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Warm-Start of Interior-Point Methods Applied

to Sequential Convex Programming

Andrea Carlo Morelli, Christian Hofmann, Francesco Topputo

Abstract

Sequential convex programming (SCP) is an iterative technique that solves nonconvex optimization

problems by considering a sequence of convex subproblems whose solutions eventually converge,

under certain conditions, to the solution of the original problem. The most common convex solvers

divide in interior-point, first-order, and active-set methods. In particular, the former have shown good

performance. Even though SCP is quite efficient in terms of required computational time with respect to

standard nonlinear optimization solvers, its potential is still not completely exploited when interior-point

convex solvers are used as no information on the solution of a previous convex subproblem is used to

construct the initial guess for the strictly-related following one. This is because interior-point methods

are notoriously difficult to warm-start. In this paper, a technique to warm-start interior-point methods

that solve second-order cone programs (SOCP) is developed and integrated within the sequential convex

programming. The strategy can be used independently of the specific problem as long as it is expressed

as a standard SOCP. The low-thrust space trajectory optimization problem is considered to assess the

efficacy of the proposed strategy through extensive numerical simulations. It is shown that the warm-start

algorithm outperforms the standard algorithm in terms of computational time and overall convergence

when the widely-used solver ECOS is used.
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I. INTRODUCTION

Technological advances have allowed humanity to design systems that perform complex tasks

like never before. Increasing autonomy of such systems represents a desirable goal to have a

more reliable, less error-prone, and more accurate execution of their tasks. In some cases, when

fast decisions need to be made, autonomy even becomes indispensable. This is the case, for

instance, for the landing phase of Space X’s Falcon 9 first stage1, where real-time commands

must be put into effect to react to the external, unpredictable perturbations that influence the

trajectory of the launcher. However, executing online tasks poses several challenges. When

dealing with real-time trajectory generation problems, the requirements for a suitable algorithm

include reliability (i.e., the capability of finding a feasible solution whenever necessary) and

computational affordability, i.e., the capability of converging in little time. Convex optimization

[1] represents a promising approach for real-time trajectory optimization due to its convergence

properties and reduced computational time required [2]. Its applications include the design and

analysis of communication systems and signal processing [3], optimal guidance problems in

the aerospace sector [4], composite structures optimization [5], and various motion planning

problems [6].

Unfortunately, most real-life problems are inherently nonconvex, and therefore different tech-

niques have been developed to solve them through convex optimization. In many applications,

some of the nonconvex parts of the original problem are convexified using the so-called lossless

convexification [7], [8], often resulting in second-order cone constraints. This is the case, for

example, for the constraints on the thrust variables of the vast majority of the aerospace op-

timization problems, including low-thrust trajectory optimization [9], [10], [11], [12], powered

descent guidance [13], [14], and in general of different aerial and ground trajectory optimization

problems [15]. When a lossless convexification is not possible, nonconvex constraints are usually

convexified by linearization [16], which introduces approximations. Consequently, problems that

require successive convexification are solved using sequential convex programming [16], [17],

an iterative trust region-based method that considers a sequence of convex subproblems whose

solutions eventually converge to the solution of the original problem under certain conditions

[16].

Depending on their formulation, different classes of convex problems can be considered [18]; one

1https://www.spacex.com/vehicles/falcon-9/. Last access: June 2023
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rather wide category is represented by second-order cone programs, which are solved through

tailored interior-point [19], first-order [20], or active set [21] methods. In particular, interior-point

methods are believed to be the most suitable ones for autonomous guidance applications [22].

Therefore, this work focuses on the development of a warm-start strategy for SOCPs solved by

interior-point methods and in the context of sequential convex programming. As a matter of fact,

the state-of-the-art SCP is partially inefficient. The reason is that at each iteration, the initial

guess for the primal and dual variables is derived from scratch by the convex optimization solver

[23]. Notoriously, interior-point methods are difficult to warm-start as their solution lies on the

boundaries of the feasible set, and thus the solution of a problem itself cannot be used as an

initial guess for a similar problem because for the latter it would not be well-centered, and this

would cause slow progress or even divergence [24], [25].

