

Effect of Al2O3 Nanoparticles as Reinforcement on the Wear Properties of A356/Al2O3 Nanocomposites Produced by Powder Metallurgy

Talha Sunar, Dursun Özyürek

This is a post-peer-review, pre-copyedit version of an article published in J. Tribol. Aug 2022, 144(8): 081701, February 14, 2022. The final authenticated version is available online at: https://doi.org/10.1115/1.4053628

https://asmedigitalcollection.asme.org/tribology/article/144/8/081701/1131545/Effect-of-Al2O3-Nanoparticles-as-Reinforcement-on

This content is ASME © provided under CC BY-NC-ND 4.0 license

1	Effect of Al ₂ O ₃ nanoparticles as
2	reinforcement on the wear properties of
3	A356/Al ₂ O ₃ nanocomposites produced by
4	powder metallurgy
5	
6 7 8 9 10	Talha, Sunar¹ Faculty of Technology, Department of Manufacturing Engineering, Karabuk University Faculty of Technology, Department of Manufacturing Engineering, Karabuk University, 78050, Karabuk, Turkey talhasunar@karabuk.edu.tr
12 13 14 15 16 17 18	Dursun, Özyürek Faculty of Technology, Department of Manufacturing Engineering, Karabuk University Faculty of Technology, Department of Manufacturing Engineering, Karabuk University, 78050, Karabuk, Turkey dozyurek@karabuk.edu.tr
19 20	ABSTRACT
21	In this study, microstructure and wear properties of A356 aluminium matrix nanocomposites reinforced
22	with nano-Al ₂ O ₃ particles were investigated. Powder metallurgy method was used for the production of 1
23	wt.% and 2 wt.% nano-Al ₂ O ₃ particle reinforced nanocomposites. After 1 hour of mechanical milling of
24	A356 and nano- Al ₂ O ₃ powders, green compacts were obtained by cold pressing. Green compacts were
25	sintered at 550°C and vacuum environment (10 ⁻⁶ mbar) for 1 hour. Samples were characterized by density,
26	hardness measurements, scanning electron microscopy investigations and wear tests. As the
27	reinforcement ratio increased, there was a decrease in the densities of the nanocomposites, as well as an
28	increase in the porosity. The highest hardness and the lowest weight loss values were obtained in 1wt.%
29	Al ₂ O ₃ reinforced nanocomposites. A decrease in hardness was measured at 2 wt.% Al ₂ O ₃ reinforced
30	nanocomposites.

31 INTRODUCTION

¹ Corresponding author: Talha Sunar, e-mail: talhasunar@karabuk.edu.tr

32 33	Aluminium matrix composites (AMCs) are produced by adding particles with
34	different properties into the Al alloy by various methods in order to be used in
35	applications requiring functional properties. In particle-reinforced aluminium
36	composites, Al alloy is generally defined as the matrix and additional particles are
37	defined as the reinforcement phase. It is possible to produce composites with different
38	properties by reflecting the specific properties of the matrix and reinforcement
39	materials to the composite material. AMCs reinforced with SiC, AI_2O_3 (alumina), B_4C ,
40	TiB ₂ , ZrO_2 , SiO ₂ and graphite particles are frequently used in automotive and aerospace
41	applications due to their superior mechanical and physical properties [1]. AMCs are also
42	reinforced with other synthetic, recycling and natural reinforcement materials such as
43	tetragonal zirconia polycrystalline [2], Si $_3N_4$ [3], fly ash, rice husk ash [4-6]. With the
44	powder metallurgy method, particle reinforced AMCs are produced at lower
45	temperatures than liquid production methods (such as infiltration and Stir casting). In
46	addition, as the reinforcement particles can be distributed more homogeneously in the
47	matrix, the desired properties are obtained more efficiently [7]. Carbide, boride and
48	oxides are often used as reinforcement materials in particle reinforced composites [8-
49	12]. The improvement in the mechanical properties of AMCs is directly related to the
50	type, size and reinforcement ratio of the reinforcement particles. [13]. When the
51	reinforcement particles used in the production of AMCs are nano-sized, the ductility of
52	the composite is preserved as well as the improvements in strength and hardness [14].
53	Kang et al. [15] states that Al_2O_3 reinforcement increases hardness and mechanical
54	properties in Al/ Al ₂ O ₃ (between 1-7 vol. %) nanocomposites produced by powder

