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Digital Twins (DTs) can enable real-time monitoring for improved risk assessment and tailored predictive 
maintenance of Nuclear Power Plants (NPPs). However, typical DTs are based on black-box models and their 
application is difficult to accept for such safety-critical systems. In this paper, we propose a grey-box DT comprised 
of: i) a real physical asset whose data/information is gathered from condition monitoring systems; ii) a dynamic 
white-box model of the NPP; and iii) a feedback loop that retroacts on the real asset. The grey-box DT-based 
approach is exemplified in a case study concerning a small modular dual fluid reactor (SMDFR) to show its 
applicability in NPPs. 
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1. Introduction  
Nuclear Power Plants (NPPs) can contribute 

to clean energy transition (Cardin, Zhang, and 
Nuttall 2017). Their safety can be enhanced with 
condition-informed risk assessment models (Zio 
2018; Di Maio, Antonello, and Zio 2018) that can 
exploit the plant state indications that are coming 
from the real-time monitoring of the components, 
whose outcomes can be used for risk-based and 
tailor predictive maintenance (Zio 2018; 
Compare, Baraldi, and Zio 2020; Lu, Baraldi, and 
Zio 2020; Kochunas and Huan 2021; Zhang, Qi, 
and Tao 2022).  

Digital Twins (DTs) can enable real-time 
system performance monitoring with feedbacks to 
improve system reliability (You et al. 2022; 
Kochunas and Huan 2021). DTs have been 
successfully implemented for several purposes in 
different contexts, including critical 
infrastructures monitoring, smart cities, smart 

grids, power plants control, and manufacturing 
process optimization (Fuller et al. 2020; Gong et 
al. 2022). With respect to their application to 
NPPs, DTs can help decision-makers gaining a 
deep understanding of the physical processes to 
avoid critical errors during operation (Lin, Bao, 
and Dinh 2021). In this view, DTs can assist NPP 
real-time risk monitoring.  

Nevertheless, DTs application in NPPs is 
challenged by the need of modelling nuclear 
reaction kinetics and dynamics, complex 
nonlinear thermohydraulic dynamics, and control 
disturbances, by combining information derived 
from simulation models, parameter-dependent 
partial differential equations, and data gathered 
from sensors for condition-monitoring 
components and systems. This results in a 
computational burden that may affect the real-
time state prediction of the components and the 
real-time risk monitoring (Tidriri et al. 2016; 
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Gong et al. 2022).   
  To name few of the attempts done to develop 

DT-related tools in support to NPPs operation, 
Mori et al. (2005) developed a method to estimate 
reactivity parameters using a first-principle 
model, Promsylov et al. (2019) proposed a hybrid 
model that merges information from sensors and 
physical models for security assessment against 
cyber threats, Gong et al. (2022) simulated a 
Pressurized Water Reactor (PWR) dynamics with 
a physics-informed model, Di Maio et al. (2019) 
proposed a simulation-based method to compute 
the Goal Tree Success Tree Master Logic 
Diagram (GTST-MLD) for the risk analysis of 
cyber-physical systems, presenting an application 
on a nuclear lead-cooled fast reactor. However, 
none of these explicitly addresses the real-time 
feedback feature of a tailored DT for risk 
monitoring of NPPs (Jharko 2021; Kochunas and 
Huan 2021; Lin, Bao, and Dinh 2021). This is the 
research gap that we seek to cover in this research 
work. 

 For this, in this paper we present: 
 

(i) A conceptual framework that satisfies the 
main requirements of a DT, that is, the 
incorporation of a real-time feedback loop 
between the physical object and the 
corresponding digital object; 

(ii) A grey-box (GB) DT-based approach to 
consistently combine White-Box (WB) 
models for neutronic and thermohydraulic 
equations and Black-Box (BB) data-driven 
models for real-time risk monitoring. 

 

The GB DT-based approach is exemplified on a 
case study concerning a small modular dual fluid 
reactor (SMDFR), originally presented in (Liu, 
Luo, and Macián-Juan 2021). 

The remainder of the paper is organized as 
follows: Section 2 lays down the fundamentals for 
the development of a GB DT-based approach for 
risk monitoring. Section 3 presents the proposed 
GB DT-based approach for risk monitoring of 
NPPs. Section 4 presents the application of the 
proposed GB DT-based approach to the case 
study. Finally, Section 5 presents the concluding 
remarks and future work. 