Different strategies have been proposed to exploit the information coming from the solution of

an unperturbed convex problem to warm-start a perturbed one. In particular, some works [26],

[27], [24], [28] developed methods to warm-start linear programs. Attention was also given to

techniques specifically designed for nonconvex nonlinear programming that make use of interior-

point methods [29]. In [30], a strategy to warm-start second-order cone optimization problems

via rounding over optimal Jordan frames was proposed, which consists of solving two additional

linear optimization problems to find a suitable initial guess. Moreover, [25] developed a strategy

valid for both linear and conic quadratic programs that requires no additional optimization.

However, this strategy was only applied to solve artificially perturbed convex problems and only

allowed the exploitation of the last interior-point solver iteration to warm-start the perturbed one.

To the best of the authors’ knowledge, a warm-start strategy for second-order cone programs

was never developed and tested within the SCP algorithm, where a sequence of strictly-related

problems is considered. Only attempts to warm-start the whole SCP process have been made:

for example, [31] developed a technique based on machine learning to find an accurate initial

trajectory guess for the algorithm.

Therefore, the contribution of this article is threefold: first of all, it extends the strategy developed

in [25], also allowing for the choice of which interior-point solver iteration is to be used to

warm-start the next SCP iteration. Secondly, it proposes a modified version of the open-source

Embedded COnic Solver [23] such that it includes the possibility of warm-starting the solver

itself. Finally, it develops a methodology to integrate the proposed warm-start strategy in the

context of the SCP algorithm, with the purpose of minimizing the number of iterations and
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CPU time to reach convergence. The remainder of the article is structured as follows. Section

II describes the problem and Section III introduces sequential convex programming. Section IV

presents the combined SCP and warm-start strategy. Section V contains the performed simulations

to show the efficacy of the strategy and finally, Section VI concludes the work.

II. PROBLEM FORMULATION

Consider a cone program of the form [23]

minimize c⊤x (1a)

subject to: Ax = b (1b)

Gx ⪯K h, (1c)

where x ∈ Rn×1 is the decision vector, c ∈ Rn×1 is a vector of constants, A ∈ Rm×n and

b ∈ Rm×1 define the equality constraints, and G ∈ Rp×n and h ∈ Rp×1 define the generalized

inequality constraints with respect to a convex cone K, defined as the product of N proper

cones Ki such that

K = K1 ×K2 × . . .×KN , (2)

where the sum of the dimensions of the cones Ki, with i = 1, . . . , N , sums up to p. In this

work, problems that involve two kinds of proper cones are considered: the positive orthant R+

such that Ki = Rn
+, and the second order cones KS

i defined as

KS
i = {(v0,v1) ∈ R× Rn−1|v0 ≥ ∥v1∥2}. (3)

The generalized inequality in (1c) is equivalent to [23]

Gx ⪯K h ⇔ h−Gx ∈ K ⇔ Gx+ s = h, s ∈ K. (4)

Interior-point methods usually solve the primal cone program in (1a)–(1c) simultaneously with

its dual form, described by [23]

maximize − b⊤y − h⊤z (5a)

subject to: G⊤z+A⊤y + c = 0 (5b)

z ⪰K∗ 0, (5c)

where y and z are the dual variables of the problem, and K∗ is the dual convex cone, which,

in the considered applications, is always equal to the convex cone K. The primal and dual
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problems can be solved together through a primal-dual path-following interior-point method.

The main idea of these methods is to build a new optimization problem that includes both the

primal and dual ones and find their solutions by driving the so-called central path to satisfy its

Karush-Kuhn-Tucker (KKT) conditions. The central path of the new problem is defined as

τc+A⊤y +G⊤z = 0 (6a)

Ax− τb = 0 (6b)

Gx+ s− τh = 0 (6c)

c⊤x+ b⊤y + h⊤z+ κ = 0 (6d)

(s, z) ⪰K 0, (τ, κ) ≥ 0, (6e)

where two additional scalar variables τ and κ have been introduced. These variables allow for the

detection of infeasibility of either the primal or dual problem, or both. Note that the variables s

and z must always be inside the convex cone, and the variables τ and κ must always be positive.