55	metallurgy method. Rahimian et al. [16] reported that the hardness of Al/
56	Al_2O_3 composites produced by powder metallurgy method increased, and the best yield
57	strength was obtained from composites with a reinforcement ratio of 10 wt.%. Thereby,
58	in many studies, properties such as optimum hardness, mechanical strength, ductility,
59	microstructure morphology, depending on the amount of reinforcement phase or
60	process parameters were investigated in nano AMCs produced by powder metallurgy
61	[7,17]. Ezatpour et al. [13] produced A7075/ Al $_2O_3$ nanocomposites with 0-1.2 wt.%
62	reinforcement ratios by stir casting method and then applied extrusion process and
63	investigated microstructure and mechanical properties. They reported that the
64	extrusion process with nano-particle reinforcement increased the mechanical
65	properties. Manivannan et al. [18] reported that A6061/1,2 wt.% SiC nanocomposites
66	produced by ultrasonic cavitation assisted stir casting method were harder and showed
67	better wear resistance than A6061 alloy. In addition, the amount of reinforcement
68	phase in nano aluminium composites is an effective parameter on hardness and relative
69	density [19]. Tiku et al. [20] produced Al/ Al_2O_3 (1-4 wt.%) composites with Al_2O_3
70	particles synthesized by sol-gel technique. They reported that as the reinforcement ratio
71	increased, the hardness increased, but the abrasion resistance decreased. Soltani et al.
72	[21] manufactured AMC by addition of 10Ce-TZP (tetragonal zirconia polycrystal) / Al_2O_3
73	nanoparticles (1-10 wt.%) via powder metallurgy. The results showed that the wear
74	resistance increased up to 7 wt.% reinforced samples and decreased with further
75	reinforcements. Deaquino-Lara et al. [22] studied on the tribological characterization of
76	Al7075/graphite composites produced by mechanical alloying and hot extrusion. They

77	produced their samples using different reinforcement ratios (0- 1,5 wt. %) and
78	mechanical milling times (0-10 hours). They concluded that hardness and wear
79	resistance improved by adding 1,5 wt.% graphite and mechanical milling of 10 hours.
80	It has been stated in many studies that the reinforcement phase in particle
81	reinforced composites improves the mechanical properties of the matrix alloy [7,15,18].
82	There is a limited number of studies examining microstructure and wear performance of
83	nano- Al_2O_3 added A356 alloys used in automotive and aviation industry. On the other
84	hand, it is revealed that increasing the amount of reinforcement phase, increases the
85	mechanical properties and wear performance of the composites, but after a certain
86	amount, these properties tend to decrease with effects such as agglomeration [19]. It
87	has also been reported that wear properties are adversely affected by nano-particle
88	reinforcement and the wear rate increases with increasing reinforcement amount [20].
89	Yildirim et al. are expressed that the most obvious difference between conventional
90	particle-reinforced composites and nano-AMCs is the decrease of some mechanical
91	properties such as hardness and wear behavior in case of increase over a critical ratio in
92	nano-AMCs [<mark>23</mark>]. It is clearly seen in the literature that nanoparticle reinforcement has
93	variable effects on wear properties. For this reason, there is a need for more work in
94	this area. In this study, nano- Al_2O_3 reinforced A356 aluminium matrix nanocomposites
95	(AMnCs) were produced by powder metallurgy. The microstructure and hardness of the
96	AMnCs were investigated. In addition, the wear performance of nanocomposites was
97	investigated in a pin-on-disc type wear device. The microstructures of the composites
98	and the worn surfaces were investigated by SEM/EDS.

