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A B S T R A C T

High-definition (HD) maps provide a complementary source of information for Advanced Driver Assistance
Systems (ADAS), allowing them to better understand the vehicle’s surroundings and make more informed
decisions. HD maps are also largely employed in virtual testing phases to evaluate the behavior of ADAS
components under simulated conditions. With the advent of autonomous sensorized vehicles, raw machine-
oriented data will be increasingly available. The proposed pipeline aims to provide a high-level semantic
interpretation of raw vehicle sensory data to derive, in an automated fashion, lane-oriented HD maps of the
environment. We first present RoadStarNet, a deep learning architecture designed to extract and classify road
line markings from imagery data. We show how to obtain a semantic Bird’s-Eye View (BEV) mapping of the
extracted road line markings by exploiting frame-by-frame localization information. Then, we present how
to progress to a graph-based representation that allows modeling complex road line markings’ structures
practically, as this representation can be leveraged to produce a Lanelet2 format HD map. Lastly, we
experimentally evaluate the proposed approach in real-world scenarios in terms of accuracy and coverage
performance.
1. Introduction

Although they require a non-negligible manual effort to be built,
realistic high-definition (HD) maps have become a fundamental com-
ponent in numerous autonomous driving projects [1,2]. Indeed, it is
well-established that self-driving cars often rely on HD maps for accu-
rate navigation, trajectory planning, and localization. In recent years,
HD maps have also gained popularity as a foundation for the creation
of digital twins [3,4]; by using HD maps as a basis, digital twins can be
created to simulate and replicate real environments with a high level of
realism [5]. Digital twins can be employed for various tasks including
dataset generation, testing, and validation of algorithms before their
deployment on real vehicles. Therefore, it is essential that these digital
representations accurately capture all the relevant components of the
real world, and the HD map on which the digital twin is built must be
highly precise and a faithful representation of the environment.

The traditional method of manually generating these types of maps
is very time-consuming [6], repetitive, and error-prone. In particular,
human operators generally rely on imagery data to design the HD map,
placing all road elements and core components by hand. While this
task is relatively straightforward for traffic signs and lights, it is more
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challenging for road line markings. Operators often use aerial views of
the area of interest to manually draw the road lines and assign a class
to them; however, this process, besides being very time-consuming,
requires the operators a careful placement of the lines.

To address these challenges, we propose a pipeline based on Ar-
tificial Intelligence (AI) for automatic lane-level HD mapping from
data collected by surveying vehicles. The proposed pipeline requires
just limited human intervention in the final stage of the process to
validate the produced results. The pipeline is designed to take, as input,
data from at least a monocular camera and precise Global Navigation
Satellite System (GNSS) measurements in order to create an HD map
in the standardized format Lanelet2 [7], which can be directly used
in several autonomous driving systems. The generated map adheres to
all Autoware [8] requirements for visualization. The proposed method
leverages a custom network for line segmentation on the input images.
Then, a semantic line map is reconstructed through a Bird’s-Eye View
(BEV) projection. This map is then processed using a graph-based
approach to extract the horizontal road markings’ structure, which is
used to generate the final Lanelet2 HD map. A graphical representation
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Fig. 1. High-level overview of the proposed pipeline.
of the proposed system is presented in Fig. 1. This pipeline represents
a remarkable advancement in the automated generation of HD maps,
showcasing an innovative methodology based on deep learning and
sensor fusion. Preliminary work was conducted in [9].

The paper is organized as follows. Section 2 provides a comprehen-
sive overview of related work and the current state-of-the-art in the
field. In Section 3, we present our cutting-edge deep learning archi-
tecture, which uses vision data to obtain semantic information about
road line markings, as well as an effective methodology for deriving
BEV maps by leveraging precise GNSS data. Section 4 introduces an
innovative approach for translating the semantic pixel-level aerial map
into a graph-based semantic format, and Section 5 outlines a method
for obtaining a valid Lanelet2 HD map format out of such a graph. In
Section 6, we validate our approach through an experimental activity
on three different datasets, assessing its accuracy, required time to
derive precise HD maps, and result quality. Lastly, conclusions and
future directions are discussed in Section 7.

