nearest-neighbors algorithm. In Fig.2A and B
we reported a schematic on how the two components were
computed. In particular, the corrective component is perpen-
dicular to (Γ⃗(i)− Γ⃗(i− 1)):

F⃗C = (Kc ·∆d+ βc ·∆ḋ)n⃗ (3)

where ∆d is the distance ||P⃗proj−P⃗EE ||−R(i), n⃗ defines
the normalized direction P⃗proj−P⃗EE

∆d , P⃗proj is the projection
of the P⃗EE in the line defined by (Γ⃗(i) − Γ⃗(i − 1), and
(Fig.2A). Kc and βc are the constant stiffness and damping
coefficients of an impedance filter, which were set to Kc =
400 N/m and βc = 40 Nm/s on the multi-body simulation.

On the other hand, we defined an assistive and corrective
force F⃗A toward Γ⃗(i + 1) (Fig.2B) and parallel to (Γ⃗(i +
1)− P⃗EE).

F⃗A = (Ka ·∆d+ βa ·∆ḋ)m⃗ (4)

where ∆d is the distance ||Γ⃗(i + 1) − P⃗EE ||, and m⃗ is the
normalized vector defining the direction Γ⃗(i + 1) − P⃗EE .



Fig. 2: Visual representation of the proposed Vector-Field algorithm and
reference volume generation. (A) When the actual position of the end-
effector (P⃗EE ) is outside of the reference volume, a force perpendicular to
the line connecting the closest point of the trajectory (Γ(i)) to the previous
one (Γ(i− 1)) is computed. The module of this force is a function of the
distance of the end-effector to the reference volume wall (P⃗inter − P⃗EE )
and the radius R(i). (B) When P⃗EE is inside the reference volume, both
a corrective and assistive force is provided toward the next point of the
trajectory Γ(i+1), which will help the user follow the optimal path without
risking to get stuck inside the volume. (C) Reference volume of variable
radius around the optimal trajectory Γ (in blue), generated by averaging all
trials (in scattered gray) while performing MOV1 (table to shelf)

Fig. 3: Torque control with a closed-loop in joint positions (q⃗). The total
torque control is the result of different contributions such as the vector-field
one τ⃗vf , the gravity compensation τ⃗g and the external disturbances τ⃗ext.
P⃗des represents the closest point of the optimal trajectory to the end-effector
P⃗EE .

Ka and βa are the stiffness and damping coefficients of an
impedance filter, which were set to Ka = 400 N/m and
βa = 40 Nm/s on the multi-body simulation. When P⃗EE

is close to Γ⃗(i), the direction m⃗ becomes normal to the
reference CR

Γ (i)) (Eq.1) and F⃗A becomes only an assistive
force toward Γ⃗(i+ 1) (Fig.2B).

E. Multi-Body simulation and control strategy

Simscape MATLAB R2021b was employed to create the
model of a novel upper-limb exoskeleton developed by Isti-
tuto Italiano di Tecnologia, based on a previous version [22].
With respect to industrial secrecy, its mechatronics cannot
be disclosed in this manuscript. The model solely presents
the glenohumeral and elbow revolute joints (4 DoFs). We
decided to test the control exclusively on the MOV1 acquired
(Fig.1C). As a consequence, wrist displacements can be
omitted since this physiological joint does not come into play
while performing MOV1 in this specific set-up (more details
in Section III). Each link of the robot was provided with

mass and inertial characteristics as in the prototype. Then, we
implemented the force-field based control strategy described
in the previous paragraph. The proposed control strategy is
a torque control with a closed-loop in Cartesian position
(Fig.3). Once either the correction (Eq.3) or corrective-
assistance (Eq.4) is computed at a high-level, the resultant
force F⃗control (Eq.2) is multiplied by the transpose of the
Jacobian to obtain the joint torques τ⃗vf to be provided to
the exoskeleton.