It can be shown that (6a)–(6e) imply

s⊤z+ τκ = 0, (7)

which means that s, z, τ , and κ must satisfy a complementary condition, i.e., sizi = 0,∀i =

1, . . . , p and τκ = 0. In other words, all the feasible points of the optimization problem associated

with the central path defined in (6a)–(6e) lie on the boundary of the feasible set [32]. Interior-

point methods, however, as their name also suggests, can only deal with iterates that lie in the

interior of the feasible set. Consequently, a new optimization problem is defined such that it

has strictly feasible points that respect s⊤z+ τκ > 0 and the condition in (7) only holds at the

optimal point. More information about interior-point methods can be found in [32].

Suppose to have a convex problem k associated with the matrices Ak and Gk and vectors bk,

ck, and hk. Let us indicate the solution of this optimization problem as (x∗
k,y

∗
k, z

∗
k, s

∗
k, τ

∗
k , κ

∗
k).

Consider now a new convex problem k + 1 associated with the matrices Ak+1 and Gk+1 and

vectors bk+1, ck+1, and hk+1 such that

Ak+1 = Ak +∆Ak, Gk+1 = Gk +∆Gk

bk+1 = bk +∆bk, ck+1 = ck +∆ck

hk+1 = hk +∆hk,

(8)
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where the perturbation terms ∆(·)k are such that most of their elements are small with respect

to the correspondent elements of the original matrices and vectors. In this work, if

∥∆(·)k∥1≪ ∥(·)k∥1 (9)

for all the matrices and vectors (·)k, then the problems k and k + 1 are defined as closely

related. Since the proposed approach is tailored for SCP applications, where two instances of the

same problem linearized at different but close reference solution are solved, it will be assumed

that the condition in Eq. (9) holds. In this case, it is reasonable to believe that the solution

(x∗
k+1,y

∗
k+1, z

∗
k+1, s

∗
k+1, τ

∗
k+1, κ

∗
k+1) of the new problem is similar to the solution of the original

one. Intuitively, it would come natural to use the solution of problem k as the initial guess for

problem k + 1. However, the solution of the former problem lies close to the boundary of the

feasible set (i.e., it is not well-centered) as imposed by the condition in (7) and thus should

not be used, as this would result in slow progress of the algorithm or even run into numerical

problems. This article addresses the problem of finding a suitable initial guess for problem k+1

exploiting the information that can be retrieved from the iterates of the convex optimization

solver associated with problem k.

III. GENERAL FORMULATION OF AN SOCP SUBPROBLEM WITHIN SCP

In this work, the convex problem k associated with the matrices Ak and Gk and the vectors

bk, hk, and ck represents the kth iteration of a sequential convex programming algorithm [16],

[33].

The warm-start strategy presented in this article is applied to second-order cone programs that

represent optimal control problems. In other words, the problem of finding the control action

u(t) ∈ Rnu×1 that minimizes an objective function while ensuring that some constraints on the

state w(t) ∈ Rnw×1 and on the control itself are respected is considered. A generic nonlinear,
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nonconvex optimal control problem can be expressed in the form

minimize
u(t)

∫ tf

t0

L(u(t)) dt (10a)

subject to: ẇ(t) = f(w(t),u(t)) (10b)

q(w(t),u(t)) = 0 (10c)

g(w(t),u(t)) ≤ 0 (10d)

u2
0(t) + u2

1(t) + · · ·+ u2
nu−1(t) = u2

nu
(t) (10e)

wi(t0) = wi,0, i = 1, . . . , nw (10f)

wi(tf ) = wi,f , i = 1, . . . , nf ≤ nw, (10g)

where t0 and tf are the initial and final times of the problem, respectively. L(u(t)) is a function of

the control variables, f(w(t),u(t)) ∈ Rnw×1 is the dynamics of the system, and q(w(t),u(t)) ∈

Rnq×1 and g(w(t),u(t)) ∈ Rng×1 are the equality and inequality constraint functions, respec-

tively. In general, the problem in (10a)–(10g) is not a SOCP due to the nonlinear constraints. If

the convex function L(u(t)) = unu(t) is assumed, after having applied lossless convexification

and having linearized the nonlinear dynamics, the equality, and inequality nonlinear constraints
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around a reference solution (w̄(t), ū(t)), the problem becomes

minimize
u(t)

∫ tf

t0

unu(t) dt+

∫ tf

t0

λ ∥ν(t)∥1 dt+∫ tf

t0

λ ∥ϕ(t)∥1 dt+∫ tf

t0

λmax(0,η(t)) dt

(11a)

subject to: ẇ(t) = f(w̄(t), ū(t))+

J (w(t)− w̄(t))+

B(u(t)− ū(t)) + ν(t)