2. Related work

Today, the generation of an HD map from images and precise GNSS
data requires multiple steps. Of these, line detection and mapping
are among the most critical ones. Line detection involves identifying
and extracting information related to road line markings from camera
images, while mapping converts this information into a meaningful,
machine-readable, representation of the road layout. These steps are
essential for the accurate and reliable generation of an HD map that
can then prove effective in various autonomous driving applications.

2.1. Horizontal road markings extraction

Line detection involves identifying the pixels within an image that
belong to the road lines. Traditionally, this process is conducted on
the front-view images captured by the camera, although some studies
have proposed BEV segmentation approaches [10]. One of the simplest
methods for line detection is a color-based approach that involves
thresholding the image channels to retrieve a binary mask of the
lines [11]. This approach is typically combined with gradient-based
filtering to ensure that only the pixels belonging to the lines are
identified and not those with the same color. Specifically, the gradient-
based approach takes advantage of the sharp contrast between the gray
road and the white lines to locate them on the road. This contrast is
exploited, for example, in [12]. Similarly, edge detection processing can
be used to extract the image’s edges and locate the road lines [13].

Despite achieving satisfactory results in simple scenarios, these
methods encounter different challenges in complex environments such
as urban roads. Consequently, Convolutional Neural Network (CNN)-
2

based algorithms have recently gained popularity and have become
the most commonly used solution for road line detection problems.
Typically, these methods treat the task as a segmentation problem,
either binary or multi-class, and process the data using single-pass
encoder–decoder architectures such as U-Net [14] to classify each pixel
of the input image. Besides the classic U-Net, other segmentation ar-
chitectures, such as YOLOP [15], YOLOPv2 [16], and HybridNets [17],
employ a single-pass encoder–decoder model to perform segmentation
on the front-view image captured by a monocular camera. However,
these models do not discern between different line types and only
classify the pixels into three categories: line, drivable area, and back-
ground. This lack of specificity between line types is severely limiting
when generating semantically rich HD maps for autonomous driving. In
view of this, RMNet [18] has been designed to extract richer informa-
tion and it proposes a multi-class road markings segmentation model,
designed also to differentiate line types (e.g., dashed, solid line, etc.).

A common limitation of many structural approaches is the need
to downsample the input high-resolution image in order to process
it. This step is often required as processing high-resolution images
is computationally intensive and time-consuming. However, down-
sampling leads to a reduction in the amount of information in low-
resolution images compared to their high-resolution counterparts. To
overcome this challenge, a novel approach has been recently proposed
that pairs traditional CNNs with Region Proposal Networks (RPNs) [19]
to identify areas within the original image where elements of in-
terest may be present, and to process only those regions. To this
end, Tian et al. [20] propose a variant of an instance segmenta-
tion region-based CNN specifically designed for road markings de-
tection that achieves state-of-the-art performance while maintaining
computational efficiency.

2.2. Map building

The process of line detection serves only as an initial step within a
map generation pipeline. Indeed, to achieve the creation of an accurate
map, the detections must be transformed to build a standardized HD
map format. This can be accomplished through a variety of heteroge-
neous techniques. Zhou et al. [21] employed Open Street Map (OSM)
data, a front-view camera, and a Light Detection and Ranging (LiDAR)
sensor in order to generate an HD map. The method leverages OSM
information to establish a prior on the road structure, and it combines
such structure with camera and LiDAR data to improve the precision
of the resulting HD map.

Notably, the use of LiDAR data has become increasingly prevalent in
recent years in the HD map processing pipeline to enhance the accuracy
of camera detections. As the standard camera-based BEV projection
assumes the road to be a planar surface, the LiDAR data can be

employed to obtain more accurate BEVs. HDMapNet [22], a CNN model
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that can fuse camera and LiDAR data, has been proposed to predict
vectorized map elements in BEV. Homayounfar et al. [23], instead,
exploit aggregated LiDAR intensity images to obtain a directed acyclical
graph of the road lane boundaries. Recently, Liu et al. [24] focused on
the generation of lane-level road intersections maps from low-channel
roadside LiDARs. Ye et al. [25], instead, discuss the advantages and
issues encountered when relying on a mobile laser scanning system to
retrieve precise line marking points and the road centerline.

