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Background and Objective: Safety of robotic surgery can be enhanced through augmented vision or artificial 
constraints to the robotl motion, and intra-operative depth estimation is the cornerstone of these applications 
because it provides precise position information of surgical scenes in 3D space. High-quality depth estimation 
of endoscopic scenes has been a valuable issue, and the development of deep learning provides more possibility 
and potential to address this issue.
Methods: In this paper, a deep learning-based approach is proposed to recover 3D information of intra-operative 
scenes. To this aim, a fully 3D encoder-decoder network integrating spatio-temporal layers is designed, and it 
adopts hierarchical prediction and progressive learning to enhance prediction accuracy and shorten training 
time.
Results: Our network gets the depth estimation accuracy of MAE 2.55±1.51 (mm) and RMSE 5.23±1.40 (mm) 
using 8 surgical videos with a resolution of 1280×1024, which performs better compared with six other state-of-
the-art methods that were trained on the same data.
Conclusions: Our network can implement a promising depth estimation performance in intra-operative scenes 
using stereo images, allowing the integration in robot-assisted surgery to enhance safety.
1. Introduction

Nowadays, Robot-Assisted Minimally Invasive Surgery (RAMIS) has 
gradually shown more advantages compared to traditional open surgery 
because it enhances the flexibility and accuracy of the operation, and re-
duces the bleeding rate and post-operative recovery time. Nonetheless, 
the safety of minimally invasive surgery remains well-researched due to 
the limited field of view of the endoscope and the lack of haptic feed-
back for surgeons [1,2]. Two emerging computer-aided technologies, 
Augmented Reality (AR) and Virtual Fixtures (VF), are mainstream re-
search hotspots in the field of surgical robotics today. AR can provide 
surgeons with visual surgical guidance by real-time registration [3,4]
between pre-operative models taken by Computed Tomography (CT) or 
Magnetic Resonance Imaging (MRI) and intra-operative tissues, while 
VF can apply preemptive force feedback on the end of manipulator held 
by surgeons to avoid collisions with delicate tissues during operation 
[5,6]. To implement these auxiliary means for the enhancement of sur-
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gical safety, recovering 3D information of the intra-operative scene is 
a fundamental and significant problem since it directly determines the 
accuracy of AR registration and VF force feedback. Hence, an open tech-
nical challenge in the medical field is to accurately and fastly estimate 
the depth of intra-operative soft tissues.

The development potential of depth estimation using stereo endo-
scopic images can be foreseen because it does not require the movement 
of endoscope compared with the monocular depth estimation, which is 
more in line with surgical scenarios where the endoscope often remains 
stationary during the operation. Some famous robot-assisted surgical 
systems have been utilized in clinical treatment, such as the da Vinci 
Surgical System (dVSS, Intuitive Surgical Inc., USA) [7] which is one of 
the most used platforms in RAMIS. Surgeons can perceive depth infor-
mation inside a patient’s body by viewing the left and right endoscopic 
images simultaneously when remotely manipulating the robot, even 
though the endoscope remains fixed. Stereo endoscopic vision systems 
can recover the 3D shape of a scene surface by generating the dispar-
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ity of stereo images based on stereo matching [8]. It means searching 
for the corresponding left and right pixels along the epipolar line on the 
stereo image. Generally, image rectification is a necessary step before 
stereo matching because it can align the left and right epipolar lines 
horizontally, thereby reducing the complexity of the pixel search. Af-
ter obtaining the disparity value of each pixel pair, the corresponding 
depth information is easily recovered by combining the camera focal 
length and baseline distance based on the triangular projection.

Generally speaking, classical stereo matching methods include 
matching cost calculation, cost aggregation, disparity calculation and 
refinement [9,10], and image pre-processing and post-processing are 
always integrated to improve the efficiency of stereo matching. The au-
thors in [11] proposed an improved census transform to enhance the 
robustness of illumination following the above pipeline, and simple lin-
ear iterative clustering was implemented to fill the holes in the disparity 
map as a post-processing step. The experimental results showed that 
this strategy can reconstruct the surgical scene densely based on the 
Hamlyn phantom heart dataset [12], although it is time-consuming and 
loses some matched pixels. A sparse to semi-dense points reconstruction 
strategy for the stereo endoscopic domain was proposed in [13], which 
does not rely on specific feature matching approaches. They adopted 
the Zero Mean Normalized Cross Correlation (ZNCC) to measure the 
dissimilarity during structure propagation because it provides higher 
robustness for regions with poor illumination and texture. The experi-
mental figures presented better accuracy compared with the three other 
existing methods, but it remains some holes in the generated disparity 
maps.

To improve the speed of stereo depth estimation, a GPU-based quasi-
dense matching method was proposed in [14] to restore 3D surgical 
information in real time. The authors recovered a set of sparse feature 
points robustly, and then improved the matching accuracy by updat-
ing the disparity from semi-dense to dense levels using the same ZNCC 
evaluation. It can recover 3D surgical information at approximately 
22 Frames Per Second (FPS) using the image pair with a resolution 
of 360×288, but the issue of missing reconstructed points remains 
to be solved. Similarly, after utilizing the SIFT descriptor to perform 
sparse matching, the authors in [15] performed dense correspondence 
by calculating the patch similarity of stereo image pairs based on the 
normalized cross-correlation metric, and three strict confidence criteria 
were added to enhance the robustness and post-processing was imple-
mented to remove outliers that were significantly different from their 
neighborhood. Qualitative results showed a dense reconstruction effect 
compared to the other two methods, although the quantitative data 
were insufficient. In [16], the authors designed a novel cost function 
consisting of a data term and a local as well as a non-local smooth-
ness term to search for the optimal disparity values globally, then 
the disparity map was upsampled based on an improved bilateral in-
terpolation strategy, which achieved a promising performance on the 
reconstruction accuracy as well as the points of interest using an en-
doscopic phantom dataset. However, the globalized search strategy 
consumes high computing resources, which hinders real-time perfor-
mance.

On the other hand, deep learning-based stereo correspondence has 
also been introduced in the past few years and achieved a more promis-
ing stereo depth estimation performance compared with the above para-
metric approaches. A Convolution Neural Network (CNN) integrating a 
Spatial Pyramid Pooling (SPP) module was utilized in [10] to extract 
the features of the stereo image and build the cost volume, and then 
regressed the disparity map through the 3D stacked hourglass architec-
ture. This method can effectively predict the disparity value, but the 
stacked hourglass modules affect the inference speed, and the general-
ization also needs to be enhanced. Furthermore, an encoder-decoder 
framework with a coarse-to-fine prediction was designed in [17] to 
generate disparity values. They upsampled the 3D feature maps gradu-
ally in the decoder and concatenated the low-level feature maps from 
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the encoder, which showed satisfactory performance on high-resolution 
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image pairs. The authors in [18] streamlined hourglass modules by re-
moving short connections, and the group-wise correlation layers were 
concatenated into the cost volume to contain more similarity-measure 
features. Quantitative evaluation based on two general datasets showed 
this approach could save inference time without diminishing accuracy. 
Following the standard pipeline for stereo matching, the authors [19]
first introduced the Neural Architecture Search (NAS) strategy to select 
the optimal architectures for modules that contain trainable parame-
ters, which could save computational resources and increase accuracy 
during the search process, and it achieved the top ranking in public 
datasets.

It was noticed that the component of cost volume heavily influences 
the final regression, so a cascade cost volume module was designed in 
[20]. The difference compared with the previous volume is that the 
hypothesis range and plane interval gradually reduced in a coarse-to-
fine operation instead of keeping fixed, and the result showed that 
existing models integrating the new cost volume could improve both 
the accuracy and inference time. Next, the authors in [21] adopted a 
pyramid-shaped module to extract features, then constructed a fused 
cost volume to predict the coarsest disparity map, and finally a cas-
cade cost volume was implemented to refine the disparity maps using 
the variance-based uncertainty estimation. More recently, some new 
operations continue to be proposed for the construction of cost vol-
umes. Different from the classical feature concatenation, the authors in 
[22] constructed the cost volume using cosine similarity to enlarge pure 
similarity information and enhance generalization. Although the above 
methods can achieve promising performance on some natural datasets, 
the results in the field of medical images remain to be evaluated.

