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Italy
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Wall-based spanwise forcing has been experimentally used with success by Auteri et al.
(Phys. Fluids vol. 22, 2010, 115103) to obtain large reductions of turbulent skin-friction
drag and considerable energy savings in a pipe flow. The spatial distribution of the azimuthal
wall velocity used in the experiment was not continuous, but piecewise-constant. The present
study is a numerical replica of the experiment, based on a set of direct numerical simulations
(DNS); its goal is the identification of the effects of spatially discrete forcing, as opposed to
the idealized sinusoidal forcing considered in the majority of numerical studies.

Regardless of the discretization, with DNS the maximum drag reduction is found to
be larger: the flow easily reaches complete relaminarization, whereas the experiment was
capped at 33% drag reduction. However, the key result stems from the observation that,
for the piecewise-constant forcing, the apparent irregularities of the experimental data
appear in the simulation data too. They derive from the rich harmonic content of the
discontinuous travelling wave, which alters the drag reduction of the sinusoidal forcing.
A detailed understanding of the contribution of each harmonic reveals that, whenever e.g.
technological limitations constrain one to work far from the optimal forcing parameters, a
discrete forcing may perform very differently from the corresponding ideal sinusoid, and in
principle can outperform it. However, care should be exercised in comparison, as discrete
and continuous forcing have different energy requirements.

1. Introduction
Turbulent flow control for drag reduction is an active discipline, pursuing a technological
goal of steadily increasing economic and environmental importance. A subset of flow control
studies aims at reducing the drag of wall-bounded turbulent flows. This is a particularly
difficult challenge: once geometry is simplified to consider a parallel flow, drag is only due
to friction, and high levels of turbulent friction stem from the interaction between turbulence
and the wall. Altering this interaction to improve the overall energetic efficiency, by following
either active or passive approaches, is as fundamentally appealing as practically difficult.

An active, open-loop strategy to reduce friction drag which gained popularity in recent
years is made by spanwise forcing (a thorough review has been recently provided by Ricco
et al. 2021), notably in its spatially distributed version made by the streamwise-travelling
waves (StTW), where the spanwise velocity component𝑊 at the wall is prescribed according
to:

𝑊 (𝑥, 𝑡) = 𝐴 sin (𝜅𝑥𝑥 − 𝜔𝑡) (1.1)
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in which 𝑥, 𝑡 are the streamwise coordinate and time, and 𝜅𝑥 and 𝜔 are the streamwise
wavenumber and frequency of the oscillating wave, which is thus characterized by a phase
speed 𝑐 = 𝜔/𝜅𝑥 . StTW, introduced by Quadrio et al. (2009), are interesting owing mainly
to their good energetic performance, which is preserved at high Reynolds numbers (Gatti
& Quadrio 2016). StTW are effective even in compressible and supersonic flows (Ruby &
Foysi (2022); Gattere et al. (2024)), and have been demonstrated to affect favorably the
aerodynamic drag of a three-dimensional body (Banchetti et al. 2020), up to the point that
an actuation over a limited portion of the wing of an airplane in transonic flight reduces the
total drag of the aircraft by nearly 10% at a negligible energy cost (Quadrio et al. 2022).

The major obstacle to the deployment of StTW (and of spanwise forcing in general) in
practical applications is the lack of suitable actuators. Very few laboratory implementations
of StTW are available, and typically the idealized sinusoidal waveform of the wall velocity
cannot be achieved. Bird et al. (2018) describe a planar actuator for StTW, formed by a
tensioned membrane skin mounted on a kagome lattice; they discuss why the measured drag
reduction turns out to be less than expected, and attribute it to the out-of-plane velocity
component created by the actual forcing. Benard et al. (2021) report preliminary results
on the implementation of steady longitudinal waves of spanwise forcing via plasma DBD
actuators, based on electrodes designed with a suitable shape, which are affected by the
non-ideal response of the actuator. For a long time, the sole available laboratory experiment
with StTW (and the most successful one) was the water pipe flow experiment carried out
by Auteri et al. (2010) (referred to as ABBCQ in this paper), who set up a low-Reynolds
turbulent pipe flow modified by StTW and reported up to 33% of drag reduction. StTW were
implemented with an original device, recently replicated by Marusic et al. (2021) in the plane
geometry, in which the circular pipe is subdivided into axial slabs that independently oscillate
in the azimuthal direction. Different rotational speeds of nearby slabs provided the desired
streamwise variation of transverse velocity, realizing a discrete travelling wave (DTW). A
sketch of the DTW concept is provided in figure 1 (left). The experimental setup of ABBCQ
consisted of 10 sets of 6 independently movable segments and allowed to test waves made
by a variable number 𝑠 = 2, 3, 6 of segments discretizing each sinusoid. As emphasized in
figure 1, the actual streamwise distribution of the forcing spanwise velocity with DTW is far
from the sinusoidal one (red line) and is instead well approximated by a staircase function
(blue line).

The design of the ABBCQ pipe flow experiment was guided by the original numerical
study by Quadrio et al. (2009), carried out for the plane channel flow; however, the two flows
are not identical. The drag reduction datasets, while in broad agreement, do present a few
differences which have not been examined in depth so far. Figure 1 (right) compares the
experimental drag reduction data measured by ABBCQ for 𝑠 = 3 to the corresponding subset
of DNS data, at the same wavelength of the travelling wave, with a similar forcing amplitude
and Reynolds number. The largest drag reduction rate measured in the experiment is 33%
instead of more than 50% of the DNS. No drag increase is found in the experiment, and only
a drop of drag reduction to nearly zero level is observed, albeit at the very same frequency
𝜔+ ≈ 0.1 where the DNS study predicts drag reduction to become negative. Moreover, the
experimental data present a rather irregular, wiggling dependence upon 𝜔+ compared to the
smooth evolution of the DNS plane channel: especially at negative frequencies, some of the
experimentally measured drag reduction rates are comparable and even marginally larger
than the simulations, but other measurement points lie well below the numerical curve.

ABBCQ discuss some possible reasons behind these differences. The geometry (plane
channel vs circular pipe) certainly does play a role; the value of the Reynolds number is not
identical between the two studies, being 𝑅𝑒𝜏 = 200 in the plane channel DNS and 𝑅𝑒𝜏 ≈ 175
in the circular pipe experiment; the same applies to the forcing amplitude, 𝐴+ = 12 in DNS
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Figure 1: Left: sketch of StTW actuation (continuous wave, red line) and DTW actuation
with 𝑠 = 3 (discrete wave, blue line), as applied to the cylindrical pipe geometry by
ABBCQ. Right: percentage drag reduction R experimentally measured for DTW by

ABBCQ in the pipe flow (symbols), compared at the same value of 𝜅+ to available DNS
information for StTW from the DNS study of Quadrio et al. (2009) in the planar geometry
(continuous black line). Besides the different geometry, the numerical study has a slightly

smaller forcing amplitude and a slightly larger Reynolds number.

and 𝐴+ = 13.8 in the experiment; the periodic boundary conditions employed in the DNS are
not fully equivalent to the actual flow conditions at the inflow and outflow sections of a finite
length of a pipe, implying that a temporal transient in the former can easily be discarded,
whereas the equivalent spatial transient in the experiment cannot be eliminated and affects
the measurement. However, the major difference — and the one the present work sets out
to investigate — consists in the nature of the spatially distributed forcing applied at the
wall: it is a sinusoidal function in the DNS study, where Eq.(1.1) is enforced as a boundary
condition, whereas in the experiment it consists of a piecewise-constant and time-periodic
function. The importance of waveform discretization was already discussed by ABBCQ.
They mentioned how the wave realized with two segments only, i.e. 𝑠 = 2, is a limiting
case of the discrete travelling wave (DTW), in which there can be no travelling direction
for the wave, which becomes standing and works in a region of the parameter space where
performance is suboptimal, especially in terms of energy saving. Moreover, the harmonic
content of DTW was suggested to potentially explain some features of the experimental
results shown in figure 1.