Recently, researchers have also explored the possibility of extracting
valuable mapping information from images of the area of interest
captured from an elevated perspective. For instance, digital maps can
be built by exploiting satellite imagery data [26], although it is not
easy to provide a high level of precision. Zang et al. [27] explore the
use of satellite imagery to automatically extract road lane boundaries.
Similarly, He and Balakrishnan [28] propose a mapping pipeline that
automatically extracts lane-level street maps from aerial imagery.

2.3. External information sources

Another essential sensor in the mapping process is a localization
device such as GNSS. High accuracy is required to combine and map
sequences of images captured by the vehicle, often necessitating the
use of Real-Time Kinematics (RTK) correction to mitigate small position
errors stemming from the GNSS sensor. Recent approaches have intro-
duced the use of a graph structure to combine camera images, perform
loop-closure, and graph optimization. Notably, [18,29] both utilize a
graph-based structure to represent the relative position of features and
make adjustments to enhance the overall accuracy of the map. A similar
graph structure was previously used also by Máttyus et al. [30], who
integrated their data with aerial and ground images to extract further
semantic information.

Instead of using a single instrumented vehicle, Zhou et al. [31] rely
on crowdsourced data to extract lane information. In particular, they
exploit the data coming from a fleet of vehicles, each one equipped
with a low-cost GNSS and a camera. In their proposed pipeline, line de-
tection is performed at the vehicle-level, its output is then aggregated,
and the resulting line information fitted with B-splines in a centralized
manner. In [32], authors exploit crowdsourced data to derive a graph-
based structure of the lane markings, which geometry is then optimized
with domain knowledge. Other crowdsourced techniques include the
one proposed by Liebner et al. [33], who obtain HD map patches with a
method based on road model inference and graph-based Simultaneous
Localization and Mapping (SLAM). Kim et al. [34], instead, propose
to exploit public transport vehicles equipped with low-cost sensors to
maintain HD maps up-to-date through time.

3. Semantic pixel-level map extraction

The automatic generation of an HD map involves heterogeneous
methodologies to extract road line markings from vehicle sensor data.
While extracting road line marking information from LiDAR data is
feasible, as evidenced by recent studies [35], the conventional approach
entails retrieving such information from images captured by the vehi-
cle’s camera. This is because camera images provide highly informative
attributes about the road surface, including color and texture, which
can be harnessed to detect and classify road line markings. Currently,
this is being addressed by deploying automatic learning techniques,
especially deep learning approaches; indeed, recent breakthroughs in
AI, specifically in the realm of deep learning, have transformed how
road line markings extraction is carried out. Deep learning techniques
have demonstrated remarkable efficacy in accurately and efficiently
identifying and classifying road line markings, even in demanding
weather and lighting conditions. These techniques typically involve
training a neural network leveraging a vast dataset of labeled images,
enabling the network to learn the visual features of diverse road line
markings, and how to differentiate road line markings from other
objects and background elements.
3

3.1. RoadStarNet architecture

In the context of deep learning architectures, single-task and multi-
task CNNs emerge as distinct paradigms. Leveraging the interdepen-
dence of different tasks, multi-task networks such as YOLOP [15],
YOLOPv2 [16], and HybridNets [17] have generally proven to be
superior to single-task models. By training a model to perform multiple
tasks simultaneously, the model acquires supplementary knowledge
and can better capture intricate relationships between the tasks. In
the context of the models mentioned above, which undertake line
detection, drivable area segmentation, and object detection, the three
tasks are targeting the detection of road elements and the segmentation
of road scenes. Consequently, the model can employ the features shared
between the tasks to enhance the accuracy of each task. Following this
underlying idea, in this study, we propose a novel deep learning-based
architecture for extracting simultaneously road line markings, their
classes, and the drivable area. As further detailed later, the architecture
is composed of a single shared encoder and two decoders; one is
dedicated to the multi-class segmentation of road line markings, while
the other focuses on extracting the drivable area. Note that, while
mentioned state-of-the-art CNNs (i.e., [15–17]) deal also with tasks
such as vehicle object detection, our aim is to devise a CNN designed
to be suitable specifically for lane-level HD map generation, which also
handle multi-class line segmentation.