Considering the insufficiency of annotated medical image datasets, 
some unsupervised learning methods have also been introduced owing 
to the emergence of Generative Adversarial Networks (GAN) [23]. For 
instance, an adversarial depth estimation model was proposed in [24]
to predict depth values without ground truth. They implemented a gen-
erator to predict the left and right disparity maps, and then reprojected 
them to the RGB images and input them to a discriminator to compare 
the difference between the original RGB images and the newly gener-
ated ones. Although these unsupervised learning-based methods [25]
can overcome the limitation of insufficient labels in the medical do-
main, their depth estimation accuracy remains to be enhanced.

It can be seen that the above methods always consider the depth 
estimation performance of a single image pair, which means the spa-
tial feature is utilized. However, medical images are continuous in the 
temporal domain, so the temporal attribute can also be processed and 
explored to measure the stereo depth estimation performance. Spatial-
temporal layers, i.e., feature maps composed of spatial and tempo-
ral features by encoding video clips, were adopted to help improve 
deep learning-based prediction quality in some closed fields, includ-
ing robotic instrument articulation detection [26], preterm infants’ pose 
estimation [27] and inter-fetal membrane segmentation [28]. Applica-
tions in these similar image processing fields inspired us to explore the 
possibility of utilizing spatial-temporal layers in intra-operative stereo 
depth estimation, since it has not yet been implemented in this field. 
Furthermore, some end-to-end deep learning models have started to 
adopt a coarse-to-fine manner for their prediction instead of only out-
putting the final layer [17,18] because it is beneficial to the refinement 
of terminal features. We would also conduct this manner to explore 
its influence when inputting consecutive frames to the neural network 
instead of the traditional input of a single frame. Finally, progressive 
training using adjustable regularization conditions inspired by [29]
was introduced in our stereo depth estimation network to speed up 
the training process. Here, adjustable regularization conditions refer 
to multi-scale image augmentation [30] of training datasets accord-
ing to different sizes of training images because it could promote the 
learning performance of the model and reduce the risk of overfitting. 
Specifically, we input image pairs of three different sizes with data aug-

mentation scales from weak to strong to train the network, to explore 
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Fig. 1. The proposed FESDEnet architecture. Inputs are the rectified temporal clip
coarse-to-fine manner. The black arcs show the transmitting direction of features, t
the solid red arcs denote the concatenation connection between two feature maps. 
clips, and then two different levels of cost volumes are generated based on the extra
blocks respectively, and finally the disparity clips are estimated after the soft argmin
is placed to indicate the composition of the 3D residual block, which consists of tw
yellow mask is placed to show the components of a 3D residual dense block.
the effect of progressive training in medical depth estimation models. 
Based on the above considerations, we proposed three research hy-
potheses:

∙ Hypothesis 1 (H1): The spatio-temporal layers integrating into the 
convolutional neural network can enhance the intra-operative stereo 
depth estimation quality by predicting sequential frames in the tempo-
ral domain.

∙ Hypothesis 2 (H2): Hierarchical prediction in a coarse-to-fine man-
ner can refine the final regression effect when the input of the network 
is consecutive frames.

∙ Hypothesis 3 (H3): Progressive training combined with regulariza-
tion conditions at different scales can speed up the training time of the 
network, but the predictive ability will not be impaired.

In this paper, we address the problem of dense depth estimation of 
intra-operative scenes to enhance surgical safety because it is a solid 
cornerstone for the potential integration with AR and VF. More specifi-
cally, we proposed a fully 3D encoder-decoder architecture to perform 
stereo matching accurately and robustly. Different from the previous 
work in which a single image pair was always regarded as the input, we 
chose surgical video clips for encoding more inter-frame information. 
Hence, we designed a 3D U-shaped encoder to extract the high-level 
features of video clips, and the third dimension processed the tempo-
ral information between consecutive frames. 3D U-Net is an extension 
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from the classic 2D U-Net architecture [31] by replacing all 2D oper-
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s, and outputs are the estimated disparity clips with three different levels in a 
he dashed red arcs indicate the residual connection by the sum operation, and 
A 3D U-shaped encoder is designed to extract high-level features from the RGB 
cted feature maps. Next, they are transmitted to the extended 3D residual dense 
 operation using hierarchical prediction. In the encoder, a transparent red mask 
o convolutional layers and a residual connection. In the decoder, a transparent 

Fig. 2. The implementation of sliding window algorithm based on the stereo 
images. 𝑊𝑑 is the number of frames of the temporal sliding window, and 𝑊𝑠

is the skipping stride of the window. It overlaps one frame, as shown in the 
figure, when 𝑊𝑑 and 𝑊𝑠 are equal to 4 and 3, respectively. 𝑊𝑓 is the number 
of frames between two sampled frames, and the sampled frames are consecutive 

when 𝑊𝑓 is 0.
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Table 1

Parameters of the proposed FESDEnet. The components of each module and the corresponding outputs are provided. The 
stereo image pairs share weights from layers 2 to 16. 𝐻 is the height of the feature maps, 𝑊 is the width, 𝑊𝑑 is the number 
of frames of the temporal sliding window, and 𝐷 denotes the maximum disparity hypothesis value. The symbol “∼” is the 
abbreviation to contain multiple consecutive nodes. Here, Conv3D 3×3 means the kernel size is 3×3×3, Conv3D 1×1 means 
the kernel size is 1×1×1, and Conv3D 5×5 means the kernel size is 5×5×5. The first RDB module consists of layers 18 to 24, 
the second RDB module contains layers 25_2, 26_2 to 31, and the third one contains layers 32_2, 33_2 to 38.

ID Layer Output Connected to

1 Input H×W×Wd×3 2
2 Conv3D 3×3, BN, LeakyRelu H/2×W/2×Wd×16 3
3 Conv3D 1×1, BN, LeakyRelu H/2×W/2×Wd×32 4
4 Conv3D 3×3, BN, LeakyRelu H/4×W/4×Wd×32 5
5 Conv3D 1×1, BN, LeakyRelu H/4×W/4×Wd×32 6
6 Dilated Conv3D 3×3, BN, LeakyRelu H/4×W/4×Wd×32 7
7 Dilated Conv3D 3×3, BN, LeakyRelu H/4×W/4×Wd×32 8
8 Dilated Conv3D 3×3, BN, LeakyRelu H/4×W/4×Wd×32 9
9 3D Residual block H/8×W/8×Wd×64 10, 15
10 3D Residual block H/16×W/16×Wd×128 11, 13
11 3D Residual block H/32×W/32×Wd×128 12
12 Upsampling, Conv3D 3×3, BN, LeakyRelu H/16×W/16×Wd×64 13
13 Conv3D 1×1, BN, LeakyRelu H/16×W/16×Wd×120 14_1 ∼14_3
14_1 Upsampling H/8×W/8×Wd×120 17_1
14_2 Upsampling, Conv3D 1×1, BN, LeakyRelu H/8×W/8×Wd×12 17_1
14_3 Upsampling, Conv3D 3×3, BN, LeakyRelu H/8×W/8×Wd×64 15
15 Conv3D 1×1, BN, LeakyRelu H/8×W/8×Wd×120 16, 17_2
16 Conv3D 1×1, BN, LeakyRelu H/8×W/8×Wd×12 17_2
17_1 Coarse Cost Volume H/8×W/8×(Wd×D/8)×32 24, 31
17_2 Fine Cost Volume H/8×W/8×(Wd×D/8)×32 18 ∼25_2
18 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×48 19 ∼24
19 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×64 20 ∼24
20 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×80 21 ∼24
21 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×96 22 ∼24
22 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×112 23,24
23 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×128 24
24 Conv3D 1×1 H/8×W/8×(Wd×D/8)×32 25_1, 25_2, 26_2 ∼32_2
25_1 Conv3D 3×3, Relu, Conv3D 1×1 H/8×W/8×(Wd×D/8)×1 26_1
25_2 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×48 26_2 ∼31
26_1 Upsampling, Soft Argmin H×W×Wd Output_1
26_2 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×64 27 ∼31
27 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×80 28 ∼31
28 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×96 29 ∼31
29 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×112 30, 31
30 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×128 31
31 Conv3D 1×1 H/8×W/8×(Wd×D/8)×32 32_1, 32_2, 33_2 ∼39
32_1 Conv3D 3×3, Relu, Conv3D 1×1 H/8×W/8×(Wd×D/8)×1 33_1
32_2 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×48 33_2 ∼38
33_1 Upsampling, Soft Argmin H×W×Wd Output_2
33_2 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×64 34 ∼38
34 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×80 35 ∼38
35 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×96 36 ∼38
36 Conv3D 3×3, Relu H/8×W/8×(Wd×D/8)×112 37 ∼38
37 Conv3D 5×5, Relu H/8×W/8×(Wd×D/8)×128 38
38 Conv3D 1×1 H/8×W/8×(Wd×D/8)×32 39
39 Conv3D 3×3, Relu, Conv3D 1×1 H/8×W/8×(Wd×D/8)×1 40
40 Upsampling, Soft Argmin H×W×Wd Output_3
ations with their 3D counterparts, and it has been widely adopted in 
medical image segmentation by inputting 3D data such as CT slices 
and magnetic resonance images [32,33]. Also, 3D U-Net has started to 
be utilized in more image processing fields, including depth estimation 
[34]. On the one hand, 3D U-Net maintains a U-shape architecture with 
a skip connection to fuse multi-scale features for fine prediction. On the 
other hand, it provides the possibility of encoding 3D data such as video 
clips since the 3D convolution operation can slide along the temporal 
dimension. Furthermore, we extended the original 2D residual dense 
block [35] into a 3D version as a basic module in the decoder, and the 
third dimension processed the disparity information. To the best of our 
knowledge, this is the first work to explore the potential of a fully 3D 
network with spatio-temporal layers, hierarchical prediction and pro-
gressive training in the intra-operative stereo depth estimation domain. 
8 videos (3016 image pairs) containing different surgical scenes were 
used to evaluate our network and verify the proposed hypotheses based 
4