100

99 MATERIALS AND METHOD

101 A356 aluminum alloy powders used as matrix material in this study were 102 obtained from LPW technology Ltd. (particle size range; 20-63 μm), nano- Al₂O₃ powders 103 used as reinforcement phase (purity: >99%, average particle size; 20 nm) were obtained 104 from Nanografi Co. Ltd. A356 and nano- Al₂O₃ powders were prepared by weighing 105 them with a precision balance (precision; 1:10000 g). A356 alloy, 1 wt. % and 2 wt. % 106 nano- Al₂O₃ reinforced nanocomposites were milled for 1 hour in a single chamber 107 Fritsch planetary ball mill with a capacity of 225 ml. Stainless steel balls with a diameter 108 of 8 mm were used in the mechanical milling (MM) process. The ball/powder ratio was 109 determined as 1:10 and the chamber was filled 50% and MM was carried out at a milling 110 speed of 400 rpm. Prior to MM, 1% stearic acid was added to the chamber as a process 111 control chemical. In order to prevent overheating, the milling process was applied with a 112 15-minute interrupt for every 15 minutes. Nano- Al₂O₃ (reinforcement) powders were 113 milled in ethanol for 5 minutes before mechanical milling of the nanocomposites 114 because it is difficult to disperse the nanoparticles using the conventional grinding 115 process. After MM process, AMnC powders were cold pressed (520 MPa) to obtain 116 cylindrical green compacts with a height of 8 mm and a diameter of 12 mm. Green compacts were sintered at 550 °C in vacuum environment (10⁻⁶ mbar) for 1 hour. 117 118 Heating and cooling rates were kept constant at 4 °C per minute. Density measurements 119 of sintered AMnCs were made according to Archimets' principle using a PRECISA XB200h 120 density measurement kit. The densities of 3 different samples of each reinforcement

121 ratio were measured and averaged. Hardness measurements were performed on a

122	SHIMADZU micro-hardness instrument (200gf – 15 sec). Mean values at each
123	reinforcement ratio were calculated by averaging three different measurements
124	performed on three samples. Carl Zeiss Ultra Plus Gemini scanning electron microscope
125	(SEM+EDS) instruments were used in AMnCs' characterization studies. Wear tests were
126	performed on a standard pin-on-disc wear device with AISI 4140 (mean 64 HRC) steel
127	disc. Tests were performed at room temperature and in dry conditions in accordance
128	with ASTM: G99 [24] standards. A356/ Al ₂ O ₃ nanocomposites were tested with 30N
129	load, 1ms ⁻¹ sliding speed and 4 different sliding distances (500, 1000, 1500 and 2000 m).
130	Each test was repeated three times and weight loss values were measured before and
131	after the test. Sample surfaces were cleaned with alcohol before measurements. The
132	samples were weighed on a precision scale with a resolution of 10^{-4} g before and after
133	wear tests, to determine weight losses. Wear rates were calculated using following
134	equation.

$$W_a = \frac{\Delta G}{D.P.S}$$
(1)

137In equation (1), W_a is the wear rate (mm³/Nm); ΔG is the weight loss (g); P is the138load (N); S is the sliding distance (m) and D is the density (g/cm³). SEM analyses were139carried out to examine the effects of wear on the worn surfaces.

RESULTS AND DISCUSSIONS

- **Density and Porosity**

144	The relative densities of the nanocomposites are shown in Figure 1. It was observed that
145	with the increase in the amount of reinforcement, there was a decrease in the densities
146	of AMnCs and an increase in the porosity values. Considering these results given in
147	Figure 1, it is understood that the amount of reinforcement has a significant effect on
148	the density. This is likely due to the application of MM. MM starts with cold welding of
149	powder particles that are squeezed between two balls and/or between a ball and the
150	container wall, as high-energy balls crash into one another and the container wall during
151	the process. Then, powder particles undergo work hardening and in the last phase,
152	particles are fragmented. Previous studies reported a slight increase in the powder
153	dimension with the effect of cold-welding taking place in the first stage of the
154	mechanical alloying process [25]. While the size of the powder particles is reduced by
155	deformation with MM, the hardness of the powders increases with the work hardening.
156	In a previous study, it was reported that the compressibility of powders decreased with
157	the MM process [<mark>26</mark>]. In this case, the presence and increase in the amount of hard
158	reinforcement particles leads further deformation by locating among the ball-powder-
159	ball and ball-powder- container wall in the milling chamber. Thus, the hardness of the
160	powders that undergo plastic deformation with MM increases further. Increasing the
161	hardness of the powders reduces the compressibility by locking each other during
162	pressing. Therefore, it can be said that the amount of reinforcement has an increasing
163	effect on the porosity. In Al/ nano- Al_2O_3 composites produced by powder metallurgy
164	method, due to the high hardness of nano- Al_2O_3 particles, it reduces the relative

165 density of the composites compared to the alloy by reducing the compression capacity166 [16].