The importance of an in-depth understanding of discretization effects descends from the
necessity of any experimental realization of such forcing to be, to an extent, spatially discrete.
For temporal discretization (which is not particularly critical in experiments), these effects
were systematically studied by Cimarelli et al. (2013), who considered various temporal
waveforms to implement the spatially uniform spanwise-oscillating walls, and concluded
that the sinusoidal waveform is the best overall in terms of energy savings. Spatially discrete
forcing, instead, has been rarely used so far and never discussed in terms of discretization
effects. Kiesow & Plesniak (2003) experimentally generated a localized crossflow in a three-
dimensional turbulent boundary layer using a transverse running belt. In a numerical study,
Mishra & Skote (2015) used only the positive cycle of steady square waves to enforce
drag reduction in a turbulent boundary layer, under the rationale that similar performance
compared to the complete control could be obtained with lower energy consumption. Straub
et al. (2017) studied the spanwise oscillating wall technique in a low-aspect-ratio duct, and
considered how it performs when only a fraction of the available surface is actuated. Benard
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et al. (2021) dealt with the issue that several DBD actuators must be placed side by side to
achieve a near-wall distribution of velocity that should be as spanwise uniform as possible.

The present paper describes the replica (including, first of all, the spatially discrete forcing)
of the ABBCQ pipe flow experiment, based on direct numerical simulations (DNS), with
a focus on drag reduction and energy efficiency. Not much information is available for
spanwise forcing applied to cylindrical geometries. Besides the few early works (Orlandi &
Fatica 1997; Quadrio & Sibilla 2000; Nikitin 2000) which proved with DNS the validity of
spanwise (azimuthal) forcing in a pipe flow, only recently Liu et al. (2022) tested spatially
non-uniform spanwise forcing (in the form of stationary waves) in a pipe flow. Strictly
speaking, thus, StTW for drag reduction have never been tested numerically in a pipe. For
that purpose, in our DNS study we employ an original DNS solver, designed for efficient
simulations of high-Reynolds number turbulent pipe flows, which addresses the problem of
excess azimuthal resolution near the pipe axis: it exploits a mixed discretization (Fourier in
the homogeneous directions and compact finite differences in the radial direction) to decrease
the azimuthal resolution as the pipe axis is approached.

The structure of the paper is as follows. In §2 the DNS code will be presented and
validated, the DTW forcing will be introduced, and the computational procedures adopted
for the present study will be described. Results of the simulation campaign will be presented
in §3, touching upon drag reduction, power budget, and flow statistics. Discussion of the
discretization effects and a critical evaluation of the present results against the ABBCQ
experiment are contained in §4; summarizing conclusions are provided in §5.

2. Methods
2.1. The DNS code

We solve by direct numerical simulation (DNS) the incompressible Navier–Stokes equations,
written in non-dimensional form and cylindrical coordinates, for the primitive variables
pressure 𝑝 and velocity 𝒖. The axial, radial, and azimuthal directions are indicated with
𝑥, 𝑟 , and 𝜃; the respective velocity components are 𝑢, 𝑣 and 𝑤. The axial length of the
computational domain is 𝐿, the pipe radius is 𝑅; the complete azimuthal extent of 2𝜋 is
considered.

Temporal discretization of the equations follows the usual partially-implicit approach in
DNS of wall-bounded flows: the code implements a combination of the implicit Crank-
Nicholson scheme for the viscous terms with a library of explicit schemes for the non-
linear convective terms. In this work, the three-substeps, low-storage Runge–Kutta scheme
described in Rai & Moin (1991) is used.

Spatial discretization, instead, deserves a specific discussion. The discretization is mixed,
as in the Cartesian DNS solver (Luchini & Quadrio 2006) which has inspired the present
code. The homogeneous directions 𝑥 and 𝜃 call for a spectral discretization, naturally
enforcing the required periodic boundary conditions with the computational efficiency of
the pseudospectral approach. Compact, fourth-order accurate finite differences are used to
discretize differential operators in the radial direction. The mixed discretization is at the root
of an interesting feature of the present code, which addresses a fundamental problem with
the DNS of the turbulent pipe flow. Once the number of azimuthal Fourier modes is set
according to physics-based considerations to yield the adequate azimuthal spatial resolution
at the pipe wall, the azimuthal resolution increases above the required level as the pipe axis
is approached. Such excess resolution not only is useless and thus a waste by itself, but also
causes a steep rise in the computational cost of the simulation, since a vanishing spanwise cell
size implies a vanishing time step, as the stability of the explicit temporal scheme requires
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that the Courant–Friedrichs–Lewy (CFL) number remains below the threshold dictated by
the time integration scheme. Thus, while in general the computational cost of a DNS quickly
grows with 𝑅𝑒, for a pipe flow with a Fourier azimuthal discretization the cost has an even
steeper rise because of the rapidly shrinking time step.

To handle this problem, short of accepting the vanishingly small time step, recent high-𝑅𝑒
simulations of pipe flow (e.g. Pirozzoli et al. 2021) resort to an implicit treatment of the
azimuthal convection terms. The alternative approach that is followed here derives from and
extends the one introduced two decades ago by Quadrio & Luchini (2002), who developed a
DNS solver for the incompressible Navier–Stokes equations written in velocity-vorticity form,
and used it for the DNS of the turbulent flow in an annular pipe. Although the present code
solves the Navier–Stokes equations in their primitive-variables formulation with a monolithic
approach, in both cases the truncation of the azimuthal Fourier series changes with the
radial coordinate, in such a way that the actual azimuthal resolution remains approximately
constant across the pipe. This can be achieved smoothly and without interpolation, provided
the spanwise Fourier series is combined, as in the present case, with a collocated method for
the discretization of the radial direction.

The radially varying number of azimuthal modes implies that some modes exist at the
pipe wall at 𝑟 = 𝑅 but do not reach the pipe axis at 𝑟 = 0: hence, these modes end in
the bulk of the flow, where a suitable boundary condition has to be provided for them.
On the ground that a well-designed DNS neglects, i.e. puts to zero, all the modes above
its maximum wavenumber, in their original formulation Quadrio & Luchini (2002) used a
simple homogeneous boundary condition also for these modes terminating in the fluid. Here,
we take one step further and use as a boundary condition the same regularity conditions that
are employed at the pipe axis. There, as shown for example by Lewis & Bellan (1990), scalar
and vector quantities require a different treatment. Let 𝛽 be the spanwise wavenumber, and
let the superscript ·̂ indicate the Fourier coefficient of a variable. For pressure, 𝑝(𝑟) ∼ 𝑟 |𝛽 |

as 𝑟 → 0. For the velocity vector, the equivalent condition becomes:
�̂�(𝑟) ∼ 𝑟 |𝛽 |

�̂�(𝑟) ∼ 𝑟 |𝛽 |−1

�̂�(𝑟) ∼ 𝑟 |𝛽 |−1
when 𝛽 ≠ 0


�̂�(𝑟) ∼ 𝑟0

�̂�(𝑟) ∼ 𝑟

�̂�(𝑟) ∼ 𝑟

when 𝛽 = 0. (2.1)

These regularity conditions are enforced not only for those standard modes that span the
full radial extent of the pipe 0 < 𝑟 < 𝑅 but also for those terminating in the bulk; this
provides them with a smooth decay in the radial direction. Of course, as long as the baseline
resolution is well chosen, no differences are expected in flow statistics between the present
approach and the one employed by Quadrio & Luchini (2002).

The variable-modes approach can be easily programmed in a simple and general way. In the
code, written in the CPL language (Luchini 2020, 2021), a two-dimensional (for generality)
array of pointers is used to reference into a variable-sized one-dimensional array, storing all
the nonzero coefficients as a function of 𝑟 . Although this exceeds the scope of this work,
such a programming approach makes it straightforward to extend the use of variable modes:
for example, in the plane channel flow it could be advantageous to have the number of both
streamwise and spanwise modes become a function of the wall-normal coordinate.