on a comprehensive comparison study and an ablation study. Statistical 
tests were also performed to calculate significant differences in these 
studies.

2. Methodology

A Fully 3D Endoscopic Stereo Depth Estimation network (FESDEnet) 
is proposed to perform dense depth estimation, and the overall frame-
work is illustrated in Fig. 1 and consists of an encoder-decoder archi-
tecture with long-short skip connections. Specifically, the encoder is 
established using a 3D U-shaped network to generate high-level feature 
representations, then the extracted feature maps are combined to foster 
cost volumes as the input of the decoder, and finally the decoder consist-
ing of 3D residual dense blocks is implemented to predict final results. 
Table 1 presents the detailed parameters in our network. To encode the 
temporal information within inter-frame similarity, we choose to input 
the video clip instead of the traditional single frame. A sliding window 

algorithm [26] is integrated to generate temporal clips based on the 
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stereo image pairs, as shown in Fig. 2. Starting from the first stereo clip 
consisting of 𝑊𝑑 frames, the window will slide to the next clip along the 
temporal sequence with a stride of 𝑊𝑠 frames. 𝑊𝑓 refers to the number 
of frames between two sampled frames along the temporal direction in 
the sliding window, and 𝑊𝑓 = 0 means the two sampled frames are con-
secutive. Hence, the input of the network can be extended to 4D data 
volume (𝐻 ×𝑊 ×𝑊𝑑 × 3).

1) A 3D U-shaped encoder is designed to extract high-level feature 
maps from the video clips. We adopt the 3D convolutional layer with 
the size of 3 × 3 × 3 and 1 × 1 × 1 alternately to learn the inter-frame 
information within a video clip and limit the parameter complexity. 
Also, we add three dilated convolutional layers to expand the receptive 
fields, and then three residual blocks [36] with the striding operation 
are exploited for unary feature extraction inspired by [10]. Next, the 
upsampling layer combined with the convolutional block is utilized to 
increase the size of feature maps. Here, the twin network is adopted 
through weight sharing to extract left and right high-level feature maps, 
respectively.

2) The 3D stacked cost volume is constructed in a coarse-to-fine 
manner. More specifically, we consider both feature difference measure 
[17] and group-wise correlation [18] (i.e., dividing the feature maps 
into some groups along the channel dimension after the inner product 
operation, and generating the correlation maps by the mean operation 
in each group) to form a stacked cost volume 𝐶𝑖

stacked
, and temporal 

features are integrated using layer concatenation. The final cost volume 
𝐶𝑖

stacked
can be formulated as

𝐶𝑖
1−𝑘

(
𝑑𝑖, 𝑥, 𝑦, 𝑓

)
= |𝑓 𝑖

𝑙−𝑘
(𝑥, 𝑦) − 𝑓𝑖

𝑟−𝑘

(
𝑥− 𝑑𝑖, 𝑦

) |
𝐶𝑖
2−𝑘

(
𝑑𝑖, 𝑥, 𝑦, 𝑔

)
= 1

𝑁𝑐∕𝑁𝑔

⟨
𝑓
𝑖𝑔

𝑙−𝑘
(𝑥, 𝑦), 𝑓 𝑖𝑔

𝑟−𝑘

(
𝑥− 𝑑𝑖, 𝑦

)⟩
𝐶𝑖

stacked
= ‖𝐶𝑖

1−𝑘
,𝐶𝑖

2−𝑘
‖𝐾
𝑘=1

(1)

Where 𝐶𝑖
1−𝑘

is calculated by measuring the difference between left and 
right feature maps, while 𝐶𝑖

2−𝑘
considers their correlation. || is the abso-

lute value symbol, ⟨, ⟩ represents the inner product, and ‖, ‖ denotes the 
vector concatenation operation. 𝑓𝑙 and 𝑓𝑟 are the left and right feature 
maps, 𝑁𝑐 is the number of extracted feature channels, while 𝑁𝑔 repre-
sents the number of feature groups (𝑁𝑔 = 20 in this work). 𝑔 represents 
the feature groups (i.e., group-wise feature maps), which means the di-
vision of feature maps in the channel dimension after the inner product 
so that each feature group contains 𝑁𝑐∕𝑁𝑔 feature maps. After adopt-
ing the mean operation along the channel dimension in each group, we 
can generate the corresponding group-wise correlation maps. 𝑖 is the 
different stage of cost volume (coarse or fine), 𝑘 denotes the frame k in 
the video clip, and 𝑑 is the specific disparity value from the full dispar-
ity hypothesis range (i.e., from 0 to the maximum disparity value).

3) To estimate the disparity map at a high-accurate pixel level, we 
design a 3D Residual Dense Block (RDB) as the basic module in the 
decoder, so the module can refine features of cost volumes in height, 
width, as well as the third dimension containing the disparity values 
in the full hypothesis range. Larger convolution kernels (3 × 3 × 3 and 
5 × 5 × 5 adding biases) are alternately introduced in the residual dense 
block to expand the receptive field when extracting features, and batch 
normalization layers are removed to decrease computational resources. 
The concatenated feature maps are further transited to a 1 ×1 ×1 convo-
lutional layer (with a bias) to squeeze the number of channels, and the 
residual connection is introduced to improve the network representa-
tion ability [35]. Here, we concatenate the stacked coarse cost volume 
to the first two RDB modules, and the fine one is concatenated to the 
start and end of the RDB backbone to integrate multi-level features in 
the decoder. Finally, the feature maps are upsampled to the original 
resolution to generate the matching cost, and the soft argmin opera-
tion [37] is adopted to regress the disparity maps (i.e., converting the 
matching cost to a probability volume along the disparity dimension 
5

using the softmax function, and taking the sum by multiplying all the 
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disparity hypothesis values with their corresponding probabilities). In 
this case, we could compare the difference between the predicted dis-
parity map and the ground truth since they have the same resolution. 
The estimated disparity value 𝑑𝑘 of frame 𝑘 can be defined as [37],

𝑑𝑘 =
𝐷max∑
𝑑=0

𝑑 × 𝜎

(
−𝑐𝑑−𝑘

)
(2)

Where 𝐷max denotes the maximum disparity hypothesis value, 𝑐𝑑−𝑘 is 
the predicted matching cost, and 𝜎(⋅) represents the softmax operation. 
Here, 𝑐𝑑−𝑘 means the predicted cost when the disparity value is 𝑑 in 
the 𝑘-th frame, and it is generated from the decoder before the softmax 
operation.

Finally, the “smooth L1” loss function is adopted to train the net-
work since it has strong robustness and low sensitivity to outliers 
reported in [38]. Also, the hierarchical prediction is implemented to 
estimate the disparity maps in three different levels, and the formula 
can be denoted as,

𝐿(𝑑,𝑑) =
3∑

𝑙=1
𝜆𝑙

(
𝐾∑
𝑘=1

𝑁∑
𝑛=1

smooth 𝐿1

(
𝑑𝑛−𝑘

− 𝑑𝑛−𝑘

))
(3)

smooth𝐿1
(𝑥) =

{
0.5𝑥2, if |𝑥| < 1|𝑥|− 0.5, otherwise

(4)

Where 𝜆𝑙 is the loss weight in different prediction levels, and 𝜆1 is 
the coarsest estimation while 𝜆3 is the finest one. 𝑁 is the total pixel 
number, 𝑑𝑛−𝑘 is the ground truth of the disparity value in the n-th pixel 
of the k-th frame, and 𝑑𝑛−𝑘 is the estimated one.

