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In multi-stage production systems, products are manufactured on a lot-basis through several processing steps,
possibly involving various machines in parallel. In case of production of defective items, it is needed to identify the
production step responsible of the problem so as to be able to take the proper countermeasures. In this context, the
objective of the present work is to develop a model for the detection of anomalies in the operation of a machine of
a multistage production system. The main difficulties to be addressed are the lack of labeled data collected while
anomalies are occurring in the considered production stage, and the large number of monitored signals in the system,
that can be considered for the detection. We, then, formulate the anomaly detection problem as unsupervised
classification of multi-dimensional time series and we propose an approach which consists of: a) a model for the
reconstruction of time-series, utilizing Deep Long Short Term Memory (DLSTM) autoencoders, for catching the
highly non-linear dynamics of the signals. b) the definition of an abnormality indicator based on the residuals, i.e.,
the differences between the measured and the reconstructed signal values. The proposed method is verified
considering benchmark data from a plasma etching machine used in the semiconductor manufacturing industry.

Keywords: Semiconductor industry, Multi-stage production systems, Anomaly detection, Multi-dimensional time
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1. Introduction manufacturing companies, such as those
producing semiconductors, electronics, medical
devices, pharmaceuticals and chemicals, which
are characterized by several complex stages

The capability of detecting anomalies in the
production processes is fundamental for
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which can take several days to complete (Yang et
al. (2021).

Anomaly detection deals with the analysis
of time-series data collected by sensors for
monitoring the system behavior during
production. According to (Lindemann et al.
(2021)), anomalies can be of three categories:
point, context and collective. Point anomalies
abruptly projects the process outside the expected
trend. They are typically identified by setting
lower and upper thresholds for the values of the
individual variables of the time series. Context
anomalies involve short time intervals, whereas
collective anomalies cause a gradual drift of the
process. The identification of context and
collective anomalies is a more challenging task
than the identification of point anomalies, since
they require to consider the values of several data
points in the multi-dimensional time series of the
monitored variables.

Several approaches based on model-based
or data-driven methods have been proposed for
detecting  anomalies in  semiconductor
manufacturing, where multivariate time-series
signals are measured in the different stages of the
production process (Moyne et al. 2017). Azamfar
et al. 2020 developed a framework based on
Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Linear Discriminant Analysis,
Decision Tree and Deep Convolutional Neural
Network classifiers. The training of these
supervised models need labelled examples of
patterns collected both in normal process
conditions and during the presence of anomalies.
Fan et al. 2020a developed a model based on the
use of autoencoders for detecting defective wafers
using production data. The encoder produces as
output feature a high-level latent  representation
of the normal condition data, whereas the decoder
reconstructs the expected values of the signals in
normal condition. Then, the reconstruction error
can be interpreted as an index of abnormality of
the production process. In (Fan et al. 2020),
several machine learning approaches, such as
random forest, k-means, ensemble learning
classifier, and t-SNE are used to detect anomalies
in the production processes. These methods are
typically suitable for detecting point anomalies
and require the availability of labelled data to do
that, but they are not tailored to the analysis of
time series.

The present work addresses the following
major challenges:

e unlabelled data are, i.e., the groundtruth
state of the production machine when the
data were collected is not known;

e large number of monitoring signals;

e highly non-linear dynamics of the
monitored signals, with the previous
values of the time series directly
impacting the next values.

To properly address these challenges we
exploit the recent advancements of deep learning,
which have allowed the development of methods
for obtaining high-level representations of
unlabelled time series data (Langkvist et al.
(2014)). Specifically, we consider the use of Long
Short-Term Memory (LSTM) recurrent neural
networks, which are emerging due to their
capability of learning cyclic patterns in sequential
time-series data (Tchatchoua et al. (2021).

The proposed method is made of: a) a model
for the reconstruction of the expected normal
condition behaviour of the measured signals; the
model is based on the use of stacked LSTM
autoencoders, which allow learning the signal
dynamics and building a low-dimensional, high-
level, latent representation of the mnormal
condition data; b) an abnormality indicator, which
elaborates the residuals, i.e. the differences
between measured and reconstructed signals; ¢) a
threshold for triggering the detection of the
anomaly.

The proposed method is applied to multi-
dimensional time-series signals monitored on a
plasma etching machine of a semiconductor
manufacturing industry. The data are taken from
the benchmark proposed in (Wise et al. (1999)).