As its Cartesian counterpart, the code is capable of parallel computing. It sports at the
same time a shared-memory and a distributed-memory algorithm where a low-level message-
passing strategy is employed on a computational domain subdivided into wall-parallel slices
so that the two-dimensional inverse/direct FFTs can be computed locally to each machine. A
standard message-passing version based on the MPI library is also available.
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Figure 2: Schematics of the spatial waveform for the control: the red line is the sinusoidal
wave, and the blue line is its discrete approximation by three segments per period, i.e.,
𝑠 = 3. The corresponding representation after the Fourier transform without (empty

symbols) and with (filled symbols) spatial filtering is also depicted.

2.2. The discrete travelling waves (DTW)
The piecewise-continuous wall forcing shown with a blue line in figure 1 does not lend
itself to an immediate description within a Fourier discretization. An equivalent problem
was faced by e.g. Ricco & Hahn (2013) and Wise & Ricco (2014), who described spatially
discontinuous forcing distributions with a Fourier discretization. Mishra & Skote (2015),
who dealt with the same issue, reported that oscillations introduced at the discontinuities
(the so-called Gibbs phenomenon) produce instabilities and large numerical errors, and
therefore need to be adequately treated.

The present DTW forcing, shown in figure 2, is defined by a number 𝑠 of segments
discretizing the continuous sinusoidal counterpart. One wavelength of the piecewise-constant
travelling wave is written analytically as:

𝑤(𝑥, 𝑡; 𝑠) = 𝐴 sin
(
𝜔𝑡 − 2𝜋𝑖

𝑠

) 𝑖

𝑠
𝜆 ⩽ 𝑥 <

𝑖 + 1
𝑠

𝜆 (2.2)

where 𝜆 = 2𝜋/𝜅𝑥 stands for the wavelength of the wave, and 𝑖 is an integer spanning the
range 0 ⩽ 𝑖 < 𝑠 − 1 (note that this definition is non-unique, as the phase difference between
the DTW and the sinusoid could be chosen differently without altering the results discussed
in the following). The waveform is then periodically extended to the whole axial length of
the pipe, which always fits an integer number of wavelengths.

To avoid the appearance of spurious oscillations, the discontinuities in the DTW are
regularized via a smoothing Gaussian filter. The expression of the filter in physical space is:

𝐺 (𝑥) =
(

6
𝜋Δ2

)1/2
exp

(
−6𝑥2

Δ2

)
(2.3)

with Δ the filter width; the filtered wall forcing is obtained via convolution of the original
one with the kernel 𝐺 (𝑥) in physical space, and then Fourier-transformed. The filter width
was carefully determined after a parametric study in the preliminary work carried out by
Biggi (2012); the value of Δ is chosen as to strike a compromise between the range of
scales/positions affected by the filter and the magnitude of the residual oscillations. The
employed filtering is represented in figure 2, where it can be appreciated that oscillations are
reduced to a very small level, while the step function remains relatively sharp.



7

0 Nθ,max

1

0

Nθ

r

Nθ,min

r0

Figure 3: Schematic representation of the radially-varying number of azimuthal nodes
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wall at 𝑟 = 1 to the radial position 𝑟 = 𝑟0 = 0.8𝑅, then decreases linearly to the value
𝑁𝜃,𝑚𝑖𝑛 at the pipe axis. In this plot, as in the main simulations, 𝑁𝑟 = 100 and every other

radial point is omitted for clarity.

2.3. Validation
Before delving into the actual study, we preliminarily assess, for a canonical turbulent pipe
flow, to what extent the radially varying number of azimuthal modes affects the solution
and the computational efficiency of the code. For a turbulent pipe flow at a bulk Reynolds
number of 𝑅𝑒𝑏 = 𝑈𝑏𝐷/𝜈 = 4900, which is the value used for the rest of the study, two
configurations are considered: one in which the spanwise truncation of azimuthal modes
is simply kept constant at the value 𝑁𝜃,𝑚𝑎𝑥 , and the other in which the azimuthal modes
decrease with 𝑟 from 𝑁𝜃,𝑚𝑎𝑥 to 𝑁𝜃,𝑚𝑖𝑛. As shown schematically in figure 3, based on
previous experience, we have set up the azimuthal discretization such that the maximum
resolution with 𝑁𝜃,𝑚𝑎𝑥 = 96 (i.e. 193 azimuthal modes, from −𝑁𝜃,𝑚𝑎𝑥 to +𝑁𝜃,𝑚𝑎𝑥) holds
in a near-wall layer 𝑟0 ⩽ 𝑟 ⩽ 𝑅, with 𝑟0 = 0.8𝑅; for larger wall distances, the number of
azimuthal modes decreases linearly with 𝑟 so that 𝑁𝜃,𝑚𝑖𝑛 = 4 (i.e. 9 modes, from −𝑁𝜃,𝑚𝑖𝑛 to
+𝑁𝜃,𝑚𝑖𝑛) at the centerline. The discretization also employs 384 streamwise modes and 100
radial points, for a pipe with a length of 𝐿 = 22𝑅.

In figure 4 we compare the spectral energy density Φ+
𝑢𝑢 (𝛽) of the streamwise velocity

fluctuations in the 𝑟 − 𝛽 plane, as computed from the two simulations. As expected, the
simulation with the standard discretization has an energy density (black contour lines) that
peaks near the wall; toward the axis of the pipe, it decreases to very low values already
at a rather small azimuthal wavenumber. For the considered spanwise resolution, the near-
wall maximum captured at the largest 𝛽 is about 10−4; as the pipe axis is approached, the
energy levels decrease, and at the axis, the energy levels drop below 10−30 for the largest
𝛽. Once a radially varying number of azimuthal modes is employed (colored contour), this
waste is avoided, and densities below 10−7 are not computed in the core region of the pipe.
Importantly, the white dashed contour lines of the variable-modes simulation demonstrate
that the two datasets overlap perfectly in the region of the 𝑟 − 𝛽 plane where they are both
defined.

The two cases produce a virtually identical value of the friction coefficient, namely 𝐶 𝑓 =

9.52 · 10−3, which is very near to the value of 9.45 · 10−3 predicted by the Blasius power-law
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Figure 4: Spectral energy density Φ+
𝑢𝑢 of the axial velocity fluctuations in the 𝑟 − 𝛽 plane.

Black contour lines are from the simulation with constant azimuthal resolution, and the
colormap with white dashed contours is from the the simulation where the number of
azimuthal modes varies with 𝑟. Contour levels start from 100, spaced by one order of

magnitude.

𝐶 𝑓 = 0.0791𝑅𝑒−1/4
𝑏

(Schlichting & Gersten 2000): a more than satisfactory agreement, given
the known difficulties for such correlations at low values of the Reynolds number.

An additional validation step is carried out in the presence of the spanwise forcing. The
availability of the recent work by Liu et al. (2022), who numerically tested the drag reduction
capabilities of standing waves, allows us to repeat a representative set of their simulations for
comparison. As in that work, a fixed 𝑅𝑒𝜏 = 180 is enforced, and the pipe length is 𝐿 = 6𝜋𝑅.
We keep the same spatial resolution employed above since it is nearly identical to the one
employed in their study. We replicate one of their cases at 𝐴+ = 12 and 𝜆+ = 424 with 40.4%
drag reduction, obtaining 40.6% drag reduction. Another case with 𝐴+ = 6 and 𝜆+ = 1695 is
reported to yield 28.1% drag reduction; here it yields 28.5%. Finally, the case with 𝐴+ = 30
and 𝜆+ = 1695 is confirmed to lead to a complete relaminarization of the flow.

In terms of computational efficiency, the code has been tested on an Intel Cascade Lake
8260 processor. The single-core solution of one Runge–Kutta time step (i.e. the sum of the
three substeps) requires ≃ 20 seconds when the full azimuthal nodes are retained, and ≃ 15
seconds with the variable modes set up as described above, with a 25% savings in computing
time. However, as previously discussed, the true advantage of employing a radially varying
number of azimuthal modes lies in the larger time step size allowed by the stability condition.
In these tests, the same value of (unitary) CFL corresponds in the first case to a time step
of Δ𝑡+ ≃ 0.008, which becomes in the second Δ𝑡+ ≃ 0.08, demonstrating one order of
magnitude larger time steps when the azimuthal modes are truncated. Finally, the usage
of variable modes is beneficial also for the memory occupation of the code, which in this
configuration (i.e. with a Runge–Kutta method that stores the solution at one previous time
level) amounts to 331 MB of RAM instead of 434 MB when 𝑁𝜃 is kept constant at 𝑁𝜃,𝑚𝑎𝑥

across the pipe.