3. Experimental protocol

3.1. Dataset

Three annotated datasets with consecutive frames were used to train 
our network, including Scene Flow [39], Sintel [40] as well as a self-
made dataset. Specifically, there are three scenes in the Scene Flow 
dataset, and two of them (Driving and Monkaa) were selected for the 
training after checking manually, since the remaining one (FlyingTh-
ings3D) has an apparent difference between two consecutive frames. 
Furthermore, all frames from the Sintel dataset were utilized to train 
the model. To enhance the generalization of our network, we also 
created a dataset based on Vision Blender [41] consisting of five dif-
ferent phantom scenes. 5000 consecutive image pairs (640 × 480) with 
the ground truth were collected in 25 FPS. This self-made dataset 
is now available through this link: https://drive .google .com /file /d /
1DaNDHde2fk21CoP1iWoCpm _-lptDQays /view ?usp =sharing. The in-
formation about how to make this dataset was introduced by the au-
thors of Vision Blender: https://github .com /Cartucho /vision _blender.

To conduct a comprehensive test, we used the public SCARED test 
dataset [42] to perform the qualitative and quantitative evaluation. It 
was captured using porcine cadavers based on the da Vinci Xi surgical 
robot, and it provides 8 surgical videos (1280 × 1024) with the ground 
truth of consecutive sparse point clouds. After checking the ground 
truth, we adopted the images with the ground truth containing valid 
points over 30 percent to avoid the possible shifting error in the ground 
truth, so we have a total of 3016 stereo images for the evaluation. Con-
sidering that the SCARED dataset is not rectified, we rectified the stereo 
images and remapped the predicted depth maps to the original coor-
dinates by calling the cv2.stereoRectify and cv2.remap functions, and 
compared them with the original ground truth. The details of the train-
ing and test datasets are given in Fig. 3.

3.2. Training strategy

Our network was trained from scratch using these three datasets, 

i.e., Scene Flow, Sintel and the self-made synthetic dataset. Temporal 

https://drive.google.com/file/d/1DaNDHde2fk21CoP1iWoCpm_-lptDQays/view?usp=sharing
https://drive.google.com/file/d/1DaNDHde2fk21CoP1iWoCpm_-lptDQays/view?usp=sharing
https://github.com/Cartucho/vision_blender
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Table 2

Quantitative evaluation based on 8 different surgical videos. For instance, “V1 (392)” means video 1 with 392 consecutive stereo images, and ’ALL’ is the final result 
using all videos. Smaller values are better, and the value with the best performance in each metric is bold.

Videos Ref. [9] Ref. [10] Ref. [18] Ref. [19] Ref. [21] Ref. [22] FESDEnet

MAE (mm)

V1 (392) 6.73±2.39 8.16±2.09 12.28±5.40 6.78±1.60 5.30±1.56 8.17±1.55 5.11±1.53

V2 (470) 2.93±0.90 3.32±1.05 5.74±2.53 2.87±0.77 2.22±0.57 3.60±0.97 2.16±0.58

V3 (559) 1.88±0.66 3.11±2.32 5.70±4.14 2.36±1.34 1.86±0.96 2.27±1.23 1.61±0.70

V4 (752) 2.32±1.06 3.53±2.01 6.02±5.27 2.90±1.27 2.19±0.73 2.16±1.10 1.95±0.67

V5 (476) 4.14±0.57 4.57±0.70 4.15±0.63 4.04±0.54 4.06±0.63 3.59±0.38 3.92±0.64
V6 (243) 1.30±0.21 1.29±0.21 1.24±0.18 1.34±0.23 1.08±0.19 1.46±0.21 1.04±0.17

V7 (81) 2.14±0.39 2.29±0.24 1.97±0.16 1.75±0.21 1.60±0.12 1.61±0.16 1.47±0.14

V8 (43) 2.09±0.09 1.65±0.10 1.64±0.08 1.94±0.19 1.56±0.08 1.83±0.10 1.45±0.07

ALL (3016) 3.10±1.98 3.94±2.48 5.88±4.81 3.31±1.87 2.72±1.55 3.34±2.25 2.55±1.51

RMSE (mm)

V1 (392) 12.72±6.35 14.69±4.50 22.23±8.39 13.30±5.65 7.72±1.43 14.27±3.41 7.42±1.55

V2 (470) 9.71±2.76 9.13±3.67 12.58±4.81 7.71±4.04 4.72±0.86 9.87±4.53 4.50±0.87

V3 (559) 8.82±1.48 9.40±4.00 13.83±6.29 9.02±4.31 5.70±1.42 9.60±3.92 5.16±0.81

V4 (752) 9.30±3.32 9.39±3.67 12.87±7.54 8.18±3.28 5.19±0.56 7.22±4.09 4.82±0.50

V5 (476) 9.56±1.39 11.17±3.68 6.72±0.51 8.21±2.07 6.48±0.49 7.57±0.98 6.16±0.46

V6 (243) 8.07±0.98 4.58±1.15 3.82±0.98 5.85±2.70 3.33±0.73 6.35±0.83 3.18±0.69

V7 (81) 11.33±1.72 11.95±1.94 5.54±0.57 5.98±1.15 4.30±0.69 6.84±1.20 4.12±0.65

V8 (43) 12.89±0.53 5.54±0.79 5.26±0.42 7.49±2.36 5.03±0.43 6.40±0.45 4.82±0.39

ALL (3016) 9.77±3.44 9.95±4.42 12.21±7.77 8.68±4.25 5.57±1.50 8.95±4.20 5.23±1.40
Inference Time (s) ALL(3016) 0.39±0.04 0.88±0.04 0.65±0.09 0.99±0.01 0.45±0.09 0.61±0.01 *1.12±0.00

* The inference time of FESDEnet includes the prediction of four consecutive frames, while the inference time of other methods includes the prediction of a single frame.

Fig. 3. The details of the training and test datasets.

Fig. 4. The implementation of progressive training. Image pairs of three differ-
ent sizes are sequentially fed into the network with progressively growing data 

clips as inputs were made using the mentioned window sliding algo-
rithm with 𝑊 𝑑 = 4 to pack consecutive four frames as a clip, because 
it was found to have the best performance based on the following ab-
lation study. To maximize the usage of datasets for the training, we set 
𝑊𝑠 as 1 to skip only one frame, while it was set as 4 in the test part 
to save the inference time. In this way, it will not predict the repeated 
frames during the evaluation. 𝑊𝑓 was always set as 0 because the train-
ing datasets provide different scales between consecutive two frames by 
checking inter-frame similarity, which enhances the adaptability of our 
network.

Progressive training [29] was introduced to train our network, 
as shown in Fig. 4. Three different sizes of image pairs (256 × 192, 
384 ×256, 512 ×384, respectively) were adopted combining with weak-
to-strong data augmentation (gradually increasing the threshold and 
probability) which includes adjusting brightness, gamma, contrast, ran-
dom scaling and cropping. Here, we chose the cropping operation in-
stead of downsampling to enlarge the training datasets. To enhance 
the robustness of our network to illumination changes, we randomly 
added white rectangles to occlude some pixel values. Furthermore, we 
trained the network with epochs=10 and the maximum disparity hy-
pothesis value 𝐷max=191. For the batch size, we set 24 during the first 
three epochs with the smallest image pairs, 12 during the middle three 
epochs, and 4 for the last four epochs with the largest image pairs. The 
learning rate was set as 0.001 in the first 9 epochs while it was reduced 
to 0.0001 in the last epoch. The training process was implemented on a 
Red Hat Linux server with 4 NVIDIA V100 GPUs (16 GB).

3.3. Performance metrics

Two common evaluation metrics for depth estimation were adopted 
to measure the prediction accuracy, including Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) [43],

MAE = 1
𝑁

𝑁∑
𝑖=1

||𝑑𝑖(𝑥, 𝑦) − 𝑑′
𝑖
(𝑥, 𝑦)|| (5)

RMSE =

√√√√ 1
𝑁

𝑁∑
𝑖=1

|||𝑑𝑖(𝑥, 𝑦) − 𝑑′
𝑖
(𝑥, 𝑦)|||2 (6)

Where 𝑁 is the total number of pixel points (𝑥, 𝑦), 𝑑𝑖 is the ground 
truth of the depth value, while 𝑑′

𝑖
denotes the predicted depth value. 