(11b)

q(w̄(t), ū(t)) + C(w(t)− w̄(t))+

D(u(t)− ū(t)) = ϕ(t)
(11c)

g(w̄(t), ū(t)) + E(w(t)− w̄(t))+

F(u(t)− ū(t)) ≤ η(t)
(11d)

u2
0(t) + u2

1(t) + · · ·+ u2
nu−1(t) ≤ u2

nu
(t) (11e)

∥w(t)− w̄(t)∥1 ≤ R (11f)

∥u(t)− ū(t)∥1 ≤ Ru (11g)

wi(t0) = wi,0, i = 1, . . . , nw (11h)

wi(tf ) = wi,f , i = 1, . . . , nf , (11i)

where

J ..=
∂f

∂w

∣∣∣
w̄(t),ū(t)

, B ..=
∂f

∂u

∣∣∣
w̄(t),ū(t)

,

C ..=
∂q

∂w

∣∣∣
w̄(t),ū(t)

, D ..=
∂q

∂u

∣∣∣
w̄(t),ū(t)

,

E ..=
∂g

∂w

∣∣∣
w̄(t),ū(t)

, F ..=
∂g

∂u

∣∣∣
w̄(t),ū(t)

.

(12)

The slack variables ν(t), ϕ(t), and η(t) have been introduced to avoid the so-called artificial

infeasibility [16]. On top of that, the trust-region constraints in (11f) and (11g) are added to

ensure that the linearization of the constraints is valid, and R and Ru are the trust-region radii

of states and controls, respectively. In (11h) and (11i), wi,0 and wi,f indicate the ith prescribed

initial and final boundary condition, respectively. After discretizing the problem in (11a)–(11i)
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and collecting the resulting decision variables w(ti), u(ti), i = 1, . . . ,M in one single vector

x = [w(t1), . . . , w(tM), u(t1), . . . , u(tM)]⊤, it represents a SOCP that can be written in the form

of (1a)–(1c) and consequently solved by means of some convex solver. The initial guess for

such a problem is commonly built from scratch by the convex solver by considering additional

optimization problems without any information required by the user, and this is what is referred

to as the cold-start approach. In this article, the proposed warm-start strategy is compared with

the cold-start implemented in [32].

IV. WARM-START STRATEGY

A suitable warm-start strategy embedded in the SCP algorithm should have at least the follow-

ing three characteristics: first, it should reduce the computational effort of the standard algorithm.

This is clearly the primary objective of a warm-start strategy. Secondly, it should not deteriorate

the convergence properties of its cold-start version. Finally, it should not increase the complexity

of the algorithm, as this may result in an increased chance of failure or unpredictable numerical

problems or errors. In the light of these considerations, the warm-start strategy presented in [25]

is extended and adapted to the SCP algorithm, resulting in an efficient and robust method to

warm-start a sequence of closely-related second-order cone programs.

A. Overview

Let us indicate with (·)(i)k the variables (x,y, z, s, τ, κ) at the ith iterate of the convex solver

at the kth SCP iteration. The initial guess for the (k + 1)th SCP iteration is defined as

x
(0)
k+1 = x

(αk)
k

y
(0)
k+1 = y

(αk)
k

z
(0)
k+1 = (1− λk)z

(αk)
k + λke

s
(0)
k+1 = (1− λk)s

(αk)
k + λke

τ
(0)
k+1 = τ

(αk)
k

κ
(0)
k+1 = (s

(0)
k+1)

