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Abstract—Recent advancements in deep learning techniques
have brought remarkable developments in synthetic media gen-
eration, leading to the creation of forged contents that are almost
indistinguishable from real data. This phenomenon poses a new
challenge for the multimedia forensics community, as the misuse
of synthetic media can potentially cause adverse consequences.
Regarding the audio field, several methods have been proposed to
detect synthetic speech, but due to their data-driven nature, their
results are often little interpretable. To overcome this limitation,
the scientific community is focusing on Explainable AI (XAI)
aimed at understanding the critical elements in a speech track
that drive the predictions of the detectors. In this work, we
address the task of XAI in synthetic speech detection and explore
the critical factors that allow us to detect forged tracks generated
by unseen techniques. Our results suggest that the artifacts of
synthetic speech are contained in specific frequency bands and
show how we can make the detection process more accurate
by focusing on single spectral bands. We also generalize our
findings to other detectors, showing how these can benefit them
and improve their final classification performances.

Index Terms—Multimedia Forensics, Audio, Synthetic Speech,
Explainability

I. INTRODUCTION

Recent advances in deep learning and artificial intelligence
have led to incredible developments in synthetic media gen-
eration. The ability to generate forged content that is indis-
tinguishable from real one has spread across various domains
(e.g., images, videos, audio) and has captured the attention of
both researchers and specialists [1]. While this phenomenon
opens the doors to exciting unexplored scenarios, it also poses
a new challenge for the multimedia forensics community.
There is a need to develop robust methods able to detect
synthetic media and discriminate them from authentic content.
This is a problem that cannot be overstated, as the misuse of
synthetic data can lead to adverse consequences, as already
seen in numerous cases of fraud and blackmail [2].
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Focusing on the audio field, several methods have been
proposed in the last few years to tackle synthetic speech detec-
tion [3]. The goal of these systems is to distinguish between
real and synthetic speech, and they do so based on several
strategies, ranging from pure deep learning techniques to more
semantic approaches. For instance, the authors of [4] employ
a ResNet model with multi-head attention pooling to learn the
distinctions between real and fake audio representations, while
in [5] a model is trained solely on real speech data to exploit
the speaker’s biometric characteristics. This leads to improved
generalization capabilities since no specific synthesis method
has been considered during training. On the other hand, the
methods proposed in [6] and [7] perform synthetic speech
detection by analyzing the emotional and prosodic content of
speech. Also, numerous datasets have been presented in this
field to increase the interest of the scientific community on the
topic and push the research toward the development of new
detection methods [8], [9].

The performances of the proposed detectors are remarkable,
especially in controlled scenarios. However, since most of
these methods rely solely on data-driven approaches, the inter-
pretability of their predictions is somehow limited. This makes
these systems unsuitable for real-world applications where
thoroughly understanding what is driving the detection process
is essential. Indeed, what makes a prediction trustworthy is
understanding the motivation that led to it, and the black box
nature of data-driven systems compromises their reliability.

To overcome this limitation, the scientific community has
increased its attention towards Explainable AI (XAI), with
the intent of understanding the critical elements in an audio
track that cause the detector’s predictions. For example, the
authors of [10] and [11] use the SHapley Additive exPlana-
tions (SHAP) [12] method to analyze the artifacts generated
by synthetic speech systems, while those of [13] and [14]
utilize Gradient-weighted Class Activation Mapping (Grad-
CAM) [15] and Local Interpretable Model-agnostic Explana-
tions (LIME) [16] to gain insight into the decision-making
process of synthetic speech detectors, respectively. Finally,
other studies such as [17] and [18], have focused on explaining
the results obtained using specific audio features, focusing on
different frequency bands and speech formants.

Even though these studies provide valuable insights into the
functioning of synthetic speech detectors and the elements that
influence their predictions, they are often restricted in scope,
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focusing on only a few audio samples or speech generation
methods. This makes their findings limited and hard to extend
to other detectors or generation techniques.