The remaining part of the work is organised
as follows. Section 2 illustrates the problem
statement. Section 3 describes the proposed
methodology. Section 4 introduces the case study
and discusses the obtained results. In Section 5,
conclusions are drawn.
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2. Problem formulation

In the semiconductor manufacturing industry
devices are produced on a lot-basis. Each lot
consists of several wafers whose production is
performed passing through several machines,
each one dedicated to a specific function.

Considering a single machine, the matrix
X (k) € RTUOX™ contains the time series of the
measurements of n signals in the period of time
T(k), during which the generic k-th wafer has
been processed:

x4 (k)
x() = |28
xr, (k)
X111 X12 v Xin M
| X211 X2z e Xop
XTe1 X2 o XTin

where x; j, t = 1,---,T(k),j = 1,---,n indicates
the measurements of signal j at time ¢ For
simplicity of notation, we assume that the
processing of the k-th. wafer starts at time 0 and
ends at time T (k), and that all measurements are
synchronously acquired every one arbitrary unit
of time. A training set Dyyqi = [X(K)] k=1:nprgim>
collected during the production of N4, wafers
is available. Notice that since the state of the
machine during the production of the wafers is
unknown, the training set may contain wafers
produced while the machine was experiencing an
abnormal condition.

In this context, the objective of the present
work is to develop a method to detect an anomaly
of a machine during the production of a test wafer.

3. Proposed method

The problem outlined in section 2 is addressed by

(Figure 1):

e developing an  unsupervised  signal
reconstruction model, which reproduces the
machine expected behavior in normal
conditions through the reconstruction, X,
of the data, X, collected during the
production of the test wafer;

e  defining an abnormality indicator in terms of
residuals, i.e. 7 = Xyosr — Xpest:
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e  setting a proper threshold for the abnormality
indicator, to detect anomalies.

Training Data:
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Production Data normal condition
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Fig.1. Representation of the conceptual steps of the
proposed method for anomaly detection

Real Mcasurments

A

3.1.1  Signal Reconstruction Model

The signal reconstruction model developed
in this work is based on the use of autoencoders
(AE), i.e. unsupervised neural networks that learn
a high-level lumped representation of the data. It
is built by minimizing the reconstruction error of
the input patterns using as loss function the mean
square error (MSE).

An Autoencoder consists of two parts, an
encoder and a decoder. The encoder receives in
input | consecutive signals values, x(t — [+
1), ..., x(t), and maps them into a latent space of
a dimensionality lower than the dimensionality n
of the input space. Then, the decoder receives in
input the latent features and reconstructs the
original input patterns (Hsich et al. (2019).
Different types of autoencoders have been
proposed such as Vanilla autoencoders (Cheng et
al. (2021)), Convolutional autoencoders (Lee et
al. (2020)), Regularized autoencoders (Vu et al.
(2020)) and LSTM autoencoders (Ahmed et al.
(2019)). These latters are considered in this work,
due to their ability of catching the dynamic
behaviour of multidimensional time series and
long-term dependencies. Figure 2 shows a stacked
LSTM Autoencoder built by stacking layers of
encoders and decoders, each one formed by
LSTM cells.
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Fig. 2. Reconstruction model based on a stacked
LSTM Autoencoder (Ahmed et al.2019)

Figure 3 shows a typical LSTM cell, which
consists of input, forget and output gates. These
gates control the information flow within a cell.
The function of the forget gate is to keep the
information from the previous time step (Provotar
et al. (2019)). It receives in input the hidden state
of the cell at the previous time step, h;_,, and the
input vector at the present time, x,, and provides
in output (Hochreiter et.al (1997)):

fe= U(Wf [he—1,xe] + bf) )

where W, is the weight matrix, by is the bias
vector and ¢ is a sigmoid function which provides
a number between 0 and 1. Notice that when f; =
0, the information about the system state at the
previous time step is completely forgot, whereas
when f; = 1, it is kept.

A
h,

P e

Xt forget gate ) input gate, (output gate

Fig. 3. LSTM cell (Gong et al. 2019)
The function of the input gate is to quantify

the importance of the new information. It
combines the outcomes of the two functions:

~it = o(W;[he—1, %] + b;) 3
Ce = tanh(W,[h_q, x¢] + bc) 4)

where C, is the cell activation vector at time t.
Notice that the use of the tanh activation function,
which produces an outcome in the range [—1,1],
allows deciding if the new information is going to
be added [t, > 0] or subtracted [7, < 0].

The outcome gate is used for updating the
hidden cell at the next time step:

o, = o(Wy[he—1, x¢] + b,) 5)

where h,_;, W, and b, indicate the past hidden
state vector, and the weight matrix and the bias
vector associated to the output gate, respectively.
Notice that due to the use of the sigmoid function,
the gate output o, is between 0 and 1.