⊤z
(0)
k+1/p,

(13)

where αk ∈ N+ such that αk ∈ [1, . . . , Ik] with Ik being the last iteration of the convex

optimization solver of the SCP problem k, λk ∈ [0, 1] is a weighting parameter, and e is the

so-called identity element for the convex cone K [32]. The idea behind this strategy is the

following. As already mentioned, the problems associated with the SCP iterations k and k + 1

are similar, and thus it is reasonable to believe that they also have similar solutions. Therefore,
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it is intuitive to consider an iterate αk of the kth convex problem and use it as the initial guess

for problem (k+1). If an advanced iterate is considered (i.e., if αk is close to Ik), however, the

variables z and s may be too close to the boundaries of the feasible set for the iterate αk to be

used as an initial guess for problem k+1. Consequently, the variables z and s are initialized with

a linear combination of the selected iterate of problem k and the identity element e, which brings

the variables inside the convex cone K. Note that, different from [26], we do not consider only

the last iterate Ik of the convex solver for this procedure. This is because we observed that the

last iterate Ik is not always the most effective to reduce the computational effort of the algorithm

regardless of the value of the weighting parameter λk. Therefore, we allow for more flexibility

by introducing an additional degree of freedom to the strategy, represented by the warm-start

index αk.

B. Integration With Sequential Convex Programming

The integration of the warm-start method presented in Section IV-A with the sequential convex

programming algorithm consists of developing a strategy to define how to select the parameters

αk and λk at each SCP iteration. In general, our numerical simulations, as well as results from

previous work [26], show that the more similar the matrices and vectors of two problems k and

k + 1 are, the more the warm-start for problem k + 1 benefits from an advanced solver iterate

of problem k. However, the higher αk, the closer the variables z and s are to the boundaries of

the feasible set, and therefore a higher value of the parameter λk is required.

A reasonable measure of how much two problems differ from each other is the sum Σk of the

l-norms of the difference of the associated matrices and vectors. In other words,

Σk = ∥∆Ak∥l + ∥∆G∥l + ∥∆bk∥l + ∥∆hk∥l + ∥∆ck∥l , (14)

where l can be any norm. The quantities in (14) are defined in accordance with (8). In this work,

it is assumed that the optimal cobtrol problem is written in dimensionless form, and therefore

the quantity Σk is dimensionless. Although a mathematical proof is out of the scope of the work,

our simulations show that the parameter Σk is a good indicator of how much two subsequent

convex problems in the context of SCP differ. In Fig. 1, the left y-axis, the values of Σ for a

typical problem are shown as a function of the SCP iteration k. The right y-axis, the metric

∆Sk = ∥Sk+1 − Sk∥l, l = ∞
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is represented as a function of the SCP iteration k, where

Sk = ∥∆xk∥l+∥∆yk∥l+∥∆sk∥l+∥∆zk∥l (15)

and

xk+1 = xk +∆xk, yk+1 = yk +∆yk

sk+1 = sk +∆sk, zk+1 = zk +∆zk

(16)

The figure shows that there is indeed a strong dependency of the parameter ∆Sk on Σk.

5 10 15 20 25 30 35 40 45
SCP iteration

10-2

10-1

100

101

'
k

10-1

100

101

"
S

k
Fig. 1: Σk and norm of solution difference as a function of the SCP iteration.

Our strategy proposes a linear dependence between Σk and the value of the weighting param-

eter λk to be used to warm-start the SCP iteration k + 1, such that

λk = fλΣk, (17)

where fλ > 0 is a user-selected constant parameter. Since the weighting parameter λk must not

exceed 1, at each SCP iteration k, its value is updated as

λk = min(fλΣk, 1). (18)

The rationale behind this choice is the following: if the value of Σk is small, i.e., if two

subsequent SCP problems are similar, it is convenient to modify the iterate k as little as possible.
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Consequently, it is advantageous to have a small value of λk as well. Still, it is also important

to add some centrality to the selected initial guess to allow for quick progress of the algorithm.

However, at the limit, i.e., when Σk → 0, we consider λk = 0 because we would basically

be solving the same problem twice, and therefore, the initial guess would also be the actual

solution. On the other hand, if the value of Σk is large, i.e., if two subsequent SCP problems

differ significantly, it is preferable to have a well-centered initial guess because there would be no

relevant benefit from considering an unmodified iterate of the previous optimization subproblem.

Note that λk ≥ 0 according to (17); in particular, we have λk = 0 ⇔ Σk = 0. Since this would

correspond to solving the exact same convex problem twice (and this is never the case in the

context of SCP), we can conclude that λk > 0 for all k.