τ⃗vf = JT F⃗control

The robot dynamic model is described as

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ⃗control + τ⃗ext

where M(θ) is the joint-space mass matrix, C(θ, θ̇) is the
Coriolis term, and G(θ) represents the gravity torques and
forces required for all joints to maintain their positions. We
neglected the inertial components and implemented a gravity
compensation so that the system would not be affected by
its own weight. The total τcontrol input to the robot is

τ⃗control = τ⃗vf + τ⃗ext

The joint positions of the simulated robot are then measured
and the end-effector position P⃗EE is derived through forward
kinematics. To test the controller we applied an external
disturbance F⃗ext = F⃗x+ F⃗y as a squared wave of amplitude
85N , period 10s, and width 5% of period. This was done
to validate the adaptability of the proposed controller to the
variable path proposed.

III. RESULTS

A. Kinematic measurements from healthy subjects

From the considerations on the duration of trials we
identified 108 curves out of 378 movement duration fell
inside the (µ ± 1σ) condition (28.6%). The average time
and standard deviation across trials for each task is reported
in Table I. The following considerations solely concern the
hand movements from when the object is already picked
to when it is placed. The average wrist displacements in
terms of flex-extensions and prono-supinations show average
standard deviation of 4.5◦ and 4.8◦ respectively. Thus, hand
displacements for the three sets of tasks (MOV1-MOV3,
MOV4-MOV6, MOV7-MOV9) show negligible influence
from wrist movements. In Fig.4A (displacement P of the
hand calculated as P =

√
x2 + y2 + z2) MOV2 and MOV3

present higher variability close to the placing phase. This
is also observable in Table I where the maximum standard
deviation across trials is at the edge of the path. On the
contrary, MOV4-MOV6 and MOV7-MOV9 present hand
paths less spread, with maximum standard deviation reached
in the first half of the path (Table I). In Fig.4B the velocity
profiles are reported (V =

√
V 2
x + V 2

y + V 2
z ). The three sets

of movements for each task present qualitatively comparable
shapes. For all of the three sets, it is noticeable how the
velocity profile of the first movement (MOV1, MOV4, and
MOV7) is slightly different from the following two. This
is reported in Table I where the fraction of path at which



the maximum velocity is reached across trials decreases
across tasks. Two-way t-test performed on %pathV max

shows a statistically significance difference between MOV1
versus MOV2-MOV3, MOV7 versus MOV8-MOV9, and no
difference between MOV4 versus MOV5-MOV6. We also
computed the average maximum velocity for each set of
movements and we found comparable results both intra-
tasks (sets MOV1-MOV3, MOV4-MOV6, MOV7-MOV9,
Table I) and inter-tasks (in MOV1-MOV9). Lastly, for each
movement we investigated whether the proposed tunneling
shapes represent most of the trials. To do so, for each trial
we computed the percentage of data points included by the
volume. Then, we averaged the result on repetitions and
subjects. For all of the movements we obtained that at least
78% of trial data fall inside the volumes, and the average
inclusion across movements is 85.4% (Fig.2C). This is in line
with the gaussian distribution hypothesis on the trajectories
dataset.

B. Force-Field control strategy

When a perturbation F⃗ext is first applied to the end-
effector (Fig.5C) and this is still inside the reference vol-
ume, the control force F⃗control will be given only by the
corrective-assistance F⃗A (blue line in Fig.5A and B). Then,
when the hand moves outside the tunnel, the corrective F⃗C

(red line in Fig.5A and B) comes into play and F⃗A drops
to zero, and vice versa when the end-effector gets back into
the tunnel. Equivalent force perturbations were applied with
period of 10s along the trajectory path: (1) at 5% of the
path, where the radius of the volume is 2.3 cm, (2) at 40%,
where the radius is 5.1 cm, (3) at 47%, where the radius
is 4.8 cm, (4) at 49.7%, where the radius is 4.6 cm, and
(5) at 52% where the radius is 4.3 cm. In condition (1) we
observed - see Fig.5A - that the smaller radius immediately
guarantees the switch between assistive-corrective behaviour
and fully corrective, while when the radius of the reference
volume grows - see case (2) toward case (5) - the duration of
application of assistive-corrective action continues for longer
periods of time.

