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Abstract: Autonomous driving systems found their first applications in the agricultural
field, being a way to ease personnel of repetitive jobs and increase precision. Performing
operations like harvesting or pruning requires high positioning accuracy, especially in structured
environments like vineyards and orchards. In these contexts, the global reference path is dictated
by the agricultural procedure to perform. The continuously-changing vegetation and reduced
maneuvering space create the need to re-plan the vehicle route with respect to the global
reference. Hence, the importance of local planning. This paper proposes a local planning strategy
with the objective to follow a park-to-park global path while avoiding obstacles. We formulate
the local planning task as a constrained optimization problem. The resulting local plans are not
constrained in shape, thus guaranteeing planning freedom, and manage obstacle avoidance in
an innovative way. The collision area is precisely determined taking both the vehicle and the
obstacles dimension into account, and considering the vehicle approach direction. The proposed
system is tested in simulation, where its performance are compared with a benchmark planner.
An experimental campaign validates the local planner with satisfactory results.
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1. INTRODUCTION

The agricultural field is one of the main forces driving
the progress of Advanced Driving Assistance Systems
(ADAS) and autonomous driving systems. Performing
sensitive procedures like harvesting or pruning requires
high positioning accuracy, especially in complex contexts
as vineyards and orchards. ADAS for open-field applica-
tions are a commercial reality (see Surbrook and Gerrish
(1983)), used to carry on repetitive operations such as
seeding or plowing. These systems rely on Global Naviga-
tion Satellite System (GNSS) technology with Real-Time
Kinematics (RTK) correction to obtain vehicle localization
precision in the range of a few centimeters (as in Dong
et al. (2011), Lenain et al. (2004), Guo et al. (2018)). They
function under the hypothesis that the operator is always
ready to intervene in case of emergency, as the vehicles
are not equipped with exteroceptive sensors to detect
obstacles. The complexity rises for vineyard applications,
where the vehicle needs to navigate a dynamic environ-
ment with numerous obstacles and reduced maneuvering
space. Furthermore, GNSS-based systems lack robustness
in vineyards and orchards as the RTK correction signal de-
grades in presence of occlusions and thick vegetation. The
most common approach to autonomous driving requires
the definition of a global reference path and a local one. In
vineyard applications, the global reference path is dictated
by the vineyard configuration and the type of procedure
the operator must perform. The continuously-changing
vegetation and reduced maneuvering space create the need
to re-plan the vehicle route with respect to the target

path. Hence, the importance of local planning, focus of
this paper, which still represents a challenging problem
in the literature with space for investigation and possible
improvements.

Local planning in structured contexts like vineyards and
orchards is often done using only the information pro-
vided by vision sensors (i.e., cameras, as in Yun et al.
(2018), Subramanian et al. (2006)), or distance sensors
like LiDARs (see Barawid Jr et al. (2007), Hiremath et al.
(2014)) and ultrasonic sensors (as in our previous work,
Corno et al. (2021)). These row-following systems aim at
driving the vehicle while it is between crop rows, but
struggle outside the rows where it is difficult to locate
the vehicle with respect to its surrounding. Expectedly,
they cannot autonomously track a park-to-park global
reference. To this aim, the exploitation of GNSS sensors is
necessary, but not sufficient. The Potential Field Method
(PFM) is commonly adopted in mobile robotics to combine
local row-following and global path tracking (see Koren
et al. (1991), Borenstein and Koren (1990)). PFM cretes
an attraction region around the target path, and a re-
pulsion region where obstacles are detected. Astolfi et al.
(2018) show an example of its application for vineyard
navigation: the authors use the open-source implementa-
tion of ROS Navigation Stack 1 . Despite the promising
field tests results, they encounter difficulties in tuning
the obstacles cost-map: large obstacle inflation is needed
to avoid generating paths that intersect the vines, but
causes sharp avoidance of small obstacles such as high

1 ROS Navigation Stack. http://wiki.ros.org/navigation.
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Fig. 1. Block scheme of the developed architecture.

grass. The Navigation Stack employs the Dynamic Win-
dow Approach (DWA), which combines path tracking and
obstacle avoidance. DWA planner generates a set of trajec-
tories with constant longitudinal and angular speed. Each
trajectory is assigned a cost depending on its closeness
to the global reference and the presence of obstacles; the
one with minimum cost is chosen. Obstacles are inflated
to take into account that the trajectory is planned for
the vehicle Center Of Gravity (COG). In our experience,
deploying ROS Navigation Stack for vineyard navigation
poses two problems. The first one is related to the way it
generates trajectories, which are necessarily circular, thus
limiting the planning possibilities. The second one regards
the way it manages collisions through the inflation radius:
the vehicle direction while approaching the obstacle is not
taken into account and obstacles are enlarged of the same
radius along all directions. Finding a trade-off between
avoiding obstacles and being able to drive between close
vines proves to be challenging.