167 Microstructure 168 169 SEM images of the A356 alloy and AMnCs are given in Figure 2. The microstructure of 170 the A356 alloy is given in Figure 2.a. In Figure 2.b, the structure was filtered and grain 171 boundaries, pores and secondary phase particles were emphasized. Figure 2.c and 172 Figure 2.d show the microstructures of 1 wt.% Al₂O₃ and 2wt.% Al₂O₃ nanocomposite 173 materials, respectively. Secondary phase particles were observed in Figure 2.b (blue) 174 and in all microstructures (light gray). The EDS results indicate that these secondary 175 phase particles contain a high amount of silicon. Therefore, these phases are considered 176 to be the silicon phase. In addition, the relatively high Al and O amounts in the EDS data 177 for Figure 2.c (Point 5) and Figure 2.d (Point 4) indicate that these points may be regions 178 with Al₂O₃ reinforcements. Besides, Figure 3 shows the nano-sized alumina particles 179 were distributed in the microstructure. EDS analysis which was applied at 80.000x 180 magnification level reveal that point 1 and point 2 contains considerable amount of Al 181 and O. 182 Hardness 183 184 The hardness graph of AMnCs' is given in Figure 4. While the average hardness of the 185 A356 alloy samples was 42.4 HV, the average hardness of 1 wt.% and 2 wt.% Al_2O_3

- reinforced nanocomposites were measured as 61.4 HV and 54 HV, respectively.
- 187 According to the hardness results, the lowest hardness was obtained in the matrix
- 188 material, while the highest hardness was obtained in 1 wt.% nano- Al₂O₃ reinforced

189	composite. While the hardness of 2 wt.% AI_2O_3 reinforced composites is higher than that
190	of A356 alloy, it is lower than 1 wt.% Al_2O_3 reinforced composites. This increase in
191	hardness of 1 wt.% Al_2O_3 reinforced nanocomposites can be explained by the orowan
192	mechanism [13]. Reinforcement particles inhibit dislocation movement, causing an
193	increase in dislocation density, thus increasing the stresses required for plastic
194	deformation. Yildirim et al. [<mark>23</mark>] state that there are four reasons for this behavior of
195	nano- AMCs; particle dimensions, particle shape, inter-surfaces formed between
196	matrix/nano-particle, and agglomeration. The tendency to decrease in the hardness of 2
197	wt.% Al_2O_3 reinforced composites is also thought to be due to their lower relative
198	density compared to other composites. In a previous study, it was reported that
199	increasing the reinforcement ratio from 1-3 vol% to 5% vol% in A6061- alumina
200	nanocomposites, the hardness decreased depending on the decrease in the relative
201	density [19].
202 203	Wear properties
204	It has been observed that the weight loss values increase almost linearly with the
205	increase of the sliding distance in A356 matrix materials and AMnCs. In Figure 5, the
206	weight loss results of A356 alloy and A356/ Al $_2O_3$ nanocomposites were given. It is
207	understood that the weight losses of A356/ AI_2O_3 nanocomposites are lower than the
208	matrix material A356 alloy. These results show that the wear performance of AMnCs is
209	better than the wear performance of the A356 alloy. It was observed that the
210	reinforcement ratio had a varying effect on the average weight loss. It has been
211	determined that there is an average weight loss of 11.7 mg in the A356 matrix alloy.

212	With 1 wt.% reinforcement, a significant reduction in average weight loss was obtained
213	(7.625 g). However, when the reinforcement ratio was 2 %, this value (11.4) increased
214	again. It is clearly seen that 2 wt.% Al_2O_3 reinforced nanocomposites are subject to
215	higher weight loss than 1 wt.% AI_2O_3 reinforced nanocomposites. This may be due to the
216	differences in density and hardness values. AMnC with 2 wt.% Al_2O_3 reinforcement
217	showed higher hardness compared 1 wt.%. In addition, it is understood that the weight
218	loss results of the 2 wt.% Al_2O_3 reinforced nanocomposites and the hardness results
219	given in Figure 4 support each other. Significant fluctuations in wear rates are often due
220	to variations in hardness [19]. Relatively higher porosity amounts in 2 wt.% Al_2O_3
221	reinforced composites may adversely affect wear performance. During the wear test,
222	fractures may occur at the edges of the pores. Therefore, weight loss tends to increase.
223	It was also reported that the decrease in the relative density amount in A6061/ alumina
224	composites causes a significant decrease in hardness, which is the main reason for the
225	upward trend in wear rate [19]. In addition, wear debris is known to play an abrasive
226	role and increase wear [20]. It has been stated that wear resistance is related to
227	hardness, but the relationship between wear rate and microstructure of the material is
228	not considered [27]. It is also reported that the wear resistance of AMCs reinforced
229	above 7wt.% by weight decreases and this is due to increased porosity, particle
230	aggregation, interfacial properties and thermal expansion difference [21].
231	