IV. DISCUSSION

In this study, we examined the upper-limb motor behavior
of healthy subjects during a pick-and-place task to identify
specific geometric and kinematic characteristics of these
movements. The composite hand displacement across trials
for MOV1-MOV9 clearly exhibits a curved trend rather
than a straight line (Fig.4A). This suggests that, in a pick-
and-place task, subjects tend to follow a curving trajectory
when not explicitly instructed to move in a straight line.
The timing of movements is also consistent across trials
for each movement, despite the absence of time constraints
for the subjects. Notably, MOV1-MOV3 and MOV7-MOV9
show higher variation (standard deviation) along a larger
portion of the path compared to when maximum velocity
is reached (Table I). This indicates that in these movements,
subjects initially prioritize acceleration towards the target,
resulting in diverse motor behaviors, and subsequently refine

Fig. 4: (A) Representation of hand positions across trials (in grey) and the
average between them (in blue) with respect to the fraction of the path.
(B) Representation of hand velocities across trials (in grey) and the average
between them (in blue) with respect to the fraction of the path, expressed
as m/[path completed]. [1] is relative to MOV1, [2] MOV2, [3] MOV3, [4]
MOV4, [5] MOV5, [6] MOV6, [7] MOV7, [8] MOV8, [9] MOV9

the movement to place the object. The same pattern is not
observed in MOV4 and MOV5, where maximum variation
is reached slightly before maximum speed. This suggests
that, for tasks in favour of gravity, there is a tendency to
initiate the movement slowly, leading to the aforementioned
variability, and then accelerate towards the target. This is
in line with extensive literature studies on the Fitt’s Law
about speed-accuracy trade-off [23]–[25]. The composite
displacement of the hand seem to present smooth outlines in
accordance with minimum-jerk theories, extensively studied
in literature [26]–[29]. Moving on to velocity profiles, there



TABLE I: Results on timing across trials, maximum variation in path, maximum velocity [m/%path], and two-way t-test (level of significance 0.05)
between %pathVmax of first movement of each set and the following two.

Maximum σ and velocity for each movement
Movements T ime± σtime [s] σmax [cm] % path σmax Vmax ± σVmax %pathVmax ± σ%pathV

p− value

Set1
MOV1 1.76± 0.31 5 43.2% 1.23± 0.2 27.5± 7.65 % -
MOV2 1.73± 0.44 3.8 91.2% 1.25± 0.21 23.9± 5.5% < 0.05
MOV3 1.53± 0.28 3.15 98.8% 1.28± 0.22 24.3± 5.2% < 0.05

Set2
MOV4 1.68± 0.25 7.35 40% 1.43± 0.32 41.4± 9.6% −
MOV5 1.88± 0.45 5.38 38.3% 1.47± 0.3 39.8± 8.5% > 0.05
MOV6 1.71± 0.33 6.33 43% 1.47± 0.24 40.4± 7% > 0.05

Set3
MOV7 1.85± 0.29 4.48 42.6% 1.32± 0.18 32.5± 9% -
MOV8 1.87± 0.4 4.47 24.4% 1.57± 0.22 27.32± 5.7% < 0.05
MOV9 1.90± 0.42 5.3 28.9% 1.59± 0.26 24.6± 6% < 0.05

Fig. 5: (A) Contribution of the corrective forces (in red) and the corrective-
assistive ones (in blue) following perturbations. (B) Closeup of the control
torque. (C) External perturbations applied. (D) Variation of the radius of
the created references according to the fraction of path. Circled numbers
indicate at which fraction of path and radius magnitude the external forces
were applied.