Our policy to select the iterate of the SCP problem k to warm-start the SCP problem k+1 (i.e.,

to select the value of αk) is defined as follows. We introduce a new parameter δα,k such that

δα,k =
2

1 + exp[fα log10(λk)]
− 1, (19)

where fα ≥ 0 is another user-selected constant parameter. Next, we define the value of αk as

αk = round(δα,kIk), (20)

where round(·) is a function that rounds a value to the nearest integer. In addition, we impose

that αk = 1 if round(δα,kIk) < 1. Note from (19) that the parameter δα,k is defined as a modified

sigmoid function depending on λk because this assures that the inequalities 0 ≤ δα,k ≤ 1 always

hold. In fact, since δα,k indicates a fraction of Ik, it cannot exceed those bounds. Figure 2 shows

δα,k as a function of λk for different values of the parameter fα.

Equations (19) and (20) essentially mean that the smaller λk is, i.e., the more similar two

subsequent SCP subproblems are, the more advanced the iterate of the convex solver is to be

considered to warm-start the following optimization process. On the contrary, if Σk is large, it is

reasonable to believe that the two subsequent subproblems have considerably different solutions.

Consequently, an advanced iterate should not be used. Instead, taking a well-centered (i.e., larger

λk), less advanced iterate may be a more appropriate choice.

It is important to underline that the update of the parameters αk and λk only happens when an

SCP iteration is accepted. In fact, it would not be helpful to consider information coming from

a rejected iteration to warm-start a new convex optimization subproblem.
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Fig. 2: Value of δα,k as a function of λk and fα.

V. NUMERICAL SIMULATIONS

In order to show the effectiveness of our warm-start strategy, we specify (11a)–(11i) for the

low-thrust trajectory optimization problem, whose convex subproblems are extensively described

in [2] for Cartesian coordinates. We consider the transfer trajectories from the Earth to Venus

and to asteroid Dionysus. Data about the transfers are reported in Table I, whereas Fig. 3 shows

typical solutions of the considered problems in terms of transfer trajectories. In Table I and Fig.

3, x0 = [r0;v0] and xf = [rf ;vf ] are the initial and final spacecraft states, respectively, with

ri,vi (i = 0, f ) indicating the position and velocity vectors; m0 and mf are the initial and final

spacecraft mass, respectively; Tmax is the maximum thrust of the spacecraft engine, and Isp is

its specific impulse. Finally, tf indicates the time of flight of the transfer. More information on

the SCP algorithm and the values of the SCP parameters used in this article can be found in

[2]. The arbitrary-order Hermite–Legendre–Gauss–Lobatto (HLGL) discretization method [12]

is exploited to discretize the convex subproblems of the SCP procedure, as it represents a widely

used and fairly efficient collocation scheme. The resulting discretized SOCPs have thousands of

variables and large matrices A and G in (1). Table III details the size of each vector and matrix

associated with the considered examples. It can be noted that they represent large and complex

optimization problems. With respect to the warm-start parameters, we use l = ∞ for (14).

The objective of the following numerical simulations is to compare the standard cold-start strategy

implemented in common convex solvers with the simplest possible warm-start approach, i.e.,
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TABLE I: Simulation values for Earth-Venus and Earth-Dionysus transfers [34], [35].

Parameter Earth-Venus Earth-Dionysus

r0, LU [0.97083220, 0.23758440,−1.67106× 10−6]⊤ [−0.02431767, 0.98330142,−1.51168× 10−5]⊤

v0, VU [−0.25453902, 0.96865497, 1.50402× 10−5]⊤ [−1.01612926,−0.02849401, 1.69550× 10−6]⊤

m0, kg 1500 4000

rf , LU [−0.32771780, 0.63891720, 0.02765929]⊤ [−2.04061782, 2.05179130, 0.55428895]⊤

vf , VU [−1.05087702,−0.54356747, 0.05320953]⊤ [−0.14231932,−0.45108800, 0.01894690]⊤

mf , kg free free

Tmax, N 0.33 0.32

Isp, s 3800 3000

tf , days 1000 3534
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Fig. 3: Typical Earth-Venus and Earth-Dionysus transfer trajectories.

to consider an iterate of the previous convex subproblem and use it as the initial guess for

the following subproblem without adding any centrality (i.e., δα,k = const. > 0 and λk ≡ 0).