In this paper, we tackle the problem of XAI in synthetic
speech detection and explore which are the critical factors that
drive the detection process. In particular, we take into account
speech data generated by synthesis techniques unseen during
the training step of a detector, and we adopt two independent
approaches to identify the frequency bands that prove most
helpful for synthetic speech detection. Both techniques confirm
the same finding: we can improve the final classification
accuracy by focusing on a reduced frequency range of the
speech signal under analysis. Furthermore, we show how the
results obtained are not significant only for one considered
detector, but can also be extended to other classifiers, providing
valuable insights into the generalization of the synthetic speech
detection process.

II. PROPOSED METHOD

In this paper we consider the problem of synthetic speech
detection and investigate two different XAI approaches to
understand which are the most relevant frequency bands to
accomplish this task. The work is based on the hypothesis
that not all frequency bands of the audio spectrum have equal
relevance for synthetic speech detection. In other words, we
suspect that speech generators leave more artifacts in some
bands than others, so we can exploit this aspect to enhance
our classification capabilities.

In the current state of the art, most synthetic speech detec-
tors are data-driven and take as input standard acoustic features
(e.g., LFCC, MFCC, CQCC, etc.) that are empirically chosen
based on the outcome of the models. This is not an optimal
approach since the classifiers are intended as black boxes and
the decision of which audio representation to use as their input
is not always well-motivated [19]. Contrariwise, suppose we
manage to understand which are the most relevant frequency
bands to perform the detection task. In that case, we could
feed the developed detectors with an appropriate set of features
based on our findings, i.e., focusing on the frequency bands
that we know contain the most artifacts, thus improving the
final classification accuracy of the developed systems.

A. Problem formulation

The problem we address can be formally defined as follows.
Let us consider a discrete-time input speech signal x sampled
with a sampling frequency fs. This means that the informative
part of the Discrete Fourier Transform (DFT) of the signal is
defined over a set of frequencies F = {f1, f2, ..., fN} spanning
the interval [0, fs/2). The track x belongs to a class y ∈ {0, 1},
where 0 means that the signal is authentic while 1 indicates
synthetic data. Let us consider a synthetic speech detector D

trained to estimate the class of a signal x as ŷ = D(x), where
ŷ ∈ [0, 1] indicates the likelihood that the signal x is fake.

We define as xS a filtered version of the signal x, defined
only on a subset of frequencies S, where S ⊂ F . Our goal
is to find which is the most relevant set of frequencies Ŝ to

perform the synthetic speech detection task, thus minimizing
the difference between the estimated class ŷ = D(xS) and the
actual class y. Formally, we want to estimate

Ŝ = argmin
S

∥y −D(xS)∥. (1)

B. Considered detectors

During this study, we consider two different synthetic
speech detectors proposed in the literature.
ResNet. The first one is proposed in [20] and is based on
ResNet [21]. This is a residual Convolutional Neural Network
(CNN) that creates shortcuts between layers by skipping
connections that help stabilize training. The network is fed
with a spectrogram representation of the input audio signal,
and its architecture includes 6 residual blocks.
RawNet2. To broaden the scope of the results, we extend our
findings to another detector, i.e., RawNet2 [22]. This is an end-
to-end neural network that operates on raw waveform inputs. It
was first proposed for the ASVspoof 2019 challenge [23] and
included as a baseline in the ASVspoof 2021 challenge [8]. Its
architecture includes Sinc filters taken from SincNet, followed
by two Residual Blocks with skip connections on top of
a Gated Recurrent Unit (GRU) layer to extract frame-level
representations of the input signal.