2.4. Computational procedures
The numerical study described in the remainder of the paper is carried out at the same
Reynolds number of the ABBCQ experiment, namely 𝑅𝑒𝑏 ≡ 𝑈𝑏𝐷/𝜈 = 4900, where 𝑈𝑏
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is the bulk velocity, and 𝐷 = 2𝑅 is the pipe diameter. Every simulation is performed by
adjusting at every time step the axial homogeneous pressure gradient in such a way that the
flow rate does not vary in time, i.e. by following the Constant Flow Rate (CFR) strategy, as
defined by Quadrio et al. (2016). An uncontrolled simulation serves as the reference case and
establishes the corresponding nominal values for the drag and the friction-based Reynolds
number, 𝑅𝑒𝜏 ≈ 170.

The length of the computational domain is 22𝑅; 384 × 192 Fourier modes are used to
discretize the streamwise and azimuthal directions respectively, while 𝑁𝑟 = 100 nodes
discretize the radial direction. Once the additional modes used to remove the aliasing error
are accounted for, the spatial resolution of the reference case is Δ𝑥+ = 4.8 and 𝑟Δ𝜃+ = 2.8 at
the pipe wall. The radial resolution varies from Δ𝑟+ = 0.7 near the wall to Δ𝑟+ = 2.4 at the
centerline. The radially-varying modes are set up as described above in § 2.3, with a linear
variation from 𝑁𝜃,𝑚𝑖𝑛 = 4 to 𝑁𝜃,𝑚𝑎𝑥 = 96, and 𝑟0 = 0.8𝑅. The time step is dynamically
adjusted to satisfy the constraint CFL=1.

The reference experimental dataset by ABBCQ, already shown in figure 1, consists of data
taken at various oscillation frequencies, ranging from 𝜔+ = −0.25 to 𝜔+ = 0.2 (note that
quantities indicated with the + superscript are defined in terms of the friction velocity of the
uncontrolled flow). The forcing amplitude is also fixed at 𝐴/𝑈𝑏 = 1 (or 𝐴+ ≈ 14). Owing
to the fixed size of the device producing the DTW, the wavelength could not be changed
continuously in the experiment. For the DTW produced with three moving segments, 𝑠 = 3, it
was 𝜆/𝑅 = 4.38 (equivalently, the streamwise wavenumber was 𝜅𝑥𝑅 = 1.43 or 𝜅+𝑥 = 0.0082).

The present numerical experiments include three sets of simulations. In one, labeled SIN,
the idealized sinusoidal boundary condition (1.1) is applied, while the second and third sets
consider DTW, realized with a relatively fine (𝑠 = 6, case S6) and coarse (𝑠 = 3, case
S3) discretization of the waveform, according to Eq.(2.2). In particular, case S3 has the
closest correspondence to the experiment. The wavelength and amplitude of the forcing are
nominally identical to those of the experiments, whereas the oscillation frequency is varied
with a relatively fine step, and covers a slightly larger range.

Twenty-nine simulations are performed for each forcing type, for a total of 88 cases
including the reference one. Understanding the harmonic content of the forcing led us to run
45 additional simulations where only some harmonics of the DTW are included. Each case
is run for a total of 1000 convective time units; the first half of the time history is discarded to
avoid the influence of the initial transient, which can be particularly long at times, especially
for the cases with the highest drag reduction. In a few selected cases, a database is saved
for later statistical analysis; for these, 50 oscillation cycles are sampled, and four phases are
stored for each cycle. Most of the simulations are run serially (i.e. on one core each) on a
single machine equipped with an Intel Xeon Phi processor and 68 cores, which was kept
busy for approximately two months.

3. Results
3.1. Drag reduction

We start by looking first at the raw changes in skin-friction drag. The drag reduction rate is:

R = 1 −
𝐶 𝑓

𝐶 𝑓 ,0
= 1 − 𝜏𝑤

𝜏𝑤,0
(3.1)
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Figure 5: Drag reduction rate R computed with DNS against experimental measurements
from ABBCQ (blue triangles, blue line). The plot shows the laminar limit (upper dashed
line), and quantifies with bars the error deriving from the finite averaging time (see text).

where the subscript 0 indicates quantities evaluated for the uncontrolled flow, 𝐶 𝑓 is the
friction coefficient, defined in the usual way as:

𝐶 𝑓 =
2𝜏𝑤,𝑥

𝜌𝑈2
𝑏

,

and the last equality in Eq.(3.1) only holds for CFR simulations. Note that, in cylindrical
coordinates, the longitudinal and azimuthal components of the mean wall shear stress are:

𝜏𝑤,𝑥 = −𝜇 𝜕𝑢
𝜕𝑟

���
𝑟=𝑅

, 𝜏𝑤,𝜃 = −𝜇
(
𝜕𝑤

𝜕𝑟
− 𝑤

𝑅

)���
𝑟=𝑅

.

where the overbar indicates temporal average.
Figure 5 compares the output of our simulations with the ABBCQ measurements for 𝑠 = 3.

The first striking observation is that the experimental data, labelled as EXP, are quite far
from the results obtained with the ideal sinusoidal forcing, case SIN. The qualitative look
of the curves is similar. The sudden shift from drag reduction to drag increase for waves
travelling at a phase speed comparable to the convection speed of the near-wall turbulent
structures known to take place in the planar caase (Quadrio et al. 2009) is confirmed. However,
significant quantitative differences do exist. The maximum drag reduction obtained with SIN
is about twice the experimental one, and peaks at 66%, which at this 𝑅𝑒 corresponds to full
relaminarization of the flow. Moreover, the SIN data do not present the evident wiggles of the
experimental R = R(𝜔+) curve. The error bars plotted in figure 5 refer to the finite averaging
time, and are computed according to the procedure introduced by Russo & Luchini (2017).
They are generally small, and confirm the deterministic nature of the wiggles, which are not
an artifact of the measurement procedure. An evident exception are the points at 𝜔+ = 0.04,
where the flow is on the verge of relaminarisation, and alternately visits a turbulent state and
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a nearly laminar state, switching between them over a long time scale. This observation also
explains the apparent disagreement of the curves SIN, S3 and S6 at this very specific control
point.

Such differences between the experimental data and the expected drag reduction from
plane channel DNS were already noticed in the original paper by Auteri et al. (2010), in
a comparison with plane-channel information at 𝑅𝑒𝜏 = 200, but their identification and
interpretation are now easier. The one-to-one comparison made possible by the present data
rules out several alternate explanations for these discrepancies, as for example the difference
between circular and planar geometries (which, in fact, acts to actually reduce differences),
or the slightly different parameters of the forcing.

Case S3 (green curve) is the one that should most closely correspond to EXP (blue curve);
indeed, experiments and simulations, while not overlapping, do show much better agreement.
Both datasets present, especially at negative frequencies, the large wiggles that are missing
in the SIN curve. Notably, at certain frequencies, the discrete wave realized by S3 achieves
a distinctly larger R than SIN, a feature that was not previously observed. Relaminarization
is only partial for S3, with a maximum R of 57%, obtained at a frequency slightly larger
than the optimum for SIN; as for EXP, the region of drag increase at 𝜔+ ≈ 0.1 is correctly
identified, but R remains positive and no drag increase is measured.

Case S6 implements the same travelling wave tested in experiments, but yields a better
approximation of the sinusoidal waveform. Drag reduction data from S6 resemble very
much those from SIN, and full laminarization is achieved at the smallest positive frequency,
indirectly confirming the key role of control discretization. Still, a slightly diminished drag
increase and the presence of wiggles (albeit of smaller amplitude) indicate that discretization
effects remain at work even in the S6 case. Reasons explaining the observed discrepancies
among these data sets will be discussed later in §4.