It can be seen that MAE is able to measure the predicted depth perfor-
6

augmentation.
 mance comprehensively, while RMSE is more sensitive to outliers, since 
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Fig. 5. The box plots related to MAE (a) and RMSE (b) using 8 surgical videos consisting of 3016 image pairs. The Mann-Whitney U test was conducted to check 
if they are significantly different between other methods and our FESDEnet, and the result is shown as 𝑛𝑠 ∶ 0.05 < 𝑝 ≤ 1, ∗∶ 0.01 < 𝑝 ≤ 0.05, ∗∗∶ 0.001 < 𝑝 ≤ 0.01, 
∗∗∗∶ 0.0001 < 𝑝 ≤ 0.001, and ∗∗∗∗∶ 𝑝 ≤ 0.0001.
it will be more affected when outliers exist compared with MAE. Hence, 
it is necessary to evaluate both errors to see the robust performance re-
lated to accuracy. Moreover, the inference time was also calculated as 
an important metric to evaluate the prediction speed.

3.4. Ablation study

As our final model, we chose to set 𝑊𝑑 as 4, which means the tem-
poral clip was composed of four consecutive frames. Also, the weight 
combination 𝜆𝑙 in the loss function was set as 𝜆1 = 0.3, 𝜆2 = 0.5, 𝜆3 = 1. 
To evaluate the proposed three hypotheses and find out the best config-
uration for the network, we conducted the ablation study based on four 
groups of experiments:

Group 1: To evaluate the integration performance of spatio-temporal 
layers, we designed three experiments with different 𝑊𝑑 values, specif-
ically, 𝑊𝑑 = 3 (G1E1), 𝑊𝑑 = 2 (G1E2), and 𝑊𝑑 = 1 (G1E3). Here, the 
network will become a 2D encoder when 𝑊𝑑 is equal to 1 because the 
input is a single frame.

Group 2: To check the influence of the progressive training, three 
experiments were implemented with different sizes of image pairs as the 
input. Firstly, we only input the image pairs of 256 ×192 with the batch 
size of 24 (G2E1); then, the stereo images of 384 × 256 were selected 
with the batch size of 12 in the second experiment (G2E2); finally, the 
stereo images of 512 × 384 with the batch size of 4 were input to the 
7

network for training (G2E3).
Group 3: To explore the effect of hierarchical prediction in our 
network, we set different weight combination in the loss function, 
i.e., 𝜆1 = 0.5, 𝜆2 = 0.7, 𝜆3 = 1 (G3E1); 𝜆1 = 0.3, 𝜆2 = 0.7, 𝜆3 = 1 (G3E2); 
𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 1 (G3E3). It can be seen that the hierarchical predic-
tion was removed in the last experiment.

Group 4: To assess the influence of different components in our net-
work, three experiments were also implemented later. First of all, we 
modified the dilated convolutional layers and residual blocks as the 
normal convolutional layers (G4E1); next, we added the batch nor-
malization in the decoder (G4E2); finally, we removed the group-wise 
correlation in the cost volume (G4E3).

4. Results

The SCARED test dataset, consisting of 8 different surgical videos 
with 3016 image pairs, was used to perform a comprehensive evalu-
ation of our proposed network. Six state-of-the-art methods, including 
one local-optimization-based method [9] and five learning-based mod-
els [10,18,19,21,22], were chosen to conduct the comparison study 
with our network. To perform a fair comparison study, we adopted the 
same three datasets (Scene Flow, Sintel, and our self-made synthetic 
dataset) to train the existing models from scratch except for [9] since it 
is a parametric method that does not need to be trained. We retained 
the original hyperparameters (such as learning rate) recommended by 

the authors for other learning-based methods. For those methods that 
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Fig. 6. Qualitative depth estimation results using 6 random samples from different surgical videos. The error maps were also given for a comprehensive understanding 
of the prediction error at each pixel level. For each model, the first row presents the reconstructed point cloud, the second row shows the estimated depth map, and 
8

the third row shows the error map.
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Table 3

The results of the ablation study are based on the whole dataset, and they are divided into four groups. Both MAE and RMSE were given as 
well as the corresponding results of the Wilcoxon signed-rank test. The specific description of this ablation study can be read in Section 3.4.

Groups Experiments MAE (mm) / Signed-rank Test RMSE (mm) / Signed-rank Test

G1: Spatio-temporal layers

G1E1: Wd = 3 2.62±1.56 **** 5.42±1.44 ****
G1E2: Wd = 2 2.58±1.57 *** 5.41±1.43 ****
G1E3: Wd = 1 2.59±1.56 **** 5.34±1.50 ****
Proposed: Wd = 4 2.55±1.51 5.23±1.40

G2: Progressive training

G2E1: 256×192 2.67±1.50 **** 5.50±1.57 ****
G2E2: 384×256 2.58±1.52 *** 5.51±1.71 ****
G2E3: 512×384 2.57±1.54 ns 5.30±1.55 ns
Proposed: Mixed 2.55±1.51 5.23±1.40

G3: Hierarchical prediction

G3E1: (0.5, 0.7, 1) 2.64±1.63 **** 5.52±1.51 ****
G3E2: (0.3, 0.7, 1) 2.62±1.53 **** 5.38±1.44 ****
G3E3: (0, 0, 1) 2.65±1.57 **** 5.52±1.46 ****
Proposed: (0.3, 0.5, 1) 2.55±1.51 5.23±1.40

G4: Different components

G4E1: modify conv layers 2.59±1.57 *** 5.30±1.41 ****
G4E2: add BN in decoder 2.54±1.52 ** 5.27±1.45 ****
G4E3: modify cost volume 2.59±1.56 **** 5.39±1.61 **
Proposed 2.55±1.51 5.23±1.40
provide multiple hyperparameter configurations for different training 
datasets, we chose the configuration of Scene Flow since it is also the 
main dataset in our case. It should be noticed that the optimization-
based method [9] outputs sparse depth maps while other learning-based 
models predict dense depth maps. All assessments were based on an 
Ubuntu server with an NVIDIA A100 GPU (40 GB), and the quantitative 
results were shown in Table 2. When calculating all the image pairs, our 
FESDEnet got the best performance with 2.55±1.51 mm in MAE and 
5.23±1.40 mm in RMSE. Our method also got the shortest inference 
time of 0.28 s in one frame with a resolution of 1280 × 1024, but please 
note that our network predicts four consecutive frames simultaneously 
and the inference time is 1.12 s in practice. Specifically, our network got 
the 7 best reconstruction performances related to MAE in these videos. 
Also, our network got the lowest error in all videos when calculating 
RMSE, which showed that our approach has stronger robustness to the 
outliers when reconstructing the surgical scene. Furthermore, the box 
plots of MAE and RMSE using all 8 videos were shown in Fig. 5. We 
conducted the Mann-Whitney U test to evaluate the significant differ-
ence between our network and the state-of-the-art methods. It can be 
seen that our methods are significantly different from other methods 
when calculating both MAE and RMSE. Finally, the qualitatively recon-
structed scenes were given in Fig. 6. We selected three typical methods 
[18,21,22] from the comparison study to present their reconstruction 
results compared with ours. The motivation for choosing these three 
methods is that [18] performs the worst in accuracy, while [21] per-
forms the best in the existing methods, and [22] is the latest model. In 
particular, we also visualized the error maps at the pixel level to demon-
strate the error distribution. Our network could generate a smoother 
surface with fewer outliers compared with other approaches, which 
showed promising reconstruction performance in the medical domain.

Then, the ablation study was conducted to explore our proposed hy-
potheses and find out the best configuration, as shown in Table 3. We 
divided the ablation study into four groups and calculated both MAE 
and RMSE. Furthermore, we performed the Wilcoxon signed-rank test 
[44] to check the statistical difference. In group 1, it can be seen that 
the reconstruction accuracy is the best when the temporal clips con-
sist of four consecutive frames. It should be noted that the performance 
growth is not proportional to the number of consecutive frames, since 
the performance when 𝑊𝑑 = 3 is even worse than the single input. 
Furthermore, the progressive training gets the best performance com-
pared with the input of fixed resolution, although there is no significant 
difference when inputting the maximum resolution of 512 × 384. Nev-
ertheless, this strategy speeds up the training time. Next, we found that 
the hierarchical prediction with the weights of 𝜆1 = 0.3, 𝜆2 = 0.5, 𝜆3 = 1
9

performs best, while it would be the worst when removing the hierar-
chical prediction. Finally, we can see that our proposed network gets 
the best performance compared with those that modify some compo-
nents in Group 4.