C. Explainability methods

We investigate the influence of different frequency bands for
the synthetic speech detection task considering two different
XAI approaches. In doing so we can compare the outcomes
of both methods and determine if they are coherent with
each other in showing which are the predominant bands.
The main difference between the two methods is that the
former performs an a posteriori interpretation of a pre-trained
detector, while the latter is an active approach that involves
the training of several classifiers.
A posteriori interpretation. This method involves the use of
Local Interpretable Model-agnostic Explanations (LIME) [16],
which creates an interpretable, local approximation of a black
box deep learning model to explain individual predictions.
Given an input to the network of shape M×N , this algorithm
modifies it by altering its feature values and measuring the
effect of these changes on the prediction result. The output is
a binary mask of the same shape as the input, highlighting the
most critical factors driving the predictions. In our case, we
apply the method to iteratively mask parts of the spectrograms
used as input to a trained ResNet model.
Active interpretation. The second approach involves con-
sidering various spectrogram masking configurations and re-
training a ResNet version for each of them. We mask the spec-
trograms given as input to the model by showing only a chosen
frequency band S and zeroing out all the frequency bins
outside of it. In this way, each masking configuration presents
the same dimension M × N as the original spectrogram but
shows only a limited portion of its content. When dealing
with this approach, we apply the same masking operation
to both training and test data. After training and testing the
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Fig. 1. Colormaps highlighting the most critical elements to perform the synthetic speech detection task, according to LIME algorithm. The two images depict
the relevant components for detecting real (left) and synthetic (right) speech classes, respectively. The lightest areas are the most relevant for the detection
task.

models on different masking configurations, we compare all
the obtained results, analyzing if individual frequency bands
are sufficient to perform the synthetic speech detection task,
and if the results obtained on the masked spectrograms are
comparable with those achieved with the original method.

III. EXPERIMENTAL SETUP

In this section, we outline the evaluation setup employed in
our experiments. We start by introducing the dataset that was
used for training and testing the systems. Next, we detail the
training parameters that we assumed. Finally, we explain the
implementations of the two XAI approaches we consider.

A. Dataset

During all the experiments, we used the ASVspoof 2019
dataset [23]. This is a speech audio dataset that contains
both real and synthetic tracks generated based on the VCTK
corpus. The dataset has been released for the homonymous
challenge, where participants had to compete to implement
the best detector for Automatic Speaker Verification (ASV).
It has been proposed to address two different tasks and here
we consider the Logical Access (LA) one, which relates to
the synthetic speech detection problem. The LA dataset is
further divided into three sub-partitions, called train, dev and
eval, which all include authentic signals along with synthetic
speech samples generated with various methods. All the audio
signals are released considering a sampling frequency of fs =
16 kHz. The train and dev partitions have been created using
the same set of 6 synthesis algorithms (named A01, A02, ...,
A06), while the eval partition includes samples generated with
13 different techniques (A07, A08, ..., A19). We considered
the train and dev partitions to train the considered detectors
and the eval set to test them. The distinction between the
speech generation techniques included in the training and test
partitions allows us to perform analyses in an open set scenario
and evaluate the considered detectors on data generated only
by unseen synthesis algorithms.

B. Training Strategy

During the training phase, we trained the detectors to
discriminate between real and synthetic speech data. We only

consider the voiced segments of the analyzed tracks, as we
want to focus on detecting the artifacts that appear in synthetic
speech and not be biased by the presence of silence segments.
To do so, we trim all the silences using a Voice Activity
Detector (VAD). For both ResNet and RawNet2 models,
we assumed a time window of 3.0 s. We used these values
because, from preliminary experiments, they turned out to be
the best compromise between the shortness of the windows
and the performance, which is ideal in a real-world scenario.

All the hyperparameters of the networks have been fine-
tuned to maximize their accuracy. These are the sets of
parameters used, chosen after verifying the convergence of
the models. For both models, we considered a maximum
number of epochs equal to 100 and an early stopping patience
of 20, weighted cross-entropy as loss function and Adam
optimization, and a batch size of 128. The only difference
between the two is the learning rate value, which is equal to
10−5 in the case of ResNet and 10−4 for RawNet2.