3.2. Power budget
With active control, it is important to complement the information regarding drag reduction
with the cost of the input power, conveyed by the power ratio P𝑖𝑛 between the power
required to create the control action and the power 𝑃0 per unit wall area required to drive the
uncontrolled pipe flow. Hence, if saving energy is the ultimate interest, more than the drag
reduction rate R itself, the most informative quantity is the net power saving S, defined as:

S = R − P𝑖𝑛. (3.2)

In the present application, the control acts in the azimuthal direction only, and the input
power that an ideal control system transfers to the viscous fluid, normalized with the pumping
power 𝑃0, is:

P𝑖𝑛 =
1
𝑃0

1
2𝜋𝑅𝐿𝑇

∫ 𝑇

0

∫ 2𝜋

0

∫ 𝐿

0
−𝜇𝑤

(
𝜕𝑤

𝜕𝑟
− 𝑤

𝑅

)���
𝑟=𝑅

𝑅 𝑑𝑥 𝑑𝜃 𝑑𝑡. (3.3)

Note that the term 𝑤/𝑅 in the integrand of Eq.(3.3) is sometimes incorrectly omitted in
existing studies, but its present in the correct expression of the wall shear stress in cylindrical
coordinates. Figure 6 (top) plots how P𝑖𝑛 changes with the control frequency, in comparative
form between SIN and cases S3, and S6. The outcome is not obvious. The input power
varies significantly with the control parameters; as in the planar case, it is minimum in
the region (small positive frequencies) where the drag reduction is maximum. Of primary
interest here, however, are the relative differences between the sinusoidal forcing and DTW,
highlighted in the right panel. It is seen that at not-too-small negative frequencies (say
𝜔+ < −0.02) and large positive ones (𝜔+ > 0.14), DTW are less expensive than their
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Figure 6: Input power ratio P𝑖𝑛 (top) and net savings S (bottom). The right panels
emphasize variations from the SIN case.

sinusoidal counterpart, with larger differences, of the order of 10%, observed for S3 and
backward-travelling waves. However, the opposite scenario is observed at small positive
frequencies, i.e. in the most interesting region where the control is supposed to work, owing
to the lower absolute energetic costs. For example, at 𝜔+ = 0.02 the power P𝑖𝑛 required by
S3 is twice that for SIN.

The combined dependence of both R and P𝑖𝑛 on the control parameters determines the
changes to the net savings S, plotted in figure 6 (bottom). The large differences in terms of
relaminarization (or lack thereof) observed at the smallest frequencies for the various types
of forcing blurs the picture further; moreover, the ratio of S obtained with DTW and SIN
becomes a delicate indicator whenever S approaches zero. The most expensive S3 forcing
shows significant extra savings compared to SIN; however, this happens for frequencies
where S is large and negative, which makes the improved performance pointless. Wherever
S is positive (or, as in this case at a relatively large forcing amplitude, wherever it approaches
zero), S3 presents a significant efficiency gap compared to SIN. At any rate, in correspondence
of the optimum parameters, SIN remains the best forcing type, in terms of both P𝑖𝑛 and S.
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Figure 7: Mean streamwise velocity profile for two cases with drag reduction
(𝜔+ = −0.08, left) and drag increase or minimal drag reduction (𝜔+ = 0.11, right). Cases

SIN and S3 are compared to the uncontrolled flow.

3.3. Flow statistics
Turbulence statistics are inspected here for the sole purpose of verifying whether or not
the discrete form of the forcing alters the flow significantly, besides the already quantified
different level of R. To this aim, we focus on SIN and S3 and pick two cases: one is at
𝜔+ = −0.08 and consistently yields a large positive R, whereas the second is at 𝜔+ = 0.11
and yields drag increase — more precisely, a negative R for SIN and a very small positive
value of R for S3. In figure 7, the mean streamwise velocity profile 𝑢 is plotted against the
wall distance 𝑦 = 1 − 𝑟 in the law-of-the-wall form by using the actual friction velocity
as a reference velocity. This is the so-called true viscous scaling (Quadrio 2011), indicated
with an asterisk superscript. It can be appreciated that the profiles of 𝑢∗ differ essentially
only because of the different value of R, which translates into a different vertical shift of the
logarithmic portion of the profile. Indeed, owing to the scaling employed, all profiles collapse
in the viscous sublayer; the vertical shift Δ𝐵∗ appears in the logarithmic region (which is not
particularly wide, since 𝑅𝑒 is low and further lowered by drag reduction). As a proxy for the
shift, we consider the value of 𝑢∗ at 𝑦∗ = 100, and obtain a Δ𝑢∗ of 5.1 for SIN and 6.9 for
S3 when 𝜔+ = −0.08, in agreement with the larger drag reduction of the latter case. For the
positive frequency, instead, Δ𝑢∗ is −0.8 for SIN and +0.9 for S3, once again in agreement
with the small drag increase of the former and the small drag reduction of the latter. Besides
the different levels of R and the consequent different vertical shifts, no other difference can
be appreciated in the profiles.

A similar picture emerges by looking at second-order statistics, i.e. for example the variance
of velocity fluctuations. In the present case, the fluctuations should be defined by accounting
not only for the mean flow but also for the control-induced coherent velocity field with zero
average. To this purpose, we use a classic triple decomposition, where a generic quantity 𝑎

is decomposed as 𝑎 = 𝑎 + �̃� + 𝑎′′, i.e. into its mean, coherent, and stochastic components.
The sum of the coherent and stochastic components is indicated as 𝑎′ = �̃� + 𝑎′′. The mean
component is obtained by averaging each quantity in time and along the azimuthal and
streamwise directions; the coherent part, instead, derives from averaging together points at
the same phase 𝜙 = 𝜅𝑥𝑥 − 𝜔𝑡 after removal of the mean value. The difference between the
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Figure 8: Wall-normal profiles of the stochastic turbulent stresses. Colors as in figure 7.

instantaneous field and the corresponding mean and coherent parts defines the stochastic
field.

In the present work, we do not consider the coherent components, since their magnitude
is negligible compared to the stochastic ones. An exception is obviously the Stokes layer
contributions �̃� and 𝑤𝑤, and a small streamwise modulation of the �̃� component, which
becomes apparent in its wall derivative. Figure 8 depicts the wall-normal profiles of the
(stochastic) Reynolds stresses normalized with the actual friction velocity, i.e. 𝑢′′𝑢′′

∗,
𝑣′′𝑣′′

∗, 𝑤′′𝑤′′∗, and 𝑢′′𝑣′′
∗. The streamwise fluctuations always decrease with control, either

continuous or discrete, for both drag reduction and drag increase. This can be attributed to the
strengthened redistribution action of the pressure-strain term, which moves energy towards
the spanwise and wall-normal fluctuations. The redistribution is enhanced by the tilting of
the structures (Yakeno et al. 2014; Gallorini et al. 2022). For example, the maximum tilt
angle, defined as in Yakeno et al. (2014), here is 14◦ for 𝜔+ = −0.08, and becomes 34◦ for
𝜔+ = 0.11 with SIN and ≈ 27◦ at the same frequency with S3.

For the negative drag-reducing frequency 𝜔+ = −0.08, the reduction in intensity is
accompanied by a slight shift of the near-wall peak further from the wall. The shift is
larger, and the decrease of the peak value is much larger, for S3 than for SIN. Since the
different R is already accounted for by the * scaling, the extra reduction of the peak value
provided by S3 is attributed to the highly subcritical turbulent state (described later in §4.2)
reached by the turbulent flow in this case. The positive drag-increasing frequency 𝜔+ = 0.11
has the location of the wall-normal peak approximately unchanged, but the profiles after the
peak show a linear (in semi-logarithmic scale) region that is absent in the reference profile
(at these 𝑅𝑒). Such linear regions also appear in the profile for 𝑤′′𝑤′′∗, and resemble those
observed by Lee & Moser (2015) in canonical channel flows, but at much higher Reynolds
numbers (𝑅𝑒𝜏 > 550). It is worth mentioning that the shift of 𝑢′′𝑢′′∗ in the wall-normal
direction qualitatively agrees with the observation of Gallorini et al. (2022), in which the
authors pointed out a movement away from the wall of the quasi-streamwise vortices related
to R in case of drag reduction and minor modifications in case of drag increase. The spanwise
and wall-normal diagonal components of the Reynolds stress tensor show minor changes for
the negative frequency, but very large increases for the positive frequency, suggesting lesser
changes in the drag-reduced turbulent flow, and minor effects of the discrete forcing as long
as it works to reduce drag, whereas drag increase implies important modifications also far
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Figure 9: Components of the stochastic Reynolds stress tensor as a function of the radial
coordinate 𝑟 and the phase 𝜙, for two cases with drag reduction (𝜔+ = −0.08, left) and

drag increase or minimal drag reduction (𝜔+ = 0.11, right).

from the wall. The off-diagonal component 𝑢′′𝑣′′∗ presents changes that are expected from
the FIK identity Fukagata et al. (2002) (although contributions from additional terms are
present due to streamwise inhomogeneity) and decreases whenever drag reduction is present.