5. Discussion and conclusions

In this paper, we proposed a fully 3D encoder-decoder network with 
stacked cost volumes, and we integrated spatio-temporal layers, hi-
erarchical prediction and progressive training into our network. The 
comparison study based on the quantitative and qualitative evaluation 
showed promising performance by comparing with the state-of-the-art 
methods using 8 surgical videos. More importantly, we explored the 
proposed three hypotheses using the ablation study. We found that for 
Hypothesis 1, spatio-temporal layers with the proper consecutive frames 
could enhance the performance of intra-operative stereo depth estima-
tion. However, we cannot assume that the performance of the model 
will improve as the number of consecutive frames increases, because 
the temporal clip composed of 3 consecutive frames will even perform 
worse than the input of a single frame in our case. Furthermore, the pro-
gressive training (Hypothesis 2) strategy with the weak-to-strong data 
regularization could shorten the training time while not deteriorating 
the performance of the network. We can also observe that input with 
higher resolution could enhance accuracy although the training time 
will be slower. Finally, the hierarchical prediction (Hypothesis 3) with 
the proper weights performs better compared with the traditional ter-
minal output, which shows the potential for future regression models 
with the input of video clips.

A possible limitation of the network is that it requires annotated 
datasets for training. We understand that the datasets with ground truth 
in the intra-operative stereo depth estimation community are always 
insufficient. It is also not easy to make the annotation manually by 
ourselves, since the ground truth belongs to the pixel level and relies 
on external devices to capture it. Thanks to the contributions of pre-
vious scholars in making annotated medical datasets such as Endoabs 
[45], SERV-CT [46], and the toolkit of Vision Blender [41], which could 
promote the development of supervised learning in the medical com-
munity. A possible improvement is to train our network without the 
requirement of annotated datasets, for instance, by introducing GAN to 
train the network in an adversarial way [8,47], which may release the 
burden of requiring annotated medical datasets.

Another limitation is that the temporal information may be difficult 
to be utilized well in clinical applications. The sliding window algo-
rithm was adopted to encode the temporal information in this work, 
and the parameters are fixed, such as the frame number of video clips 

𝑊𝑑 , the number of frames between two sampled images 𝑊𝑓 , and the 
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skipping stride along the temporal sequence 𝑊𝑠. However, the clin-
ical environment is always complex, which means the fluctuation of 
the inter-frame difference is not constant. Many factors may influence 
the performance when encoding the temporal information, such as the 
movement of endoscope and the variation of light. For instance, the 
temporal information is different in two cases: when the endoscope 
moves rapidly and the surgical scene remains static. A possible solu-
tion is to consider robotic kinematics and enhance the perception of 
surgical semantics so that the temporal information can be encoded dy-
namically.

Our model predicts the disparity maps of four frames simultane-
ously, so the prediction time is relatively slower than other models 
based on single-frame prediction. To perform a real-time application 
using our model, downsampling the original images to a smaller res-
olution can significantly reduce the inference time, which needs more 
evaluations in the future.

To conclude, the proposed network suggests an effective and promis-
ing performance in intra-operative depth estimation based on the stereo 
endoscope. It provides the foundation to integrate AR and VF in robot-
assisted surgery for safety. In the future, we will extend the proposed 
network to perform a multi-task estimation, such as the segmentation 
of point clouds [48,49], which is also an important topic today.

Declaration of competing interest

The authors declare no conflict of interest relevant to this work.

Appendix A. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .cmpb .2023 .107937.

References

[1] A. Marzullo, S. Moccia, M. Catellani, F. Calimeri, E. De Momi, Towards realistic 
laparoscopic image generation using image-domain translation, Comput. Methods 
Programs Biomed. 200 (2021) 105834.

[2] S. Bano, F. Vasconcelos, M. Tella-Amo, G. Dwyer, C. Gruijthuijsen, E. Vander 
Poorten, T. Vercauteren, S. Ourselin, J. Deprest, D. Stoyanov, Deep learning-based 
fetoscopic mosaicking for field-of-view expansion, Int. J. Comput. Assisted Radiol. 
Surg. 15 (11) (2020) 1807–1816.

[3] G. Zampokas, G. Peleka, K. Tsiolis, A. Topalidou-Kyniazopoulou, I. Mariolis, D. Tzo-
varas, Real-time stereo reconstruction of intraoperative scene and registration to 
preoperative 3d models for augmenting surgeons’ view during Ramis, Med. Phys. 
49 (10) (2022) 6517–6526.

[4] Z.M. Baum, Y. Hu, D.C. Barratt, Real-time multimodal image registration with par-
tial intraoperative point-set data, Med. Image Anal. 74 (2021) 102231.

[5] F. Chen, X. Cui, B. Han, J. Liu, X. Zhang, H. Liao, Augmented reality navigation 
for minimally invasive knee surgery using enhanced arthroscopy, Comput. Methods 
Programs Biomed. 201 (2021) 105952.

[6] M. Selvaggio, G.A. Fontanelli, F. Ficuciello, L. Villani, B. Siciliano, Passive virtual 
fixtures adaptation in minimally invasive robotic surgery, IEEE Robot. Autom. Lett. 
3 (4) (2018) 3129–3136.

[7] Z. Chen, S. Terlizzi, T. Da Col, A. Marzullo, M. Catellani, G. Ferrigno, E. De Momi, 
Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical 
skill evaluation, Int. J. Comput. Assisted Radiol. Surg. (2022) 1–9.

[8] H. Luo, C. Wang, X. Duan, H. Liu, P. Wang, Q. Hu, F. Jia, Unsupervised learning of 
depth estimation from imperfect rectified stereo laparoscopic images, Comput. Biol. 
Med. 140 (2022) 105109.

[9] A. Geiger, M. Roser, R. Urtasun, Efficient large-scale stereo matching, in: Asian Con-
ference on Computer Vision, Springer, 2010, pp. 25–38.

[10] J.-R. Chang, Y.-S. Chen, Pyramid stereo matching network, in: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 5410–5418.

[11] V. Penza, J. Ortiz, L.S. Mattos, A. Forgione, E. De Momi, Dense soft tissue 3d recon-
struction refined with super-pixel segmentation for robotic abdominal surgery, Int. 
J. Comput. Assisted Radiol. Surg. 11 (2) (2016) 197–206.

[12] S. Giannarou, M. Visentini-Scarzanella, G.-Z. Yang, Probabilistic tracking of affine-
invariant anisotropic regions, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2012) 
130–143.

[13] D. Stoyanov, M.V. Scarzanella, P. Pratt, G.-Z. Yang, Real-time stereo reconstruc-
tion in robotically assisted minimally invasive surgery, in: International Conference 
on Medical Image Computing and Computer-Assisted Intervention, Springer, 2010, 
10

pp. 275–282.
Computer Methods and Programs in Biomedicine 244 (2024) 107937

[14] G. Zampokas, K. Tsiolis, G. Peleka, I. Mariolis, S. Malasiotis, D. Tzovaras, Real-
time 3d reconstruction in minimally invasive surgery with quasi-dense matching, 
in: 2018 IEEE International Conference on Imaging Systems and Techniques (IST), 
IEEE, 2018, pp. 1–6.

[15] S. Bernhardt, J. Abi-Nahed, R. Abugharbieh, Robust dense endoscopic stereo re-
construction for minimally invasive surgery, in: International MICCAI Workshop on 
Medical Computer Vision, Springer, 2012, pp. 254–262.

[16] C. Wang, F.A. Cheikh, M. Kaaniche, O.J. Elle, Liver surface reconstruction for im-
age guided surgery, in: Medical Imaging 2018: Image-Guided Procedures, Robotic 
Interventions, and Modeling, vol. 10576, SPIE, 2018, pp. 576–583.

[17] G. Yang, J. Manela, M. Happold, D. Ramanan, Hierarchical deep stereo matching on 
high-resolution images, in: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2019, pp. 5515–5524.