We propose a local planning strategy which has the ob-
jective of navigating a vineyard, following a park-to-park
global reference path, and adapt its route in presence of
obstacles. The planner receives as input the global refer-
ence path, the estimated vehicle position, and a map of the
vehicle surrounding, and produces an optimized local plan,
which is in turn provided to a path tracking controller.
This paper main contributions lie in the optimization
problem generating the local plans, particularly in the
design of the cost function, and in the decision maker that
selects the output plan.

• Differently than DWA, we do not require (V, ω)-
constant trajectories: the vehicle reference speed can
be set by the user based on the ongoing agricultural
procedure, while the steering action is freely opti-
mized to track the global path and avoid obstacles.
The resulting local plans are not constrained in shape,
except by the vehicle dynamics and actuation limits.

• We propose a new metric to define the collision area
as function of both the obstacle and the vehicle
size. To do so, the vehicle approach direction is
taken into account. As a result, the collision area is
precisely determined, hence the planner can be less
conservative, which can be crucial in a context where
the tractor dimension is non negligible with respect
to the environment and the vehicle is forced to brush
against the crop rows.

• We design our algorithm to run in real-time. To
this aim, the optimization is stopped and forced to
produce a local plan after a time interval, resulting in

a possibly sub-optimal output local plan. Hence the
introduction of a decision maker that compares each
new local plan with the old one and selects the one
with minimum cost.

The proposed system is able to accurately track the global
reference path, and to simultaneously brush against the
crop rows when needed but avoid obstacles on the global
path outside the vineyard.

The rest of the paper is structured as follows: Section 2
outlines the complete system architecture; Section 3 pro-
vides an overview of the auxiliary modules that produce
the inputs needed by the local planner and elaborate
its outputs. Section 4 details the local planner working
principle and the speed planner that monitors the output
path and accordingly produces a reference speed. Section 5
presents the planning validation, both in simulation and
with experimental data; Section 6 draws some conclusions.

2. SYSTEM ARCHITECTURE

The entire system architecture is presented in Fig. 1,
where the module object of this paper is highlighted. The
localization and perception algorithms exploit propriocep-
tive and exteroceptive sensors information to produce an
estimate of the vehicle position and heading and a map
of the surrounding obstacles. The latters feed the local
planner, together with the global reference path selected
by the user. The planner produces a local path that starts
in the current vehicle position and aims at bringing (or
keeping) the vehicle on the global reference while avoid-
ing obstacles. The planner also generates the longitudinal
speed command. The vehicle will track a global reference
speed unless the local path planner cannot find an obstacle
free path. In that case, the planner will slow down the
vehicle, coming to a stop if needed. The speed planner
also halts the tractor at the end of the global reference
path. The path tracking controller computes the error from
the local plan and the curvature command for the vehicle
accordingly.

3. AUXILIARY MODULES

This section provides an overview of the auxiliary modules
implemented to test and validate the proposed planning
strategy.

Global reference path The target path represents the
route the vehicle has to follow when performing au-
tonomous vineyard operations. The path must be sampled:
it consists of a series of triples (X,Y, ψ), where ψ is the



direction tangent to the reference at each point. The path
feeds the local planner.

Localization algorithm An Extended Kalman Filter
(EKF), implemented as in Pizzocaro et al. (2021), provides
an estimate of the vehicle global position and heading with
respect to the geographical North. The latters are inputs
of the local planner. The observer exploits measures from
wheel encoders (for the vehicle speed and curvature), an
Inertial Measurement Unit (IMU), a GNSS antenna with
RTK correction, and a magnetometer.

Perception algorithm A perception module, out of the
scope of this paper, processes a 3D LiDAR point cloud
to produce a 2D map of the obstacles surrounding the
vehicle. An obstacle is represented by the minimum area
convex polygon that contains all the point cloud samples
assigned to it. For each obstacle, the local planner receives
a matrix inequality describing the area occupied by the
polygon and its sampled perimeter.