232 Figure 6 shows the friction coefficient results of aluminium alloy and nanocomposites.

233 When the weight loss and wear rate results given in Figure 6 are correlated with the

234	friction coefficient results, it is understood that 1 wt.% Al_2O_3 reinforced nano
235	composites, which have the lowest weight loss and wear rate, have the lowest friction
236	coefficient. The force generated by friction is highly dependent on the hardness of the
237	specimen. The higher hardness of the nano-composite sample compared to the matrix
238	alloy A356 sample causes smaller plastic deformation on the nano-composite sample
239	surface and reduces the friction coefficient [18]. The 1 wt.% Al_2O_3 reinforced samples
240	showed better wear performance as they were harder than the 2 wt.% Al_2O_3 samples. In
241	other words, $1wt.\% Al_2O_3$ reinforced composites have lower friction coefficient values
242	than 2 wt.% Al_2O_3 reinforced composites. This is due to the low relative densities of 2
243	wt.% Al_2O_3 reinforced nanocomposites. Particles detached from the porous regions
244	during wear cannot go out of the tribological system and increase the friction
245	coefficient. In AMCs, hard reinforcement particles expand on the material and act as a
246	lubricating layer against abrasives. By preventing direct contact of metallic surfaces,
247	both the coefficient of friction and wear rate are reduced [21]. In Figure 7, SEM images
248	of worn surfaces of alloy and Al_2O_3 reinforced nanocomposites after 2000 m sliding
249	distance are given. When the SEM images of the worn surfaces are examined, areas of
250	ruptures, micro-cracks, delaminations, grooves and cavities can be seen during the wear
251	test.

252

Worn surfaces of A356 alloy (Figure 7.a-c), A356/1 wt.% (Figure 7.d-f) and A356/2 wt.% Al₂O₃ (Figure 7.g-i) reinforced nanocomposites are shown in Figure 7 detailly. It is known that plastic deformation that occurs with cavities and grooves on the material surface is

256	a characteristic of abrasive wear [15]. The wear with wide ruptures and cracks are
257	thought to be the results of adhesive wear mechanism. It can be seen that ruptures and
258	cavities are more dense especially in the A356 matrix shown in Figure 7.a, b and c. This
259	is obviously due to the fact that the hardness of the A356 matrix alloy is lower than that
260	of the composites. The low hardness of A356 alloys could lead adhesive wear
261	mechanism and the ruptures and cavities were generated by adhesion. It is seen that
262	the grooves formed parallel to the sliding directions are less on worn surfaces of 1 wt.%
263	Al_2O_3 reinforced nanocomposites. Abrasive wear mechanism clearly shown in Figure
264	7.d-f with infrequent cavities, ruptures and delaminations for 1 wt.% Al_2O_3 reinforced
265	nanocomposites. It is observed that material loss and delamination due to abrasion
266	increase in 2 wt.% AI_2O_3 reinforced nanocomposites. Micro-pores in the material act as
267	a trigger for the formation and growth of micro-cracks on the wear surface. Micro-
268	cracks grow with advancing sliding distances, causing partial ruptures from the material
269	surface. The higher porosity value of 2 wt.% Al_2O_3 reinforced nanocomposites also
270	explains the high material loss. It has also been stated in some previous studies that
271	plastic deformation and delamination occur with abrasive wear in SiC and alumina
272	particle reinforced composites [28,29]. Porosity, agglomeration and inter-facial
273	properties could be the reasons why wear resistance decrease for AMCs with higher
274	reinforcement ratios than a critical ratio. That critical ratio depends on the size, type and
275	the distribution of the reinforcement in the matrix.
276	CONCLUSIONS

278 The wear performance of AMnCs produced by reinforcing nano- Al₂O₃ into A356

aluminium alloy were investigated and the general results obtained from the study are

280 given below.