Regarding the computation of the ResNet input features, we
calculate the Spectrograms by performing the log-magnitude
representation of the Short-Time Fourier Transform (STFT)
of the input audio, considering a Hamming window of 2048
samples and 25% overlap, which is a typical solution when
computing this kind of audio representation [20].

C. XAI methods

Regarding the LIME approach, we applied perturbations to
the input spectrograms by randomly obscuring parts of them
at each iteration of the algorithm. We considered 1000 per-
turbations per test sample, which in previous experiments has
been found to be an optimal balance between computational
time and quality of results obtained.

As for the frequency masking of the spectrograms fed into
the ResNet model, we consider 5 non-overlapping frequency
bands S. We do so for two reasons. First, given the impossi-
bility of extensively investigating a large number of different
masking configurations, we had to reduce the number of
masking considered. Since this is an exploratory study, we
decided to investigate a regular case. Second, based on the
preliminary outcomes provided by the LIME approach, we
found that this implementation was functional for our final
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goal. We divided the frequency spectrum into 5 equally spaced
bands, with the following ranges: S1 = [0, 1600] Hz, S2 =
[1600, 3200] Hz, S3 = [3200, 4800] Hz, S4 = [4800, 6400]
Hz, S5 = [6400, 8000] Hz.

IV. RESULTS

In this section we analyze and discuss the results of the
two XAI approaches we applied to synthetic speech detection.
In doing so, we evaluate the performances of the detectors
in terms of Receiver Operating Characteristic (ROC) curves,
Area Under the Curve (AUC) and Detection Rate (DR),
defined as the percentage of samples of a single class that
are correctly classified by the detector.

As a first experiment, we investigate the significance of the
various frequency bands S of the spectrogram for synthetic
speech detection using the LIME algorithm. Figure 1 shows
the results of this analysis, divided by the two classes (i.e.,
real and synthetic speech). To create these plots, we generated
a binary mask for each test track, highlighting the most rele-
vant elements for the detection task. These masks were then
averaged across all test signals to eliminate any dependency
on specific signals or generation methods. We only considered
tracks from content that were correctly classified by the de-
tector, to avoid examining any misleading trace. In computing
the masks, we emphasized elements that contributed both
positively and negatively to the final prediction of a class.
We did so since, in a binary classification task, positive and
negative contributions are closely linked to each other.

The results show that two frequency bands S are signifi-
cantly more influential than the others for the synthetic speech
detection task. These involve the highest (≈8000Hz) and
lowest (<1000Hz) frequencies. Additionally, as regards the
classification of fake tracks, even the medium-low frequencies
(≈2000Hz) can help to drive the classification.

These results are further supported by the second XAI
approach that we consider. Figure 2 shows the results of
the detection task comparing the model fed with full-band
signals with the models trained on masked spectrograms. In
this case, the models trained on the lowest (S1 = [0, 1600]
Hz) and highest (S5 = [6400, 8000] Hz) frequency bands not
only have performances comparable to those of the original
model, but they perform even better (AUCF=0.76 compared
to AUCS1

=0.86 and AUCS5
=0.79). Conversely, the models

trained on the central bands of the spectrum have modest per-
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Fig. 2. ROC curve showing the synthetic speech detection performances of the
ResNet model when working on audio data defined over the entire spectrum
F compared with data filtered on frequency subsets Si.

formances, again demonstrating the poor information content
included at these frequencies.

We now perform an ablation study, to fully understand the
contributions of different frequency bands to the detection task.
As discussed in [17], different generation algorithms introduce
artifacts to other spectral bands, so that by analyzing all the
frequencies thoroughly, we can increase the discriminative
power of the detectors. Table I shows the DR of each of
the ResNet models we trained for the previous experiment
on both real speech and synthetic speech generated by all the
algorithms of the test dataset. We recall that none of these
algorithms has been considered during training, making them
all unseen for the detectors.