Throughout the rest of the article, we will refer to this as the basic warm-start strategy. The basic

warm-start strategy analysis also serves to better understand the improvements that our advanced

warm-start approach (i.e., αk > 0 and λk > 0) is able to provide. In order to understand the

influence of δB
α, fA

α , and fA
λ (where the superscripts (·)B and (·)A indicate the basic and advanced

strategies, respectively) on the results, we first perform a parametric analysis. For the basic warm-
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start strategy, the values δB
α = [0.1, 0.3, 0.5] are investigated, whereas the vectors

fA
α = 0 : ∆ : 1, ∆ = 0.1, (21)

fA
λ = 10−k, k = 0, . . . 8 (22)

are considered for the advanced strategy. A total of 20 SCP problems are considered for each

combination of the aforementioned parameters, using perturbed cubic-interpolated initial guesses

and an Hermite–Simpson discretization scheme [12] with 150 and 250 nodes for the Earth to

Venus and Earth to Dionysus transfers, respectively. It can be noted that:

1. the case with fα = 0 corresponds to αk ≡ 1 but, in general, λk ̸= 0;

2. the case with fλ = 1, according to (17) and (18), corresponds to having a high value of λk.

They represent the trivial combinations of parameters of the advanced warm-start strategy: in the

first case, the convex solver always considers the very first iteration of problem k to warm-start

problem k + 1; in the second case, the information retrieved from problem k is (almost) not

exploited at all.

A. Parametric Analysis for Earth-Venus Transfer

The cold-start strategy converged in 5 out of 20 simulations, and it required an average of

1154.6 convex solver iterations for each SCP problem (with an average of 36.8 SCP iterations).

The results associated with the basic warm-start strategy are presented in Table II. Interestingly,

small values of δB
k seem to increase the convergence of the SCP algorithm. When larger values of

the parameter are considered, however, the strategy fails. The results associated with the advanced

warm-start strategy are shown in Figs. 4a and 4b. In Fig. 4a, larger values correspond to more

converged cases and therefore a better behavior; in Fig. 4b, lower values correspond to lower

warm-to-cold iterations ratio and therefore a desirable behavior. To ensure a fair comparison, only

the cases for which both the algorithms converged are considered. As expected, the convergence

of the strategy is poor when an advanced iterate (i.e., large fα) of problem k is used to warm-start

problem k + 1 and little centrality (i.e., small fλ) is added; the same happens when one of the

first iterates of problem k (i.e., fα ≈ 0-0.3) is used together with high centrality (i.e., large fλ).

Selecting either low fλ associated with small fα or large fλ associated with high fα results in

the best behavior, although having too much centrality or a very large value of fα (in general,

greater than 1) is not beneficial either. For what concerns the number of solver iterations, a

large number of combinations of parameters is effective in improving the performance of the
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cold-start algorithm. In particular, the case with fα = 0.1 and fλ = 10−5 is extremely efficient in

decreasing the computational effort of the SCP procedure, with an iterations ratio of ≈ 70%. Due

to the properties of convex optimization problems, each SCP convex subproblem has a global

solution only. Both the cold-start and the warm-start strategies should therefore find, in case they

converge, the same final spacecraft mass. Consequently, the overall SCP final spacecraft mass

using the two approaches should also be the same up to some numerical error. This is indeed

supported by numerical simulations, which show that the normalized change of final spacecraft

mass is in the order of 10−6, and therefore negligible.

B. Parametric Analysis for Earth-Dionysus Transfer

The cold-start strategy converged in 17 out of 20 simulations, and it required an average of

2032.7 convex solver iterations for each SCP problem (with an average of 53.6 SCP iterations).

Since this second transfer has a long time of flight and the orbital parameters of the Earth

and Dionysus are significantly different, it is reasonable that the number of solver and SCP

iterations is larger with respect to the previous test case. Moreover, the convergence of the

HLGL discretization has proven to be more effective with the Earth–Dionysus transfer than with

the Earth–Venus one [2]. Table II shows the basic warm-start strategy results. They are similar to

the ones obtained with the previous example: as the value of δB
k increases, convergence follows

the opposite trend. Figures 5a and 5b show the results in terms of converged cases and iterations

ratio for the advanced warm-start strategy, respectively. There is only a small area where the

strategy encounters issues to converge; as expected, this happens for large values of fα and little

centrality added. Interestingly, the iterations ratio plot is extremely similar to the Earth-Venus

one. This indicates that the best warm-start parameters may only depend on the structure of the

problem and not on the specific data. In that case, an additional benefit of the proposed strategy

is represented by its generality. Although the combination of parameters fα = 0.1 and fλ = 10−5

provides very good results (with an iterations ratio of ≈ 73%), the cases that performed best in

terms of solver iterations are the ones with {fα = 0.1, fλ = 10−2}, {fα = 0.2, fλ = 10−2}, and