• A decrease in the relative densities of AMnCs was observed with the increase of

the reinforcement ratio, while an increase in the porosity values was observed.

• In SEM microstructures and EDS examinations, it was determined that there

were second phase particles containing high amount of silicon in the structure.

• While the highest hardness was obtained in 1wt.% Al₂O₃ reinforced

286 nanocomposites, it was determined that there was a decrease in hardness when the

287 reinforcement ratio was increased to 2 wt.%.

• The wear loss values increased proportionally with the sliding distance. In wear

tests, the weight loss of A356/ Al₂O₃ composites was lower than that of the matrix

290 material, A356 alloy. The lowest weight loss was obtained from 1wt.% Al₂O₃ reinforced

291 nanocomposites.

292

293 ACKNOWLEDGMENT

294

295 The authors thank Karabuk University Scientific Research Projects Coordinator for their

financial assistance for this study. (KBÜ-BAP-18-YL-092)

297 **FUNDING**

298 Karabuk University Scientific Research Projects Coordinator for their financial assistance

299 for this study. (KBÜ-BAP-18-YL-092)

300

301 NOMENCLATURE

302	W_{a}	wear rate (mm ³ /Nm)		
303	ΔG	weight loss (g)		
304	Ρ	load (N)		
305	S	sliding distance (m)		
306	D	density (g/cm³)		
307 308 309	REFEF	RENCES		
310 311 312 313	[1] Koli, D. K., Agnihotri, G., and Purohit, R., 2015, "Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields," Materials Today: Proceedings, 2(4-5), pp. 3032–3041. DOI:10.1016/j.matpr.2015.07.290			
314 315 316 317	[2] Bahrami, A., Soltani, N., and Pech-Canul, M. I., 2015, "Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3-aluminum nanocomposite," J. Compos. Mater., 49, pp.3507–3514. DOI:10.1177/0021998314567010			
318 319 320 321	[3] So Tapp, Si3N4 868. [ltani, N., Soltani, S., Bahrami, A., Pech-Canul, M. I., Gonzalez, L. A., Möller, A., J., and Gurlo, A., 2017, "Electrical and thermomechanical properties of CVI- porous rice husk ash infiltrated by Al-Mg-Si alloys," J. Alloys Compd., 696 , pp.856– OOI:10.1016/j.jallcom.2016.12.051		
322 323 324 325 326	[4] Ba Tapp, Wetta 52 , pp	hrami, A., Soltani, N., Pech-Canul, M. I., Soltani, S., González, L. A., Gutiérrez, C. A., J., Möller, A., and Gurlo, A., 2018, "Bilayer graded Al/B4C/rice husk ash composite: ability behavior, thermo-mechanical, and electrical properties," J. Compos. Mater., 0.3745–3758. DOI: 10.1177/0021998318769993		
327 328 329 330 331 332	[5] Ba husk a step p DOI:1	hrami, A., Pech-Canul, M. I., Gutierrez, C. A., and Soltani, N., 2015, "Effect of rice- ash on properties of laminated and functionally graded Al/SiC composites by one- pressureless infiltration," J. Alloys Compd., 644 , pp.256–266. 0.1016/j.jallcom.2015.04.194		
 332 333 334 335 336 227 	[6] Ba Mölle of mo Comp	hrami, A., Soltani, N., Soltani, S., Pech-Canul, M. I., Gonzalez, L. A., Gutierrez, C. A., r, A., Tapp, J., and Gurlo, A., 2017, "Mechanical, thermal and electrical properties nolayer and bilayer graded Al/SiC/rice husk ash (RHA) composite," J. Alloys d., 699 , pp.308–322. DOI:10.1016/j.jallcom.2016.12.339		
337 338 339	[7] M 3 wei	ahboob, H., Sajjadi, S. A., and Zebarjad, S. M., 2011, "Influence of nanosized Al 2 O ght percentage on microstructure and mechanical properties of Al–matrix		