The results of the ablation study indicate that the perfor-
mances of the detectors are quite different from each other,
with significant variations in some generation algorithms. For
instance, generator A13 is poorly identified by analyzing the
whole spectrum F (DR = 0.30), but can be easily detected
by investigating only the frequency band S1 (DR = 0.87).
Similar behavior also appears for generators A14, A17 and
A18. Conversely, other systems such as A07 and A16 can be
better identified by looking at the S5 frequency band instead
of S1. In general, our findings suggest that most artifacts can
be detected by analyzing the low frequencies, as also proved
by the previous experiments.

As a final experiment, we aim to investigate if our findings
are specific to the ResNet model or can be generalized to other
synthetic speech detectors. To do so, we consider RawNet2

TABLE I
DETECTION RATE (DR) OF THE RESNET MODELS TRAINED ON DIFFERENT SPECTRAL BANDS, MEASURED ON BOTH REAL AND SYNTHETIC SPEECH,

GENERATED BY ALL THE ALGORITHMS OF THE TEST DATASET. THE DR VALUES GREATER THAN 0.85 ARE SHOWN IN BOLD.

REAL A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

F 0.69 1.00 1.00 0.90 0.54 0.60 0.31 0.30 0.67 0.50 1.00 0.56 0.53 1.00
S1 0.78 0.63 0.97 0.94 0.59 0.63 0.54 0.87 0.92 0.68 0.80 0.87 0.89 0.86
S2 0.66 0.73 0.80 0.80 0.70 0.69 0.73 0.76 0.82 0.75 0.71 0.40 0.43 0.31
S3 0.66 0.67 0.51 0.88 0.70 0.66 0.67 0.76 0.81 0.76 0.68 0.53 0.47 0.44
S4 0.58 0.56 0.71 0.85 0.54 0.57 0.50 0.51 0.78 0.71 0.58 0.51 0.43 0.36
S5 0.71 1.00 1.00 0.93 0.58 0.67 0.31 0.53 0.64 0.36 1.00 0.74 0.45 1.00
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Fig. 3. ROC curve showing the synthetic speech detection performances
of the RawNet2 model when working on audio data defined over the entire
spectrum F compared with filtered data.

as classifier and we train and test it considering audio data
filtered on specific frequency bands. We consider two types of
filtering, low pass and high pass, to analyze the two frequency
bands that proved most significant in the results shown in
Figure 2 and Table I. We filter the audio data considering a
13th-order digital Butterworth filter, with cut-off frequencies
equal to 1600Hz (low-pass) and 6400Hz (high-pass) to match
the frequency bands S1 and S5, respectively.

Figure 3 shows the results of this analysis. These validate
the outcomes of the previous studies, exhibiting that focusing
solely on low frequencies leads to a more effective detection
compared to using the entire spectrum F . This is a significant
finding for two reasons. First, it indicates that the results of
this paper can be generalized to synthetic speech detectors
other than ResNet. Second, it demonstrates that an effortless
operation, such as filtering the input signals to focus on low
frequencies, can result in an increase of AUC (in our case
0.03) compared to using unprocessed data.

V. CONCLUSIONS

In this paper, we considered the problem of synthetic speech
detection and used two different XAI approaches to find which
are the most relevant frequency bands to accomplish this task.

The main contributions of the work include a broader
focus on speech synthesis methods unseen during training.We
validate our findings by obtaining the same outcomes from
two different XAI approaches. We also generalize the results
to multiple synthetic speech detectors, accentuating the role of
explainability studies in improving detection performance.

We believe these results have important implications for
synthetic speech detection and we hope they can help in
developing detectors that are not purely data-driven but also
pay attention to data preprocessing to improve their results.

In future studies, we plan to expand the work by considering
other acoustic features, other XAI techniques and detectors. A
possible development involves implementing more punctual
analyses over time and using different approaches between
voiced and unvoiced segments of the audio track, which
presumably contain different types of artifacts.
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