[18] X. Guo, K. Yang, W. Yang, X. Wang, H. Li, Group-wise correlation stereo network, 
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 3273–3282.

[19] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond, Z. Ge, 
Hierarchical neural architecture search for deep stereo matching, Adv. Neural Inf. 
Process. Syst. 33 (2020) 158–22 169.

[20] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, P. Tan, Cascade cost volume for high-resolution 
multi-view stereo and stereo matching, in: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 2020, pp. 2495–2504.

[21] Z. Shen, Y. Dai, Z. Rao, Cfnet: cascade and fused cost volume for robust stereo 
matching, in: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2021, pp. 13 906–13 915.

[22] B. Liu, H. Yu, G. Qi, Graftnet: towards domain generalized stereo matching with a 
broad-spectrum and task-oriented feature, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 012–13 021.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. 
Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11) 
(2020) 139–144.

[24] B. Huang, J.-Q. Zheng, A. Nguyen, D. Tuch, K. Vyas, S. Giannarou, D.S. Elson, 
Self-supervised generative adversarial network for depth estimation in laparoscopic 
images, in: International Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer, 2021, pp. 227–237.

[25] Z. Yang, R. Simon, Y. Li, C.A. Linte, Dense depth estimation from stereo endoscopy 
videos using unsupervised optical flow methods, in: Annual Conference on Medical 
Image Understanding and Analysis, Springer, 2021, pp. 337–349.

[26] E. Colleoni, S. Moccia, X. Du, E. De Momi, D. Stoyanov, Deep learning based robotic 
tool detection and articulation estimation with spatio-temporal layers, IEEE Robot. 
Autom. Lett. 4 (3) (2019) 2714–2721.

[27] S. Moccia, L. Migliorelli, V. Carnielli, E. Frontoni, Preterm infants’ pose estimation 
with spatio-temporal features, IEEE Trans. Biomed. Eng. 67 (8) (2019) 2370–2380.

[28] A. Casella, S. Moccia, D. Paladini, E. Frontoni, E. De Momi, L.S. Mattos, A shape-
constraint adversarial framework with instance-normalized spatio-temporal features 
for inter-fetal membrane segmentation, Med. Image Anal. 70 (2021) 102008.

[29] M. Tan, Q. Le, Efficientnetv2: smaller models and faster training, in: International 
Conference on Machine Learning, PMLR, 2021, pp. 096–10 106.

[30] E.D. Cubuk, B. Zoph, J. Shlens, Q.V. Le, Randaugment: practical automated data 
augmentation with a reduced search space, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops, 2020, pp. 702–703.

[31] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical 
image segmentation, in: International Conference on Medical Image Computing and 
Computer-Assisted Intervention, Springer, 2015, pp. 234–241.

[32] Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, O. Ronneberger, 3d u-net: learning 
dense volumetric segmentation from sparse annotation, in: Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2016: 19th International Confer-
ence, Proceedings, Part II 19, Athens, Greece, October 17-21, 2016, Springer, 2016, 
pp. 424–432.

[33] P. Ghosal, T. Chowdhury, A. Kumar, A.K. Bhadra, J. Chakraborty, D. Nandi, Mhuri: 
a supervised segmentation approach to leverage salient brain tissues in magnetic 
resonance images, Comput. Methods Programs Biomed. 200 (2021) 105841.

[34] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, H. Su, Mvsnerf: fast general-
izable radiance field reconstruction from multi-view stereo, in: Proceedings of the 
IEEE/CVF International Conference on Computer Vision, 2021, pp. 124–14 133.

[35] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-
resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2018, pp. 2472–2481.

[36] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2016, pp. 770–778.

[37] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, A. Bry, 
End-to-end learning of geometry and context for deep stereo regression, in: Proceed-
ings of the IEEE International Conference on Computer Vision, 2017, pp. 66–75.

[38] R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on 

Computer Vision, 2015, pp. 1440–1448.

https://doi.org/10.1016/j.cmpb.2023.107937
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39F1CD7D207E177872A93113FCB4EC4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39F1CD7D207E177872A93113FCB4EC4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39F1CD7D207E177872A93113FCB4EC4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib12C7F442999F9E0DD4390AC5B85ADCD0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib12C7F442999F9E0DD4390AC5B85ADCD0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib12C7F442999F9E0DD4390AC5B85ADCD0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib12C7F442999F9E0DD4390AC5B85ADCD0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib0CB65D5EE2268FF352FEE6EC2175D784s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib0CB65D5EE2268FF352FEE6EC2175D784s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib0CB65D5EE2268FF352FEE6EC2175D784s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib0CB65D5EE2268FF352FEE6EC2175D784s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF015FCCC1EA25D119BB0371F83C1C075s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF015FCCC1EA25D119BB0371F83C1C075s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB48E4E14C109143DAD0DC6954E24AC8Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB48E4E14C109143DAD0DC6954E24AC8Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB48E4E14C109143DAD0DC6954E24AC8Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibCF6C6939246C398A699E5B80C6454308s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibCF6C6939246C398A699E5B80C6454308s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibCF6C6939246C398A699E5B80C6454308s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib8C14BE8A19EA86CD545D805CF73609F1s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib8C14BE8A19EA86CD545D805CF73609F1s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib8C14BE8A19EA86CD545D805CF73609F1s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD5BE226B3C793B5DAAEEB5BAC7DDC1A5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD5BE226B3C793B5DAAEEB5BAC7DDC1A5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD5BE226B3C793B5DAAEEB5BAC7DDC1A5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA58DA7DEDE0AD73B0F9882E535801DBEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA58DA7DEDE0AD73B0F9882E535801DBEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibBD6B3BD200090D2FBE1D9E8E3BA76B36s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibBD6B3BD200090D2FBE1D9E8E3BA76B36s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibBD6B3BD200090D2FBE1D9E8E3BA76B36s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF5261E09FA251731B6E6B2C0DDA178EDs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF5261E09FA251731B6E6B2C0DDA178EDs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF5261E09FA251731B6E6B2C0DDA178EDs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibDBA5468AE76A5C67039E98A528831162s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibDBA5468AE76A5C67039E98A528831162s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibDBA5468AE76A5C67039E98A528831162s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib405416D0847A73BDC543F365ED169044s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib405416D0847A73BDC543F365ED169044s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib405416D0847A73BDC543F365ED169044s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib405416D0847A73BDC543F365ED169044s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07A5AC1B7A365EC41FDC2C047C5F0841s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07A5AC1B7A365EC41FDC2C047C5F0841s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07A5AC1B7A365EC41FDC2C047C5F0841s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07A5AC1B7A365EC41FDC2C047C5F0841s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib51A1D2EFA79E47B0245395B9C5C593DAs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib51A1D2EFA79E47B0245395B9C5C593DAs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib51A1D2EFA79E47B0245395B9C5C593DAs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibFAA90F752D7AC55BE391AB22B043D6D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibFAA90F752D7AC55BE391AB22B043D6D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibFAA90F752D7AC55BE391AB22B043D6D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF88518A88794DEC7B60EE6CFA369A694s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF88518A88794DEC7B60EE6CFA369A694s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF88518A88794DEC7B60EE6CFA369A694s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib109506114C97952BC1AC0EF3959795B7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib109506114C97952BC1AC0EF3959795B7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib109506114C97952BC1AC0EF3959795B7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC0DC2F2BFABF67164173A9E05314AE8Ds1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC0DC2F2BFABF67164173A9E05314AE8Ds1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC0DC2F2BFABF67164173A9E05314AE8Ds1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA23BEE18804EE9D7E41D1D28F1A378C7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA23BEE18804EE9D7E41D1D28F1A378C7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA23BEE18804EE9D7E41D1D28F1A378C7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC7708E14CF7DDBF3E0238292E838DB03s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC7708E14CF7DDBF3E0238292E838DB03s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC7708E14CF7DDBF3E0238292E838DB03s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib96194F864B89E32EC5C1BA2C5336CF92s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib96194F864B89E32EC5C1BA2C5336CF92s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib96194F864B89E32EC5C1BA2C5336CF92s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB5CB5908C753D05E8CF86EADB14AB745s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB5CB5908C753D05E8CF86EADB14AB745s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibB5CB5908C753D05E8CF86EADB14AB745s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib46A0FB6F522C777950F26DF918FABF2Bs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib46A0FB6F522C777950F26DF918FABF2Bs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib46A0FB6F522C777950F26DF918FABF2Bs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib46A0FB6F522C777950F26DF918FABF2Bs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6DC0382CEA226C3E4232C0F8361B66D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6DC0382CEA226C3E4232C0F8361B66D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6DC0382CEA226C3E4232C0F8361B66D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib11E9DAF3E0FF1C3BC8AA20604368CB4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib11E9DAF3E0FF1C3BC8AA20604368CB4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib11E9DAF3E0FF1C3BC8AA20604368CB4Es1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib9131781C872598EA7F4B4B56BB0D8BB4s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib9131781C872598EA7F4B4B56BB0D8BB4s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC61BC16CFB93CE98FB0A7FF115A5A859s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC61BC16CFB93CE98FB0A7FF115A5A859s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibC61BC16CFB93CE98FB0A7FF115A5A859s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib358AE29D8D93AF2D1BA7DD7F81E8B0D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib358AE29D8D93AF2D1BA7DD7F81E8B0D5s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39998F8A7EC5B1A49DD4938C8BEB65FEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39998F8A7EC5B1A49DD4938C8BEB65FEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib39998F8A7EC5B1A49DD4938C8BEB65FEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07C553A021EEFC876017ABB5C3682151s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07C553A021EEFC876017ABB5C3682151s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib07C553A021EEFC876017ABB5C3682151s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib08D36A1EE87524B8D479A0CF20DFEE56s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib08D36A1EE87524B8D479A0CF20DFEE56s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib08D36A1EE87524B8D479A0CF20DFEE56s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib08D36A1EE87524B8D479A0CF20DFEE56s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib08D36A1EE87524B8D479A0CF20DFEE56s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF0ABA44BE09194B010E84F9FC656CFDCs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF0ABA44BE09194B010E84F9FC656CFDCs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF0ABA44BE09194B010E84F9FC656CFDCs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1F78B1E908AB250A6723DFEF1ACAD7EBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1F78B1E908AB250A6723DFEF1ACAD7EBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1F78B1E908AB250A6723DFEF1ACAD7EBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib47352F97A3A362D62663247DB43327CBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib47352F97A3A362D62663247DB43327CBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib47352F97A3A362D62663247DB43327CBs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF41B6A090B8824A931ADD947B10DB7B0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF41B6A090B8824A931ADD947B10DB7B0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibF41B6A090B8824A931ADD947B10DB7B0s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib2D72D2CE19A9F65C68CB55DD32D60809s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib2D72D2CE19A9F65C68CB55DD32D60809s1