340 341	nanocomposite," Powder metallurgy, 54 (2), pp. 148–152. DOI:10.1179/174329009X424500
342	
343	[8] Ozyürek, D., Yıldırım, M. and Ciftçi, I., 2012, "The tribological properties of A356-SiCp
344	metal-matrix composites fabricated by thixomoulding technique," Science and
345	Engineering of Composite Materials, 19 (4), pp. 351–356. DOI:10.1515/secm-2012-0012
346	
347	[9] Erek, H. B., Ozyürek, D. and Asan, A., 2017, "Corrosion Behaviour and Electrical
348	Conductivity of Reinforced TiAl 3 and B4C Hybrid Aluminium Composites," Acta Physica
349	Polonica A, 131 (1), pp. 156–158. DOI:10.12693/APhysPolA.131.156
350	
351	[10] Ozyurek, D., and Ciftci, I., 2011, "An investigation into the wear behaviour of TiB2
352	particle reinforced aluminium composites produced by mechanical alloying," Science
353	and Engineering of Composite Materials, 18 (1-2), pp. 5–12. DOI:10.1515/secm.2011.003
354	
355	[11] Simsek, D., Simsek, I. and Ozyurek, D., 2020, "Relationship between Al2O3 Content
356	and Wear Behavior of Al+2% Graphite Matrix Composites," Science and Engineering of
357	Composite Materials, 27 (1), pp. 177–185. DOI:10.1515/secm-2020-0017
358	
359	[12] Li, G., Peng, N., Sun, D., and Sun, S. 2014, "Friction and Wear Behavior of Nano-
360	Al2O3 Particles Reinforced Copper Matrix Composites," J Tribol, 137 (1), pp. 011604.
361	DOI:10.1115/1.4028486
362	
363	[13] Ezatpour, H. R., Torabi Parizi, M., Sajjadi, S. A., Ebrahimi, G. R., and Chaichi, A.,
364	2016, "Microstructure, mechanical analysis and optimal selection of 7075 aluminum
365	alloy based composite reinforced with alumina nanoparticles," Materials Chemistry and
366	Physics, 178 , pp. 119–127. DOI:10.1016/j.matchemphys.2016.04.078
367	
368	[14] Casati, R., and Vedani, M., 2014, "Metal Matrix Composites Reinforced by Nano-
369	Particles—A Review," Metals, 4 (1), pp. 65–83. DOI: 10.3390/met4010065
370	
371	[15] Kang, Y. C., and Chan. S. L. I., 2004, "Tensile properties of nanometric Al2O3
372	particulate-reinforced aluminum matrix composites," Mater. Chem. Phys Materials
373	chemistry and physics, 85 (2-3), pp. 438–443. DOI: 10.1016/j.matchemphys.2004.02.002
374	
375	[16] Rahimian, M., Parvin, N., and Ehsani, N., 2010, "Investigation of particle size and
376	amount of alumina on microstructure and mechanical properties of Al matrix composite
377	made by powder metallurgy," Materials Science and Engineering: A, 527(4-5), pp. 1031–
378	1038. DOI:10.1016/j.msea.2009.09.034
379	
380	[17] Safari, J., Akbari, G. H., and Delshad Chermahini, M., 2013, "The effect of
381	reinforcement content and milling time on microstructure and mechanical properties of
382	Al-10Mg/xAl2O3 nanocomposites," Materials Science and Engineering: A, 569 , pp. 86–