With a streamwise-varying forcing, the streamwise direction is not homogeneous anymore,
and flow statistics may vary also with the phase 𝜙 = 𝜅𝑥𝑥 − 𝜔𝑡 of the forcing. Figure 9 plots
the stochastic Reynolds stresses as a function of 𝑦 and 𝜙, after averaging in time and over the
azimuthal direction. For the cases with drag reduction, as originally observed by Quadrio
et al. (2009), no streamwise modulation of the statistics is observed, if not for some residual
statistical noise: the flow does not get directly altered along the forcing wavelength, and its
main change is the reduced level of wall friction. The cases with drag increase, instead, do
show a strong modulation over the forcing wavelength, which extends quite far from the wall.
As in the planar case, the periodic modulation possesses a structure in the radial direction that
is influenced by the specific spatial shape of the coherent generalized Stokes layer (Quadrio
& Ricco 2011). The modulation is interpreted as a sort of resonance between the convection
speed of the near-wall turbulence structures and the phase speed 𝜔/𝜅𝑥 of the travelling wave.
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Figure 10: SIN (red line) and S3 (blue line) wall forcing along one wavelength, at four
different times during the period 𝑇 . At each time, the dots mark the position at which SIN

is maximum.

It is worth noting that such modulation is visible for S3 too, although R is slightly positive.
The coexistence of (small) drag reduction and a streamwise-modulated flow can be attributed
to the complex interactions taking place with DTW: as shown later in §4.1, the superposition
of different harmonics is such that, in this case, features of drag-reducing and drag-increasing
flows are observed simultaneously.

4. Discussion
Replicating the ABBCQ experiment by DNS has confirmed that some features of the
experimental data derive from the different nature of continuous and discrete forcing. In
this Section, we discuss the reason for the two major differences: the wiggles in the curve
R = R(𝜔+) (which are always present for discrete forcing, regardless of the nature of the
measurement), and the larger maximum drag reduction observed in the simulations.

4.1. The role of different harmonics
Although in both the continuous and discrete case the spanwise wall velocity 𝑊 varies in
time between ±𝐴, a meaningful comparison between DTW and SIN at the same amplitude
is not obvious.

It is easy to show that the staircase function sketched in figure 1 and expressed analytically
by Eq.(2.2) has a lower amplitude compared to the sinusoidal forcing once averaged over
the forcing period. Figure 10 plots SIN and S3 at four different instants during one period.
As time progresses, the sinusoidal wave is simply shifted in space, whereas DTW sees its
waveform modified during the period: by focusing on a specific phase 𝜙 = 𝜅𝑥𝑥 − 𝜔𝑡 (for
example, as in the figure, where SIN has its maximum), it can be seen that DTW assumes
different values at different times. For the generic phase 𝜙, the average intensity of DTW can
be quantified analytically. By defining Δ𝑠 = 2𝜋/𝑠 as the width of the each constant piece of
the DTW, 𝑊 (𝜙) can assume any value from 𝐴 sin(𝜙 − Δ𝑠/2) to 𝐴 sin(𝜙 + Δ𝑠/2). Taking the
average of the sinusoidal function over the interval Δ𝑠, one obtains:

𝑊 (𝜙) = 1
Δ𝑠

∫ 𝜙+Δ𝑠/2

𝜙−Δ𝑠/2
𝐴 sin(𝜙′) 𝑑𝜙′ = − 𝐴

Δ𝑠

[
cos(𝜙 + Δ𝑠

2
) − cos(𝜙 − Δ𝑠

2
)
]
. (4.1)

The previous equation can be rearranged, with the aid of the prosthaphaeresis formulae,
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into the following expression:

𝑊 (𝜙) = 2
𝐴

Δ𝑠

sin
(
Δ𝑠

2

)
sin(𝜙) = 𝑠

𝜋
sin

( 𝜋
𝑠

)
︸     ︷︷     ︸

𝛾 (𝑠)

𝐴 sin(𝜙). (4.2)

Hence, the averaged DTW can be written as 𝛾(𝑠)𝐴 sin(𝜙), i.e. proportional to 𝐴 sin(𝜙),
but its effective amplitude is equal to 𝐴 only for the ideal sinusoidal forcing described by
Eq.(1.1), for which 𝑠 → ∞ and lim𝑠→∞ 𝛾(𝑠) = 1. Compared to the nominal amplitude
𝐴, the amplitude of DTW is decreased by a factor 𝛾(𝑠), which depends on the number of
slabs discretizing the sinusoid. For the S3 case, 𝛾(3) = 0.83. This is consistent with the S3
forcing not reaching relaminarization, as shown in figure 5, because of its smaller effective
amplitude. In fact, we have verified with an additional simulation, run with sinusoidal forcing
for 𝜔+ = 0.02 and a forcing intensity reduced by a factor 0.83, that the flow does not reach
the fully laminar state, and yields R = 0.43.

However, this is only part of the whole picture. Once the importance of discretization is
recognized, it is necessary to proceed further to properly describe DTW: in fact, the reduced
amplitude discussed above cannot explain, for example, other results reported in figure 5,
where in the range −0.12 ⩽ 𝜔+ ⩽ −0.06 drag reduction due to the discrete S3 forcing is
larger than that achieved by SIN, while the reduced effective amplitude discussed above
would suggest otherwise.

The DTW described by Eq.(2.2) can be expanded into an infinite Fourier series. Following
ABBCQ, a DTW characterized by its three parameters 𝐴, 𝜅𝑥 and 𝜔, and discretized into 𝑠

segments, is rewritten as the following sum:

𝑊 (𝑥, 𝑡; 𝑠) =𝐴
∞∑︁

𝑚=0

sin[(𝑚𝑠 + 1)𝜋/𝑠]
(𝑚𝑠 + 1)𝜋/𝑠 sin[𝜔𝑡 − 𝜅𝑥 (𝑚𝑠 + 1)𝑥]+

+ sin[((𝑚 + 1)𝑠 − 1)𝜋/𝑠]
((𝑚 + 1)𝑠 − 1)𝜋/𝑠 sin[𝜔𝑡 + 𝜅𝑥 ((𝑚 + 1)𝑠 − 1)𝑥] .

(4.3)

The DTW written as in (4.3) is made by two families of sinusoidal waves: one family has
a phase speed of the same sign of the nominal wave (and thus travels in the same direction,
SD), while the other has the opposite sign and travels in the opposite direction (OD). The
temporal frequency of the waves is unchanged (in absolute value) and equals the nominal
one, but the effective amplitude (always ⩽ 𝐴) and streamwise wavenumber (always ⩾ 𝜅𝑥) of
each wave depend on the number of slabs 𝑠 and on the index 𝑚 of the series. The amplitude
of the harmonics decreases with 𝑚, and the wavenumber correspondingly increases. The
averaged DTW derived above in Eq.(4.2) is recognized as the first SD wave with 𝑚 = 0.
Figure 11 plots as an example the first (𝑚 = 0) pair (1SD and 1OD) and the second (𝑚 = 1)
pair (2SD and 2OD), for a visual appreciation of the relative amplitude and wavelength.
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Case SIN S3 1SD 1OD 1p 1p+2p S6 1SD 1OD 1p 1p+2p
𝜔+ = −0.2 0.231 0.143 0.203 −0.203 0.075 0.115 0.254 0.221 0.188 0.253 0.263
𝜔+ = −0.08 0.324 0.381 0.305 0.319 0.364 0.375 0.311 0.312 0.118 0.312 0.318
𝜔+ = 0.11 −0.097 0.041 −0.094 0.146 −0.022 0.029 −0.060 −0.094 0.033 −0.081 −0.066

Table 1: R for different harmonics of the Fourier series (4.3), cases S3 and S6. Columns
marked with 1SD (1OD) correspond to simulations where only the first same-direction

(opposite-direction) wave is present, whereas 1p means the first harmonic pair combined,
and 1p+2p the first two harmonic pairs combined.