Path tracking controller The controller receives as input
the optimal local plan as a series of sampled points. It com-
putes the lateral error from the target path at a look-ahead
point, by projecting the vehicle position along a direction
defined by the vehicle heading. The curvature command
results from an LPV H-infinity controller implemented as
in Corno et al. (2020).

4. LOCAL PLANNER

This section discusses the local planner, the optimization
problem it enforces, and the decision maker that selects the
output plan. The planning algorithm receives as inputs the
vehicle estimated position and heading, the obstacles map,
and the global reference path; it accordingly optimizes a
local plan with the objective to track the global reference
while avoiding obstacles. The speed planner, discussed
in the final subsection, either sets the speed to a global
reference or slows down and eventually stops the vehicle,
in case the local planner is not able to produce a path that
do not cause a collision.

4.1 Main rationale

The local planner algorithm main rationale is summarized
in Fig. 2. Check Points (CP) are equispaced points on
the global reference path. In correspondence of each CP,
perpendicularly to the target path, we define Way Points
(WP). The solution of an optimization problem provides
the WP distances from the reference. The local plan results
from the interpolation of the optimized WP. At each
iteration the local planner identifies the CP zero based
on the vehicle current position, where the WP zero is
placed. The optimization computes the position of the WP
corresponding to a number of CP consecutive to the CP
zero. Its goals are to minimize the deviance from the target
path while avoiding obstacles and producing a smooth
local plan. Notice that CP are densely spaced so that, if
two consecutive WP do not generate a collision, the points
interpolating them do not collide with obstacles as well.

4.2 Optimization problem

The formulation of the optimization problem is discussed
hereafter. The optimization variables xi are the distances
of the i-th WP from the reference path. The cost function
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Fig. 2. Local planner main rationale: global reference path
(black) and optimal local plan (gray).

is designed to be differentiable in order to guarantee the
optimization convergence.

min
xi

α
∑
i

x2i + β
∑
i

(xi − xi−1)
2 + γ

∑
i,j

f jcoll(xi)+

+ δ
∑
i,j

flagi,j
di,jp

di,jc
+ ε

∑
i,j

f jinf (xi)

s.t. − ρlim ≤ ρ(xi) ≤ ρlim i = 0, ..., nWP

(1)

The first term weighs the WP distances from the tar-
get path; the second one favors a smooth local plan by
weighing the difference of consecutive WP deviance from
the global reference. The third term introduces a collision
function, defined for each obstacle j in the map through a
collision metric. Under the hypothesis of good tracking
performance, the local plan describes the vehicle COG
path. This introduces the need to take the vehicle footprint
into account when determining the collision area. Finding
the minimum distance between two polygons (i.e., the
obstacle and the vehicle) is a computationally intense
operation, hence the introduction of a heuristic metric,
characterized as:

rp =
dr − dp
dr

(2)

where dp is the distance between the vehicle COG and
the closest point on the obstacle perimeter, and dr is the
length of the portion of segment connecting the two points
contained in the vehicle perimeter. As shown in Fig. 3, rp
is negative when the vehicle is not in collision, rp = 0
when the obstacle perimeter is tangent to the vehicle,
and 0 < rp < 1 during collision. The terms dr, dp in (2)
become meaningless when the vehicle COG is inside the
obstacle, thus rp saturates to 1. The collision function
fcoll is null when rp = 0 and increases exponentially
for 0 < rp ≤ 1. Its limitation lays with the fact that
rp saturates to 1, preventing the cost to keep increasing
while the collision increases. Hence, the addition of the
fourth term in (1): the flag becomes 1 when the vehicle
COG is inside the obstacle, and dc is the distance between
the vehicle COG and the obstacle centroid. The fourth
term, thus, starts growing from zero to infinity when the
obstacle is tangent to the vehicle COG as the collision
increases. The fifth term represents an inflation function,
which can be tuned to keep an additional safety distance
from obstacles. Finally, α, β, γ, δ, ε weight the different cost
terms. The only hard constraint in (1) guarantees that
the resulting local plan is feasible, by imposing that the
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Fig. 3. Collision metric between the vehicle (red) and the
obstacle (gray).

its curvature is within the vehicle dynamics and actuator
limits. ρ(xi) is computed as the curvature of the path
described by each triple of consecutive points, WPi−1,
WPi, WPi+1.