2. Background 

2.1. Digital-Twin 
In line with Fuller et al. (2020), a DT consists  

in an integrated model of a physical object, which   
is the real physical system, unit, or isolated 
component to be modeled, and the digital object, 
which models the physical object dynamics and 
predicts its state (You et al. 2022). We can, 
therefore, define: 

 
(i) Digital Model: a model that lacks of 

automatic and bi-directional data exchange 
between the physical object and the digital 
object; 

(ii) Digital Shadow: the digital representation of 
a physical object, comprising a one-way 
feedforward communication from the 
physical object to the digital object; 

(iii) Digital Twin: the integrated model that 
considers the on-line data flow from the 
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Fig. 1. DT real-time closed feedback loop modelling. 
BB: Black-Box; WB: White-Box. 
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existing physical object to the digital object 
and vice versa, generating a feedback loop 
(see Fig. 1) and full real-time integration 
between the two: while the physical object 
feeds the digital object with real-time data, 
the digital object processes it by the use of 
either WB or BB models to predict the future 
state and perform control actions over the 
physical object (Fuller et al. 2020). The main 
features of a DT are, thus: 
� Bi-directional communication between 

the physical object and the digital 
object; 

� Dynamic nature, that makes it evolving 
and adapt to the physical object that 
feeds the data automatically along the 
whole lifetime. 

2.2. The digital object: modelling approaches  

2.2.1. WB and BB modelling 
Models are typically classified with respect to 

either the physical knowledge-dependence or the 
use of data to model system behavior (Loyola-
Gonzalez 2019; Pintelas, Livieris, and Pintelas 
2020): WB models, also known as physics-based 
models, depend exclusively on the physical 
knowledge, establishing a trade-off between 

accuracy and interpretability (Rai and Sahu 
2020); conversely, BB models, also known as 
data-driven models, use and process data at the 
expense of direct interpretability and, therefore, 
expert-based understanding of the model output 
(Pintelas, Livieris, and Pintelas 2020). However, 
although WB models usually enable precision and 
extrapolation capabilities, they often bring high 
computational costs (Gong et al. 2022); BB  
models, on the contrary, can have low 
computational cost but poor extrapolation 
capabilities, depending on the training data 
provided that may be not fully consistent with the 
physical behavior of the system in all operating 
conditions (Rai and Sahu 2020). 

2.2.2. GB modelling 
GB models combine WB and BB models to 

overcome their limitations by trading off the 
model accuracy, the computational burden and 
the interpretability of the results (Rai and Sahu 
2020). Indeed, they can be tailored to the physical 
system requirements and expected functionalities 
(Zendehboudi, Rezaei, and Lohi 2018). 

3. The GB DT-based approach for risk 
monitoring of NPPs 

Few examples of DTs are available in the 
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Fig. 2. Interactions between the digital and the physical object in a DT for risk monitoring applications 



2900 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

literature for applications related to risk 
assessment and management of industrial 
facilities (Agnusdei, Elia, and Gnoni 2021). To 
the authors knowledge, no DT approaches have 
been presented for NPP risk monitoring, for 
which specific technical requirements are defined 
by regulatory authorities (see Nuclear Energy 
Agency 2004, U.S. Nuclear Regulatory 
Commission 2016). Such technical requirements 
comprise aspects like the following ones: 
 
� The risk monitor must provide tailored 

information derived from the application of 
qualitative and quantitative risk assessment 
techniques. In the case of quantitative risk 
assessment, the use of probabilistic risk 
assessment (PRA) techniques is encouraged 
in nuclear regulatory protocols and policies; 

� Instantaneous or average estimates for 
standard indicators such as the core damage 
frequency (CDF) or large early release 
frequency (LERF) should be used under 
potential accidents,  including external as 
well as internal initiators; 

� The risk monitor should provide information 
in three timeframes: historical records (risk 
profiles and cumulative risk), instantaneous 
risk indicators, such as the current plant 
configuration and estimations of point-in-
time risk, and predictions of the future state 

of the NPP; 
� The risk monitor must ensure fast computing 

times (i.e., response time between 1 and 5 
minutes) to ensure the effectiveness of the 
risk-informed decision-making process 
under all operating conditions. 

 
In consideration of these technical 

requirements, we propose the GB DT-based 
approach for risk monitoring shown in Fig. 2: the 
physical object (i.e., the NPP) feeds the digital 
object (i.e., the digital model repository) with 
real-time data of monitored plant parameters (e.g., 
coolant inlet temperature, mass flow rates and 
heat transfer coefficients); conversely, the digital 
object delivers real-time values for several plant 
variables by compiling WB and BB models from 
the model repository (Kerlin and Upadhyaya 
2019). Within this model repository, WB and BB 
models interact and interchange information to 
deliver the predicted variables of the NPP. These 
variables feed a combination of qualitative and 
PRA techniques to provide real-time risk 
monitoring and decision-making indicators for 
NPPs, such as the instantaneous CDF and LERF 
values (Nuclear Energy Agency 2004).  

The risk-informed decision-making process 
results in a set of actions on the control system in 
compliance with the safety protocols and 
guidelines. In this way, the control actions close 
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Fig. 3. Parallel GB DT approach for risk monitoring  
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the feedback loop communication between the 
physical and the digital objects, thus establishing 
the DT integration and bi-directional 
communication flow.  