Finally, using the information of the above
gates, the hidden cell and the memory cell are
updated:

Ce = fiCon +1:Cy (6)

h; = o;tanh (C,)

3.1.2  Abnormality indicator

Let Xtst be the reconstruction provided by the
stacked LSTM autoencoder of the time series data
Xtest measured during the production of a test
wafer; the abnormality indicator (Al) is defined
by:
T(k)
Al (test wafer) = z riest(rteshT — (7)

t=1

where 1test = Xtest — Xtest s the residual
between the measured and reconstructed signals
at time t. An anomaly is detected when
Al(test wafer) is larger than a properly set
threshold.

In this work, the threshold is set equal to the
95-th percentile of the distribution of the residuals
estimated considering a set of validation data.
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4. Case study

To evaluate the performance of the proposed
method, the benchmark dataset presented in
(Wise et. al 1991) is considered. It contains data
collected from a semiconductor plasma etching
machine, Lam 9600 plasma etch tool, performing
the etching process on semiconductor devices.
The dataset contains the measurements of 21
signals, such as radio frequency (RF) power, RF
load, chamber pressure, endpoint detector, BIC3
flow. They have been collected during the
production of 107 healthy and 21 defective
wafers.

To effectively demonstrate the performance of
the proposed unsupervised fault detection
method, 80% of the data containing healthy and
defective wafers are randomly selected and used
as training and validation sets, for developing the
model and setting the hyperparameters,
respectively. The remaining 20% of the data are
used to evaluate the performance of the proposed
method. Specifically, the training and validation
sets contain 17 defective wafers and 85 healthy
wafers, whereas the test set is made of 22 healthy
and 4 defective wafers.

Three stacked autoencoders made by 64, 32
and 16 LSTM cells, have been stacked in the inner
layers, creating a reconstruction model with an
architecture of 64-32-16-32-64 cells.

Figure 4 shows the convergence of the loss

function on the training and validation sets during
the model training. As mentioned earlier, The
threshold used to identify the defective wafers is
the 95-th percentile of the empirical distribution
of the abnormality indicator values on the
validation set.
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Fig. 4. Evolution of the error in the training and
validation sets during the model training
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Figure 5 shows the obtained results and Table
1 reports the corresponding confusion matrix. It
can been seen that the proposed method is able to
correctly predict the state of all the healthy wafers
and only of one of the four defective wafers. It is,
however, interesting to observe that the
abnormality indicator of the defective wafers
tends to be larger than that of the healthy wafers.
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Fig. 5. Abnormality indicator of test datasets without
cross-validation

Table 1. Confusion matrix of the model on the test set

Confusion Matrix Proposed method
Accuracy: 88.5% K
Defective | Healthy
Defective 1 3
Groundtruth
Healthy 0 22

To reduce the missing alarm rate, i.e. the
fraction of defective wafers classified as healthy,
we have developed an ad-hoc method to identify
and eliminate the defective wafers from the
training set. To this purpose, we have divided the
training set in 10 folds and applied a 10-Fold cross
validation approach. Specifically, the wafers of
the test fold with abnormality indicator value
larger than the threshold are eliminated: among
the 102 wafers of the training set, 10 are
recognized as defective. Then, the Stacked LSTM
autoencoder is retrained on the remaining 92
wafers. Table 2 reports the new confusion matrix.
It can be observed that the performance is
significantly more satisfactory with only one false
alarm, i.e. one healthy wafer recognized as
defective.
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Table 2. Confusion matrix after the elimination of the
defective wafer from the training set

Confusion Matrix Proposed method
Accuracy: 96.2% Defective | Healthy
Defective 4 0
Groundtruth
Healthy 1 21

5. Conclusion

An unsupervised anomaly detection method
based on stacked LSTM autoencoders has been
proposed for the analysis of multi-dimensional
time series detection from multi-stage production
systems. The obtained signal reconstructions are
used to compute a properly defined abnormality
indicator that allows identifying the occurrence of
anomalies during production. The proposed
method has been applied to multi-dimensional
time-series signals monitored on a plasma etching
machine of a semiconductor manufacturing
industry. The obtained results shows the
capability of the LSTM cells to deal with the
dynamics of the signals and of the stacked
architecture of the autoencoders to properly
reconstruct the expected behaviour of signals in
normal condition.

Future work will devoted to the development
of a systematic procedure to eliminate the
abnormal condition data from the training set.
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