383 91. DOI: 10.1016/j.msea.2013.01.007

384	
385	[18] Manivannan, I., Ranganathan, S., Gopalakannan, S., Suresh, S., and Nagakarthigan,
386	K., 2017, "Tribological and surface behavior of silicon carbide reinforced aluminum
387	matrix nanocomposite," Surfaces and Interfaces, 8 , pp. 127–136.
388	DOI:10.1016/j.surfin.2017.05.007
389	
390	[19] Hosseini, N., Karimzadeh, F., Abbasi, M. H., and Enayati, M. H., 2012, "A
391	comparative study on the wear properties of coarse-grained Al6061 alloy and
392	nanostructured Al6061 – Al 2 O 3 composites," Tribology International, 54 , pp. 58–67.
393	DOI:10.1016/j.triboint.2012.04.020
394	
395	[20] Tiku, V., Navin, K., and Kurchania, R., 2020, "Study of Structural and Mechanical
396	Properties of Al/Nano-Al2O3 Metal Matrix Nanocomposite Fabricated by Powder
397	Metallurgy Method," Transactions of the Indian Institute of Metals, 73 , 1007–1013.
398	DOI:10.1007/s12666-020-01931-x
399	
400	[21] Soltani, N., Sadrnezhaad, S. K., and Bahrami, A., 2014, "Manufacturing wear-
401	resistant 10ce-tzp/al2o3 nanoparticle aluminum composite by powder metallurgy
402	processing," Mater. Manuf. Process., 29 (10), pp.1237–1244.
403	DOI:10.1080/10426914.2014.930954
404	
405	[22] Deaquino-Lara, R., Soltani, N., Bahrami, A., Gutiérrez-Castañeda, E., García-Sánchez,
406	E., and Hernandez-Rodríguez, M. A. L., 2015, "Tribological characterization of Al7075-
407	graphite composites fabricated by mechanical alloying and hot extrusion," Mater. Des.,
408	67 , pp.224–231. DOI:10.1016/j.matdes.2014.11.045
409	
410	[23] Yıldırım, M., Özyürek, D., Gürü, M., 2016, "Investigation of microstructure and wear
411	behaviors of al matrix composites reinforced by carbon nanotube," Fullerenes,
412	Nanotubes and Carbon Nanostructures, 24 (7), pp.467-473.
413	DOI:10.1080/1536383X.2016.1182504
414	
415	[24] International ASTM, 2017, Standard Test Method for Wear Testing with a Pin-on-
416	Disk Apparatus G99-17. DOI:10.1520/G0099-17
417	
418	[25] Çam, S., Demir, V., Ozyürek, D., 2016, "Wear behaviour of A356/TiAl3 in situ
419	composites produced by mechanical alloying," Metals, 6 (2), pp.34.
420	DOI:10.3390/met6020034
421	
422	[26] Fogagnolo, J. B., Ruiz-Navas, E. M., Robert, M. H., and Torralba, J. M., 2003, "The
423	effects of mechanical alloying on the compressibility of aluminium matrix composite
424	powder, iviaterials Science and Engineering: A, $355(1-2)$, pp. 50–55.
425	DOI:T0.T0T0\20851-2083(03)0002\-1
426	

427 [27] Soltani, N., Jafari Nodooshan, H. R., Bahrami, A., Pech-Canul, M. I., Liu, W., and Wu, 428 G., 2014, "Effect of hot extrusion on wear properties of Al-15wt.% Mg2Si in situ metal 429 matrix composites," Mater. Des., 53, pp.774–781. DOI:10.1016/j.matdes.2013.07.084 430 431 [28] Moazami-Goudarzi, M., and Akhlaghi, F., 2016, "Wear behavior of Al 5252 alloy 432 reinforced with micrometric and nanometric SiC particles," Tribology International, 102, 433 pp. 28–37. DOI:10.1016/j.triboint.2016.05.013 434 [29] Edalati, K., Ashida, M., Horita, Z., Matsui, T., and Kato, H., 2014, "Wear resistance 435 436 and tribological features of pure aluminum and AI – AI 2 O 3 composites consolidated by 437 high-pressure torsion," Wear, **310**(1-2), pp. 83–89. DOI:10.1016/j.wear.2013.12.022

439 440	Figure Captions List		
-+0	Fig. 1	Mean relative density values of A356/alumina nanocomposites	
	Fig. 2	SEM images of microstructures of A356/ alumina nanocomposites; A356	
		alloy (a), A356 color filtered (b), A356/1 % alumina composite (c) and	
		A356/2 % alumina composite (d)	
	Fig. 3	SEM image and EDS analysis of the microstructures of nanocomposites	
	Fig. 4	Hardness of A356 alloy and alumina reinforced nanocomposites	
	Fig. 5	Weight loss (a) and wear rate (b) of aluminium nanocomposites tested at	
		different sliding distances	
	Fig. 6	Friction coefficients of A356 alloy and alumina reinforced nanocomposites	
		depending on the sliding distance.	
	Fig. 7	SEM images of worn surfaces of A356 alloy and Al_2O_3 reinforced	
		nanocomposites after 2000 m sliding distance a,b,c) A356 alloy, d,e,f)	
		A356/1 wt. % alumina, g,h,i) A356/2 wt. % alumina	