{fα = 0.1, fλ = 10−8}, which obtained an iterations ratio of ≈ 70%. However, while the former

combination of parameters resulted in the same number of converged cases as the cold-start, the

latter converged in one case less (as Fig. 5a shows).
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δB
k Venus Dionysus

0.1 12 16

0.3 4 3

0.5 0 0

TABLE II: Converged cases for the basic warm-start strategy.

C. Comparison of Convergence and CPU Times

We select {δB
α,k = 0.1, fA

α = 0.1, fA
λ = 10−5} for both transfers and run a total of 100

simulations to further address the convergence of the warm-start strategies and to compare the

reduction of CPU time with respect to the cold-start approach. The choice of the parameters

is justified by a compromise in terms of convergence and iterations ratio according to the

results presented in the previous Sections. Table IV presents the obtained results. The extensive

simulations confirm the findings in Table II: the convergence of the basic warm-start strategy

outperforms the cold-start one in the case of the Earth–Venus transfer, but it slightly worsens it

in the Earth–Dionysus case. In addition, the former strategy can even be effective in decreasing

the computational effort of the standard algorithm. The advanced warm-start method confirms

its efficacy both in terms of converged cases (+148.15% with respect to the cold-start algorithm

for the Earth–Venus transfer) and CPU time (with a −20% for both of the case studies).

D. General Assessment

We briefly summarize and discuss the main findings of our simulations in the following points:

• Our simulations confirm that the solution of a SOCP cannot be directly used as initial

guess for a strictly-related one: as a matter of fact, the basic warm-start strategy already

completely fails when δα,k = 0.5.

• In the context of SCP, simply considering a less advanced iterate of the interior-point

process to solve a SOCP (i.e., our basic warm-start strategy) can instead be effective means

to enhance convergence (in the Earth–Venus case) or decrease the computational effort (in

the Earth–Dionysus case) of the cold-start approach. On the other hand, the performance

of this strategy strongly depends on the considered case, as Table IV points out.

• The proposed advanced warm-start strategy outperforms the cold-start approach when the

solver ECOS is used. However, we expect a similar behavior with any interior-point convex
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Venus Dionysus

Parameter A G c b h A G c b h

Rows 1066 8730 5116 5116 5116 1766 14530 8516 8516 8516

Columns 5116 5116 1 1 1 8516 8516 1 1 1

Nonzero elements 14349 13558 1208 901 5263 23949 22558 2008 1501 8763

TABLE III: Dimensions of the matrices and vectors for the two transfers.

Venus Dionysus

Start Converged cases CPU time (s) Converged cases CPU time (s)

Cold 27.00 3.50 82.00 9.39

B. Warm 52.00 3.34 81.00 7.76

A. Warm 67.00 2.82 83.00 7.43

B. W/C (%) 192.59 95.30 98.78 82.64

A. W/C (%) 248.15 80.65 102.47 79.13

TABLE IV: Convergence and CPU time analysis results with Cartesian coordinates.

solver. Selecting the iterate to be used for the warm-start depending on the SCP iteration

was also shown to be an effective strategy.

• Even though very complex examples with many variables and large matrices were consid-

ered and therefore the validity of the presented strategy is confirmed, it is likely that the

best values of the advanced warm-start parameters fα and fλ depend on the considered

specific problem.

VI. CONCLUSIONS

In this article, a strategy to warm-start second-order cone programs in the context of sequential

convex programming is developed. It shows superiority both in terms of convergence and required

computational effort, resulting in up to −30% CPU time and +150% converged cases for the

considered test cases. Moreover, the results demonstrate the effectiveness of the proposed solution

when it is integrated within the SCP technique to solve optimal control problems. It is still to

be investigated how to quickly and efficiently select the warm-start parameters for a generic

problem without performing preliminary extensive simulations.
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Fig. 4: Parametric analysis for the Earth–Venus transfer.
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