4.3 Decision maker

The local planner consists of two main modules: the core
optimizer and the decision maker. The optimization runs
in loop at the highest possible frequency. When a new
local plan is published, the decision maker compares the
new plan with the old one. The old plan cost is recom-
puted under the current conditions (e.g., new obstacles
may appear): the old path is prolonged keeping for the
added WP the same distance from the global reference
path of the last optimized WP. The plan with minimum
cost is selected and sent to the underlying path tracking
controller. The new plan may be discarded as, to ensure
real-time execution, the core optimizer is stopped and
forced to produce a local plan after a certain time interval.
Hence, the optimization output may be sub-optimal if the
timeout is reached. The decision maker thus guarantees
that the local plan is only updated when the new plan has
smaller cost. Additionally, frequent discontinuities in the
control action are thus avoided.

4.4 Speed planner

Unexpected dangerous conditions (e.g., a big and close ob-
stacle suddenly appearing in the vehicle field of view) may
inhibit the local planner ability to produce a trajectory
that do not cause a collision. Hence, the introduction of a
speed planner, which monitors the optimized local plans:
it intervenes when the selected local path involves at some
point a collision with an obstacle, and reduces the vehicle
speed. It eventually stops the vehicle, if the local planner
is not able to recompute a collision free path, despite the
reduced speed.

5. VALIDATION

The following section discusses the results obtained with
the designed local planner. The performance assessment

Fig. 4. Model and parameters validation.

derives from the comparison with the state-of-the-art so-
lution for mobile robots navigation, ROS Navigation Stack
based on DWA. The comparison with the benchmark plan-
ner is carried out in a simulation environment, described
hereafter. Finally, an on-field experimental campaign val-
idates the proposed system.

5.1 Simulation framework

A simulation environment, developed in Gazebo 2 , repli-
cates the tractor behavior and vineyard conditions, with
the vines modeled as walls and other obstacles as generic
shapes. The model simulating the vehicle dynamics is a
linearized single-track model. Table 1 gathers the model
parameters: the ones that cannot be measured are identi-
fied from experimental data.

Table 1. Single-track model parameters.

Name Value Unit Description

M 3000 kg Vehicle mass
Lf 1.42 m Vehicle front wheelbase
Lr 0.76 m Vehicle rear wheelbase
Cf 10000 N/rad Front wheel cornering stiffness
Cr 20833 N/rad Rear wheel cornering stiffness
Jz 2600 kg · m Vehicle yaw moment of inertia

Fig. 4 validates the model and the identified parameters,
by comparing the model output with experimental data
collected on field. On the right, the yaw rate measured
during a U-turn maneuver performed at 1 m/s is compared
with the one simulated in Gazebo when feeding the model
with the steering angle and longitudinal speed observed
on field. On the left, similarly, the yaw rate - curvature
characteristic curve extrapolated from a 20 minutes test
drive in a vineyard is compared with the one derived from
simulated data.

5.2 Experimental set-up

The test vehicle is a SAME Frutteto CVT, a small di-
mensions agricultural tractor, characterized by high ma-
neuverability and generally employed for procedures and
treatments in vineyards and orchards. The vehicle sensors
and actuators set-up follows.

• Wheel encoders measure the vehicle speed and cur-
vature.

• An IMU, placed in the tractor COG, is exploited for
the yaw rate measure.

• A single GNSS antenna with RTK correction provides
the vehicle global position, with precision of ±2 cm.

2 Gazebo Sim. https://gazebosim.org/home.



• A magnetometer estimates the vehicle heading.
• A 3D LiDAR, positioned on the tractor hood, returns
three-dimensional information about the environment
surrounding the vehicle. The sensor point cloud is
used to derive the vines and other obstacles position.

• A hydraulic steering actuator implements the re-
quested curvature command by steering the vehicle
front wheels.

• A cruise control system enforces the reference speed.

The algorithms described in this paper are implemented
in ROS and run on-board on an Ubuntu machine.