are noticeable patterns across movements. MOV1-MOV3 and
MOV7-MOV9 exhibit a steep rising slope in the first half of
the curve, followed by a smoother profile. A slight change
in slope can be observed near the placing phase. On the
other hand, MOV4-MOV6 show the opposite tendency, with
a flatter velocity profile in the first half of the curve and
a steeper one in the second half. Similarly, a slight change
in slope is observed near the placing phase (Table I). These
differences can be attributed to the nature of the movements:
MOV1-MOV3 and MOV7-MOV9 are performed against
gravity, while the others are propelled by gravity, resulting
in varying slope changes. In all cases except MOV7, the
curves exhibit two small bumps, which align with Abend et
al.’s study on velocity profiles during curvy paths [15].

Another interesting observation relates to the velocity

patterns of MOV1, MOV4, and MOV7 across trials (Fig.4B).
The gray lines appear more scattered and unrelated compared
to their consecutive movements (MOV2-MOV3, MOV5-
MOV6, MOV8-MOV9). This may be attributed to motor
learning effects, where the second and third tasks within
each set show less variability; moreover, the first movement
of each set appear to be influenced be the influenced by the
previously adopted motor control strategy.

These initial findings demonstrate consistent and repeti-
tive kinematic behaviors, suggesting their potential use as
recovery metrics for task-specific functional rehabilitation.

Based on these results, it is essential to develop a robotic
control strategy specifically focused on minimizing patho-
logical postures. The proposed reference tunnels, centered
around the mean trajectory with variable standard devia-
tion, accurately represent the average behavior of healthy
individuals performing a pick-and-place task under different
conditions. The tunnels have an average maximum diameter
of 9 cm [30], smaller than the average size of a human
hand. However, in rehabilitation settings, these references
may overly constrain movements and cause discomfort.
Therefore, therapists should have the flexibility to scale the
tunnels based on the user’s level of impairment, progressively
reducing the constraint as the user recovers. For impaired
subjects, a scale factor of 3 (maximum diameter of 27 cm,
nearly twice the average hand size) may be appropriate to
perform the task.

Additionally, the proposed compliant control strategy
demonstrated in simulations how the system can provide end-
effector corrections based on the variability of the reference
tunnels. The greater the radius of the tunnel, the more
freedom of movement is given to the patient. The level of
compliance can be adjusted by therapists through stiffness
and damping coefficients in the impedance control. However,
these parameters were chosen empirically in the current
simulation and require further investigation.

Multi-body simulations offer a strategic and cost-effective
approach to improve robotic control without compromis-
ing patient safety. Future studies are needed to determine
whether following such paths in task-space translates to
physiological coordination in joint-space.

Overall, these findings highlight the importance of tailored
robotic control strategies and the potential of multi-body
simulations in advancing rehabilitation practices.While our
work has limitations in generalizing the proposed acquisi-



tions to different ADLs, the study showed how even without
specific instructions or robotic constraints (e.g., MIT-Manus
[5]), the kinematic behavior among healthy subjects remains
comparable. Thus, the proposed setup can serve as a novel
assessment tool for evaluating ADL recovery, involving
object manipulation and mobilization in 3D space.

V. CONCLUSION

Recovering the skills necessary for performing ADLs
poses a significant challenge for individuals with upper-limb
impairments. Integrating robotic rehabilitation with a proper
understanding of motor behaviors in able-bodied individuals
allows for targeted assistance in regaining initial motor
functions. In this study, we conducted a MoCap analysis
involving 14 healthy subjects performing a pick-and-place
task. From this analysis, we derived task-specific volumet-
ric references that reflect the variability observed during
their dynamic movements. Subsequently, we tested a time-
independent control approach on a simulated 4 DOF upper-
limb exoskeleton. Results demonstrate effective correction
and assistance of end-effector movements on the extrapolated
human-centered volumes. In future research, we aim to
evaluate the efficacy of the proposed approach in upper-limb
robotic rehabilitation by implementing the control strategy
on the physical exoskeleton.
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