Case SIN S3 1SD 1OD 1p 1p+2p S6 1SD 1OD 1p 1p+2p
𝜔+ = −0.2 2.22 2.09 1.52 0.33 1.86 2.00 2.14 2.02 0.05 2.07 2.13
𝜔+ = −0.08 1.46 1.29 1.00 0.12 1.12 1.21 1.42 1.33 0.04 1.37 1.41
𝜔+ = 0.11 1.42 1.46 0.97 0.31 1.29 1.38 1.43 1.30 0.08 1.38 1.42

Table 2: P𝑖𝑛 for different harmonics of the Fourier series (4.3), cases S3 and S6. Columns
as in Table 1.

It remains to be established to what extent the (linear) superposition of the DTW harmonics
can be useful in understanding the pattern of drag reduction and the differences between SIN
and S3. To this aim, additional simulations (for cases S3 and S6) are run at three frequencies:
𝜔+ = 0.11 (drag increase), 𝜔+ = −0.08 (drag reduction, where S3 performs better than SIN
and S6 equals SIN), and 𝜔+ = −0.2 (drag reduction, where S3 performs worse than SIN,
and S6 performs better). Instead of the actual DTW given by Eq.2.2, the employed forcing
is sinusoidal, and contains one or more of the harmonics of the series 4.3. In particular,
we consider the first two pairs of harmonics, isolated or in combination, for a total of eight
additional simulations for each case.

Hence, in these numerical experiments, the wall forcing is given by various combinations
of the following sinusoids:

𝑊 (𝑥, 𝑡; 3) = 3
√

3
2𝜋

𝐴

[
sin(𝜔𝑡− 𝜅𝑥𝑥) +

1
2

sin(𝜔𝑡 +2𝜅𝑥𝑥) −
1
4

sin(𝜔𝑡−4𝜅𝑥𝑥) −
1
5

sin(𝜔𝑡 +5𝜅𝑥𝑥)
]

(4.4)
for case S3, and

𝑊 (𝑥, 𝑡; 6) = 3
𝜋
𝐴

[
sin(𝜔𝑡− 𝜅𝑥𝑥) +

1
5

sin(𝜔𝑡 +5𝜅𝑥𝑥) −
1
7

sin(𝜔𝑡−7𝜅𝑥𝑥) −
1

11
sin(𝜔𝑡 +11𝜅𝑥𝑥)

]
(4.5)

for case S6.
Results from these experiments are shown in tables 1 and 2, in terms of R and P𝑖𝑛

respectively. By focusing first on R, the first and relatively trivial observation is that the
series (4.3) converges rather quickly in terms of drag reduction: for example at 𝜔+ = −0.2,
the first pair of harmonics of S3 yields a drag reduction of 7.5%, adding the second pair
yields 11.5% and the actual DTW at 𝑚 → ∞ yields 14.3%. A less obvious observation is
the very different role played by the two harmonics at a given 𝑚, and their highly nonlinear
combination. As an example, for the drag-reducing case at 𝜔+ = −0.2, the wave 1SD alone
yields a significant 20.3% drag reduction, whereas 1OD produces precisely the same amount
of drag increase. However, the non-linear interaction between the two is such that, when
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Figure 12: Position on the drag reduction map of the first two harmonic pairs of the DTW
with 𝑠 = 3, for a drag-reducing case (white dots: 𝜔+ = −0.08, 𝜅+𝑥 = 0.0082 and R = 0.38)

and a nearly drag-increasing one (black dots: 𝜔+ = 0.11, 𝜅+𝑥 = 0.0082 and R = 0.04).
Note how each pair of corresponding harmonics of the same case (e.g. white dots for
𝜔+ = 0.08) have the same frequency with opposite sign. The drag reduction map is
adapted from Gatti & Quadrio (2016), for a plane channel flow at 𝑅𝑒𝜏 = 200 and

𝐴+ = 14.2. The legend below each dot quantifies the amplitude 𝐴/𝑊 of the harmonic, and
the drag reduction achieved by that harmonic alone.

the two harmonics are at play together, drag reduction prevails over drag increase with an
outcome of R = 0.075.

Considering just the first pair of harmonics explains some of the features observed in figure
5. The amplitude of the 1SD component is closer to 𝐴 for S6 than S3, and the amplitude
of 1OD decreases more rapidly for S6 than S3; the opposite happens for the wavenumber.
By noting that, apart from the amplitude and a phase-shift, the 1SD wave for S6 correspond
to the 2OD wave for S3, one understands why the S3 data are further away from SIN
than S6 data, show stronger wiggles, and never achieve relaminarization. For the two cases
corresponding to the second and third row of table 1 (i.e. drag reduction and drag increase),
the position of the first S3 harmonics in the plane of the control parameters is shown in
figure 12. The drag reduction map is recomputed from the information provided by Gatti
& Quadrio (2016), hence at 𝑅𝑒𝜏 = 200 and for the planar geometry, and is adapted to
the forcing intensity of the present case to convey a qualitative information of the behavior
expected for the harmonic. Results at 𝜔+ = 0.11 are interesting to understand the effects
of the drag-increasing components. The dominant wave travels at the same phase speed as
the nominal wave and produces the same drag-increasing effect, quantitatively not too far
from the one by SIN. However, as clearly shown by figure 12, higher harmonics possess a
different phase speed and a different wavenumber: they are all located in drag-reducing areas
of the 𝜔+ − 𝜅+𝑥 plane. Hence, they act to weaken the drag-increasing effect of the nominal
wave, resulting in a small drag reduction. The different 1OD wave between cases S3 and S6
explains why S6 instead achieves drag increase.

The case at 𝜔+ = −0.08 demonstrates an interesting interplay between the waves of the
first pair. They lie both in the drag-reducing regime, but their combination results in an
enhancement of R for S3, while for S6 the drag variation is essentially unchanged. Once
again, this happens because 1OD sits in a more effective region of the parameter space (in this
case, nearly at the optimal position). Lastly, at 𝜔+ = −0.2, the 1OD waves have an opposite
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Figure 13: Drag reduction rate R computed with DNS for the first pair of harmonics (1SD
and 1OD) and their combination (indicated with 1p) compared against S3.

effect: drag increase for S3, and drag reduction for S6. This affects the combined wave and
reduces R for S3, but increases it for S6.

Table 2 reports P𝑖𝑛 for the same cases considered in table 1. Again, the variation of the
DTW compared to SIN can be ascribed to the different harmonic components, which differ
in their amplitude and their position in the 𝜔+ − 𝜅+𝑥 plane. In terms of power, however, the
various harmonics are almost perfectly additive, in sharp contrast with drag reduction data.
This is reasonable, as the input power for the spanwise forcing has little to do with the
superimposed turbulent flow, and can be described quite well by the laminar transverse flow
alone (Quadrio & Ricco 2011).