Computer Methods and Programs in Biomedicine 244 (2024) 107937Z. Chen, L. Cruciani, E. Lievore et al.

[39] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox, A large 
dataset to train convolutional networks for disparity, optical flow, and scene flow 
estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2016, pp. 4040–4048.

[40] D.J. Butler, J. Wulff, G.B. Stanley, M.J. Black, A naturalistic open source movie 
for optical flow evaluation, in: European Conference on Computer Vision, Springer, 
2012, pp. 611–625.

[41] J. Cartucho, S. Tukra, Y. Li, D.S. Elson, S. Giannarou, Visionblender: a tool to ef-
ficiently generate computer vision datasets for robotic surgery, Comput. Methods 
Biomech. Biomed. Eng. Imaging Vis. 9 (4) (2021) 331–338.

[42] M. Allan, J. Mcleod, C. Wang, J.C. Rosenthal, Z. Hu, N. Gard, P. Eisert, K.X. Fu, T. 
Zeffiro, W. Xia, et al., Stereo correspondence and reconstruction of endoscopic data 
challenge, arXiv preprint, arXiv :2101 .01133, 2021.

[43] D. Eigen, C. Puhrsch, R. Fergus, Depth map prediction from a single image using a 
multi-scale deep network, Adv. Neural Inf. Process. Syst. 27 (2014).

[44] S. Montaha, S. Azam, A.R.H. Rafid, M.Z. Hasan, A. Karim, K.M. Hasib, S.K. Patel, 
M. Jonkman, Z.I. Mannan, Mnet-10: a robust shallow convolutional neural network 
model performing ablation study on medical images assessing the effectiveness of 
applying optimal data augmentation technique, Front. Med. 9 (2022).

[45] V. Penza, A.S. Ciullo, S. Moccia, L.S. Mattos, E. De Momi, Endoabs dataset: endo-
scopic abdominal stereo image dataset for benchmarking 3d stereo reconstruction 
algorithms, Int. J. Med. Robot. Comput. Assist. Surg. 14 (5) (2018) e1926.

[46] P.E. Edwards, D. Psychogyios, S. Speidel, L. Maier-Hein, D. Stoyanov, Serv-ct: a 
disparity dataset from cone-beam ct for validation of endoscopic 3d reconstruction, 
Med. Image Anal. 76 (2022) 102302.

[47] G.P. Cannata, L. Migliorelli, A. Mancini, E. Frontoni, R. Pietrini, S. Moccia, Gener-
ating depth images of preterm infants in given poses using gans, Comput. Methods 
Programs Biomed. 225 (2022) 107057.

[48] S. Bano, F. Vasconcelos, L.M. Shepherd, E.V. Poorten, T. Vercauteren, S. Ourselin, 
A.L. David, J. Deprest, D. Stoyanov, Deep placental vessel segmentation for feto-
scopic mosaicking, in: International Conference on Medical Image Computing and 
Computer-Assisted Intervention, Springer, 2020, pp. 763–773.

[49] M. Kamari, Y. Ham, Vision-based volumetric measurements via deep learning-based 
point cloud segmentation for material management in jobsites, Autom. Constr. 121 
(2021) 103430.
11

http://refhub.elsevier.com/S0169-2607(23)00603-X/bib13BDA8C2605BFFF03266EFD0D491EABEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib13BDA8C2605BFFF03266EFD0D491EABEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib13BDA8C2605BFFF03266EFD0D491EABEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib13BDA8C2605BFFF03266EFD0D491EABEs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6B7B4CB2452B6EB13BFB500EA37D7E5As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6B7B4CB2452B6EB13BFB500EA37D7E5As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib6B7B4CB2452B6EB13BFB500EA37D7E5As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA77E88490AB741B2CEA4E8C67BC272ECs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA77E88490AB741B2CEA4E8C67BC272ECs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA77E88490AB741B2CEA4E8C67BC272ECs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib53915741C7AF4C7B85EA771870174F2As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib53915741C7AF4C7B85EA771870174F2As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib53915741C7AF4C7B85EA771870174F2As1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib58F0E0FBEE65A1D4991FA1EF6D175040s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib58F0E0FBEE65A1D4991FA1EF6D175040s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib384242FD3A1ACC58460C422875B8E434s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib384242FD3A1ACC58460C422875B8E434s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib384242FD3A1ACC58460C422875B8E434s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib384242FD3A1ACC58460C422875B8E434s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD8B0E75A3DB4EE79E28D0F4F4F33B8CFs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD8B0E75A3DB4EE79E28D0F4F4F33B8CFs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibD8B0E75A3DB4EE79E28D0F4F4F33B8CFs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibE32D7FB803F7AB7EA5B16127B9772DA7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibE32D7FB803F7AB7EA5B16127B9772DA7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibE32D7FB803F7AB7EA5B16127B9772DA7s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib4B1D60349EA0794FCA352D0A071BDF69s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib4B1D60349EA0794FCA352D0A071BDF69s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib4B1D60349EA0794FCA352D0A071BDF69s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib54E6650062BFC26B11826BBD6B742A14s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib54E6650062BFC26B11826BBD6B742A14s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib54E6650062BFC26B11826BBD6B742A14s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bib54E6650062BFC26B11826BBD6B742A14s1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA08A0BF85B2E4C31E1BA34E001E41CCDs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA08A0BF85B2E4C31E1BA34E001E41CCDs1
http://refhub.elsevier.com/S0169-2607(23)00603-X/bibA08A0BF85B2E4C31E1BA34E001E41CCDs1

	Spatio-temporal layers based intra-operative stereo depth estimation network via hierarchical prediction and progressive tr...
	1 Introduction
	2 Methodology
	3 Experimental protocol
	3.1 Dataset
	3.2 Training strategy
	3.3 Performance metrics
	3.4 Ablation study

	4 Results
	5 Discussion and conclusions
	Declaration of competing interest
	Appendix A Supplementary material
	References