5.3 Simulation validation

The proposed planning strategy performance is firstly
assessed by comparing it to the benchmark planner and
tracking control of ROS Navigation Stack, based on DWA.
DWA shows limitations when used to perform path track-
ing in contexts with high tracking accuracy requirements.
DWAmain objective is to reach a goal rather than tracking
a global reference path. Hence, when approaching a U-
turn, it tends to cut the turn in order to quickly reach
the goal, which in vineyards can result in failing the end-
of-row inversion maneuver and not being able to re-enter
the vineyard. Additionally, obstacles are inflated without
considering the vehicle approach direction. This also may
result in failed attempts to re-enter the vineyard, since the
inflated vines may preclude its access. Costmap and obsta-
cles inflation parameters tuning enables DWA to correctly
plan the end-of-row inversion maneuvers, at expense of
its capacity to avoid obstacles, as the obstacles inflation
radius must be set almost to zero. Increasing the radius
guarantees correct obstacle avoidance, but prevents the
planner to identify a viable route between vines. Fig. 5
illustrates what just described, with results from a simula-
tion where a cylindrical obstacle of 1 m radius (in gray) is
positioned on the global reference path (in black). The
latter drives along a row (the vines are represented as
rectangles, in gray) and enters it, after performing a U-
turn. The benchmark first tuning is obstacle-avoidance
oriented: the inflation radius is conservatively set consid-
ering the vehicle semi-length. As shown in blue, DWA
succeeds in the avoidance maneuver but stays out of the
vineyard, as the selected inflation radius precludes its
access. Reducing the obstacles inflation radius so that
the vehicle semi-width is considered (tuning 2), DWA is
not able to avoid the obstacle positioned on the reference
path (as shown in dotted light blue, the planner stops
the vehicle immediately before the collision), but it would
be able to correctly perform the inversion maneuver (in
dotted gray). The proposed local planning strategy can
both avoid the obstacle on the global path and accurately
track the reference (in red), thus significantly reducing
the cut-the-turn phenomenon and correctly entering the
vineyard. The performance improvement reason lays in the
different obstacle avoidance approaches: DWA enlarges the
obstacles of the same quantity along all directions. Our so-
lution takes the vehicle dimension and approach direction
into account, thus determining the real collision area. The
freedom in shaping the local reference path, as opposed to
DWA circular trajectories, contributes to further increase
the performance. Fig. 6 provides some snapshots of the
local plans optimized by the proposed planner (in green)
during the obstacle avoidance maneuver: the vehicle avoid

Fig. 5. Simulation validation: comparison with benchmark
planning strategy.

Fig. 6. Local plans generated during the obstacle avoidance
maneuver. Vehicle extremities are the green dots.

the obstacle (i.e., the white point cloud) with the mini-
mum margin that prevents the collision, and returns on
the reference path (in red) immediately after.

Tuning the parameters and the shape of the functions of
the minimization problem presented in Section 4 tailors
the planner performance: tracking accuracy, margins left
when avoiding obstacles, and aggressiveness of local plans
leading back to the reference. Anyway, the cost function
minimum is tuning-invariant, thus guaranteeing that the
planner always maintains the desired behavior.

5.4 On-field validation

The proposed planning and control system is finally vali-
dated on-field. Fig. 7 shows the results of an experiment
with a global reference path that starts with a straight
and ends with a U-turn maneuver, and with two obstacles
placed on the target path in the inside of the U-turn and
at its exit. The local planner keeps the vehicle on the
reference path when the track is clear, and re-plans the
route when obstacles are on or close to the target path.
The speed planner requires to slow down during the U-
turn maneuver due to the closeness to the obstacle, and
stops the vehicle at the end of the global reference path.



Fig. 7. On-field system validation.

6. CONCLUSIONS

We propose a local planning strategy for autonomous vine-
yard navigation which has the objective to track a park-
to-park global reference path, while avoiding obstacles.
The proposed solution overcomes limitations shown by the
state-of-the-art planner and path tracker of ROS Navi-
gation Stack. The main differences from the benchmark
are related to the shape of the optimized local plans,
which is not constrained to be circular, and the obstacle
avoidance approach. Our planner determines the collision
area between the vehicle and the obstacles, taking the ve-
hicle footprint and approach direction into account. Conse-
quently, the system tracks the global reference path, which
sometimes forces the vehicle to brush against the crop
rows, and simultaneously avoids obstacles on or close to
the target path. The discussed planning strategy is tested
in simulation, where it shows improved performance with
respect to the benchmark, and experimentally validated
with satisfactory results.
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