3.1. The digital object topology 
Fig. 3 presents the topology of the digital 

object, when a parallel arrangement of the models 
is adopted therein: the WB model (i.e., a reduced-
order physics-based model or a lumped parameter 
reactor core model) delivers real-time prediction 
of the actual physical variables values to preserve 
the underlying physical and causal relationships 
of the physical object; these feed the BB model, 
which in turn delivers an error prediction of the 
WB model to correct the predicted variables 
values; the combination of the BB predicted error 
with the predicted values of the WB model is, 
thus, expected to increase the accuracy of the 
predicted variables to monitor the risk and decide 
the control actions with increased confidence.  

The parallel topology of the digital object 
model is useful when a reliable WB model of the 
system is available. In other cases, i.e., when 
some assumptions regarding thermodynamical 
properties and parameters are to be done (for 
example, fuel and coolant mass flow rates, and 
heat transfer coefficients are too uncertain), this 
topology may lead to low accuracy of the GB 
predicted variables because of the poor 
performance of the WB model. In this case, a 
series topology of the digital object (in which the 
WB and the BB models are arranged in series) 
would be beneficial, since, in such configuration 
the BB model predicts the uncertain or critical 
parameters of the WB model to improve its 
accuracy (see Naghedolfeizi 1990).  

4. Case study 

4.1 SMDFR models specifications 
The GB DT-based approach is here exemplified 
with reference to the risk monitoring of a 
SMDFR, whose structure is shown in Fig. 4 (Liu, 
Luo, and Macián-Juan 2021): the secondary 
coolant captures the heat produced within the 
molten salt fuel, and brings it to the heat 
exchangers and the conventional secondary loop 
(Lewitz et al. 2020). 
For the purposes of the presentation of the 
approach, the physical SMDFR is here simulated 
by a high-resolution model  (Eltosohy et al. 2020).  
We consider a parallel arrangement of the models 

within the digital object (Fig. 3). A one-
dimensional lumped-parameter model of the 
actual reactor core dynamics is taken as the WB 
model in the model repository, made of the point 
kinetic and the thermohydraulic equations needed 
to describe the temperature profile and the 
normalized power inside the core (Liu, Luo, and 
Macián-Juan 2021). Only two coolant nodes and 
two fuel nodes are considered, thus reducing the 
number of differential equations in the system to 
be solved (Vajpayee et al. 2020).  

The technical requirements to consider when 
developing and implementing the GB DT-based 
approach for the SMDFR risk monitoring are: 

 
(i) Fast computing times for delivering real-

time values of the reactor core variables 
(neutron density, normalized power, and  
primary and secondary coolant temperature 
profiles); 

(ii) Sensoring of thermohydraulics variables, 
such as mass flow rates, fuel and coolant 
inlet temperatures, and others; 

(iii) Real-time computation of risk indicators by 
the systematic application of qualitative and 
quantitative PRA techniques tailored on the 
SMDFR.  

 
To address the inaccuracies of the values of the 
SMDFR variables predicted by the lumped 

Fig. 4. Scheme of the SMDFR (Liu, Luo, and 
Macián-Juan 2021) 
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model, a BB model (for example, an Artificial 
Neural Network (ANN)) can be introduced for 
matching the variables values predicted by the 
WB model and the BB predicted errors with the 
high-resolution model values, thus increasing the 
accuracy of the GB output variables (Bontempi, 
Vaccaro, and Villacci 2004; Yang et al. 2017).  

4.2 Real-time risk monitoring module 
The developed GB DT-based approach can be 

used to dynamically assess the risk during the 
SMDFR operation, whenever it deviates from the 
nominal conditions and control actions are needed 
to recover normal functioning.  

In the case of automated control devices (e.g, 
power control), a proportional-integral-derivative 
(PID) controller can be used to stabilize the 
system when the deviation is of low magnitude; 
otherwise, manual and complex control 
operations must be implemented on the basis of 
the decisions taken, informed by the risk 
indicators provided. 

5. Conclusions 
In this paper, we have presented a framework 

for the development of a GB DT-based approach 
for risk monitoring of NPPs, in a way to respond 
to the practical and regulatory requirements. To 
be effectively applied, the DT framework needs 
to be equipped with techniques and 
methodologies capable of debugging possible 
inconsistencies within the massive amount of data 
collected by sensors, that might affect the final 
overall performance of the risk monitoring 
module. Also, it requires a rigorous uncertainty 
quantification of the risk indicators values to 
ensure the fidelity and accuracy of the actions 
informed by them. 

Future work will focus on: i) the actual 
implementation of the GB DT-based approach for 
the SMDFR case study and the analysis of the 
quantitative results; ii) the development of a 
multi-layer GB DT-based approach for risk and 
security monitoring of NPPs. 
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