A global view of the effect of the 1SD and 1OD waves, as well as their combination
(indicated with 1p) is provided in figure 13, where results from an additional set of numerical
experiments are plotted. For 15 points with frequency−0.10 ⩽ 𝜔+ ⩽ 0.16, the drag reduction
rate from case S3 is compared with the ones obtained with forcing by the sinusoidal wave
1SD, 1OD and their combination 1p, all with the amplitude prescribed by (4.3). First of
all, one notices that the first pair of harmonics is responsible for most (but not all) of the
effects of the DTW, especially at negative frequencies. The exception at 𝜔= + 0.04, where
S3 nearly achieves laminarization but the 1p harmonics do not, has been already discussed.
The figure also provides detailed information on the non-trivial contribution of the isolated
waves 1SD and 1OD. At first approximation, the 1SD curve resembles SIN, but for the
reduced amplitude of the forcing; the 1OD curve, instead, acts at a doubled wavenumber, as
previously exemplified in figure 12, so that its horizontal axis is enlarged by a factor 2 and
also reversed by virtue of the phase speed reversal.

Overall, the general picture emerging from this analysis is that the sinusoidal forcing is
always best, as long as one can work with the optimal control parameters that yield maximum
drag reduction. However, as soon as the forcing parameters do not assume their optimal values
(something that is not inconceivable e.g. because of technological limitations), the higher
harmonics of a non-sinusoidal forcing affect the outcome in a way that depend on their
location in the parameter space, so that the discrete forcing may outperform the sinusoidal
forcing. This is exactly the conclusion reached one decade ago by Cimarelli et al. (2013),
who experimented with the temporal waveform for the spanwise oscillating wall. In both the
spatial and temporal cases, regions of the parameters space exist where the sinusoidal forcing
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ω+ = 0

ω+ = −0.2

Figure 14: Instantaneous snapshot of the reference and sinusoidally forced pipe flow, with
parameters yielding drag reduction above (𝜔+ = 0) and below (𝜔+ = −0.2) the apparent
experimental threshold for R. The background colormap (from blu to red) encodes the

azimuthal velocity of the wall; the grey isosurfaces are drawn for 𝜆+2 = −0.03.

can be outperformed, in terms of both R and S. However, such regions are far from the global
optimum, in correspondence of which the sinusoidal forcing remains the best choice.

The final message is that, whenever the forcing is spatially distributed, its spatial dis-
cretization is an essential ingredient to evaluate drag reduction and its success in terms of
energy savings. Experimental studies where a discrete form of spanwise forcing is employed
can hardly be compared to results from a sinusoidal forcing, unless discretization is properly
accounted for.

4.2. Localized turbulence
Once it is recognized that S3 and EXP data present the very same wiggles, which should not
be attributed to experimental errors, but are a direct consequence of forcing discretization,
one remaining difference becomes even more evident. In figure 5, EXP data do not reach
above an apparent threshold of maximum R ≈ 0.33, while S3, S6 and SIN achieve much
higher values of R, up to the complete relaminarization of the flow.

Even though the only experimental information provided by ABBCQ is the drag reduction
value, the additional insight allowed by the present numerical study highlights a peculiar
feature of the solution, which could explain the discrepancy. Instantaneous snapshots of the
sinusoidally forced flow for two SIN cases with drag reduction above and below the apparent
experimental threshold (namely at 𝜔+ = 0 and 𝜔+ = −0.2, with R = 0.42 and R = 0.23
respectively) are compared to a snapshot from the reference flow in figure 14. The background
colormap shows the azimuthal velocity at the pipe wall; isosurfaces for 𝜆2 (Jeong et al. 1997)
are plotted at the level 𝜆+2 = −0.03, and provide a qualitative idea of the turbulent structures at
play within the flow. As expected, the control action reduces the presence of structures at both
frequencies, with a more evident effect when drag reduction is higher. However, the most
striking feature of the plot is that turbulent activity for 𝜔+ = 0, where drag reduction is larger
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and goes above the apparent experimental threshold, appears to be spatially intermittent,
whereas in the reference flow and also for the lower drag reduction case, it assumes a more
conventional, spatially uniform look. Turbulent structures at 𝜔+ = 0 appear clustered, and
surrounded by a refractory region where turbulence is absent or nearly so. One can envisage
the arrangement of the flow structures in what is usually called a puff (Barkley 2016; Avila
et al. 2023), which is typical of transitional pipe flow; a notable difference here is that the
flow is turbulent, the Reynolds number is relatively high, and the structures also undergo a
swirling motion due to the spanwise flow induced by the forcing.

Hence, we link the state of turbulent localization observed in DNS-computed flow fields
to the ability to reach R levels above the plateau of approximately 30 – 35% found in the
experiment. This suggestion is supported by the observation that the local friction oscillates
around the laminar value far from the turbulent regions, whereas in correspondence to
them it becomes comparable to the experimentally measured value. Several reasons might
have prevented the ABBCQ pipe flow from reaching such a higher drag reduction state.
Examples include the periodic streamwise boundary conditions as opposed to a fixed level
of disturbance entering the experimental pipe via the inlet, or the idealized setting of the
simulation, which is free from environmental disturbances.

5. Conclusions
In this work, direct numerical simulations have been used to replicate the successful turbulent
pipe flow experiment by Auteri et al. (2010) for skin-friction drag reduction based on
spanwise forcing. The experiment was carried out at a rather low value of the Reynolds
number, which is replicated precisely here. We are aware that this is a marginally low 𝑅𝑒,
and in fact several control configurations lead to total of partial relaminarization of the flow.
However, the study is not designed to address the important question of the 𝑅𝑒 dependence
on drag reduction (in general, and with spanwise forcing in particular), for which the discrete
nature of the forcing should not play any crucial role. Rather, the goal here is to exploit the
detailed comparison between experimental and simulation data obtained under nominally
identical conditions to understand how a spatially discrete implementation of streamwise-
travelling waves of azimuthal wall velocity affects the outcome of the flow control technique.
In fact, any experimental implementation of the forcing unavoidably differs from the ideal
sinusoidal function typically considered in numerical studies; accounting for the effect of
spatial waveform is required for a proper assessment of the forcing performance.

The DNS simulations have been carried out with an original code that uses Fourier
discretization for the homogeneous directions and resorts to compact finite differences for
the radial one. Such mixed discretization is particularly suited for the turbulent pipe flow,
and provides an efficient strategy to solve the issue of excess azimuthal resolution near the
pipe axis, by allowing the number of azimuthal spanwise modes to gradually decrease as
the axis is approached. Thanks to the efficiency of the code in terms of CPU and memory
requirements, most of the present study has been carried out on a single Xeon Phi processor.

The experimental conditions have been replicated by implementing the spanwise forcing
as a piecewise-continuous, streamwise- and time-periodic function. Differences between
the drag reduction rate R computed by DNS and measured in the experiment have been
identified and explained. The much higher drag reduction measured in simulations for both
continuous and discrete forcing is suggested to derive from low-𝑅𝑒 effects, which enable the
numerically simulated flow to reach a state of spatially localized turbulence and eventually
fully relaminarize. The apparently irregular behaviour of experimental R is observed in
the numerical results too, and is shown to derive from the discretization of the sinusoidal
waveform, locally resulting into either larger of smaller R depending on the combination of
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control parameters. By expanding the piecewise-continuous function into a Fourier series,
the discrete forcing is shown to be equivalent to two families of sinusoidal waves, each with
decreasing amplitude and wavelength as the order of the harmonics is increased: one family
is made of waves travelling in the same direction of the discrete wave, whereas the other
contains waves travelling in the opposite direction. Additional simulations have been run to
observe the role of the various harmonics, concluding that discretization has a predictable
but non-trivial effect depending not only on the degree of discretization, but also on the
position of the nominal (sinusoidal) wave in the plane of the control parameters. In the end,
the drag reduction performance of the discrete wave can be predicted from its harmonic
content, provided full information for the sinusoidal waves is available

To progress from the idealized setting of a DNS towards experimental or real-world
applications, where a discrete spatial waveform is unavoidable, it is essential to fully
understand the differences between continuous and discrete waveforms, and to exercise
care when comparing DNS data computed for sinusoidal forcing with experimental, non-
sinusoidal ones. This applies not only to raw drag reduction data, but also to the energetic
requirements of the forcing. Provided a comparison is carried out properly, a sinusoidal
forcing remains the best option in correspondence of the optimal forcing parameters. Yet,
whenever e.g. technological limitations prevent the actuator to operate in correspondence of
the best forcing conditions, the discrete forcing can in principle outperform the sinusoidal
one.
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