The proposed CNN model architecture is inspired by HybridNets,
a single-pass end-to-end network architecture. HybridNets encoder–
decoder structure uses as backbone EfficientNet-B3 [36], alongside a
neck network with a weighted Bi-directional Feature Pyramid Network
(BiFPN) module [37], and two separate decoder blocks. One decoder
block is dedicated to the object detection task, while the other is
dedicated to the segmentation. In HybridNets segmentation decoder,
the outputs of the BiFPN modules are brought to a common scale
through a series of convolutions and upsamples to be finally combined
and sent to a segmentation layer.

In this work, we propose RoadStarNet, a novel CNN for multi-
class road line markings segmentation. We employ the same backbone
encoder as HybridNets, adopting two separate decoders, one dedicated
to line markings and an additional one to identify the drivable area.
Indeed, we found that the latter, although not generating outputs of
direct interest for our tasks, significantly improves the performance of
our line detection head through the advantages of multi-task learning.
Our two decoders are inspired by U-Net [14] to better exploit the
multi-dimensional features extracted by the BiFPN block. We also
introduce two skip connections from the backbone to the middle of our
decoders. Incorporating skip connections helps preserve more spatial
information that may be lost in the BiFPN’s features fusion and allows
for better back-propagation. The high-level architecture overview of
the proposed CNN is shown in Fig. 2. Multi-scale feature fusion is
achieved by combining feature blocks with different dimensions. Each
feature block is upsampled to match the input size of the next block,
and fed with a convolutional layer; a Sigmoid Linear Unit (SiLU) [38]
is used as activation function, and a batch normalization operation is
applied at alternate levels. To mitigate unwanted noise in the output
of RoadStarNet, we post-process its output filtering all clusters smaller
than a fixed threshold.

3.2. Training loss functions

We use two distinct losses to train our RoadStarNet architecture:
Focal* and Focal+Tversky. Focal* is a generalization of the Focal
loss [39] that weighs each class differently, while Focal+Tversky is a
weighted sum of the Focal and Tversky [40] losses. Both losses aim
to minimize the difference between the predicted and ground truth
segmentation masks.
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Fig. 2. RoadStarNet simplified architecture overview.
The Focal* loss used to train RoadStarNet (referred to in the follow-
ing as RoadStarNet-F*) is defined by:

𝐿𝐹∗(�̂�, 𝐲) = − 𝛼
𝑁
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where 𝐂 is the set of classes, 𝑁 is the number of image pixels, 𝐲𝑐𝑖 is the
ground truth label for pixel 𝑖 in class 𝑐, �̂�𝑐𝑖 is the predicted probability
of pixel 𝑖 being in class 𝑐, 𝑤𝑐 is the weight for class 𝑐, the subscript 𝑐
denotes not belonging to class 𝑐, 𝛼 is a balancing parameter and 𝛾 is the
tunable focusing parameter. Note that the classical Focal loss 𝐿𝐹 (�̂�, 𝐲)
is similar to 𝐿𝐹∗(�̂�, 𝐲) but has no class weight balancing parameters,
i.e., 𝑤𝑐 = 1,∀𝑐 ∈ 𝐂. By assigning weights to all classes, it is possible
to force the CNN to give more attention to the lines, for instance by
decreasing the weight of the background class.

The Focal+Tversky loss, from [17], used to train RoadStarNet (re-
ferred to in the following as RoadStarNet-FT) is defined by:

𝐿𝐹+𝑇 (�̂�, 𝐲) = 𝐿𝑇 (�̂�, 𝐲) + 𝜉 ⋅ 𝐿𝐹 (�̂�, 𝐲), (2)

where 𝐿𝐹 (�̂�, 𝐲) is the Focal loss, 𝐿𝑇 (�̂�, 𝐲) is the Tversky loss, and 𝜉 is a
hyper-parameter that controls the relative importance of the two loss
terms. The Tversky loss is effective in handling class imbalance and
allows the trade-off between false positives and false negatives to be
adjusted. The Tversky loss 𝐿𝑇 is defined as:
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where �̂� and 𝐲 are the predicted and ground truth pixel-level data,
respectively. The Tversky index [41] measures the overlap between the
predicted and ground truth segmentation masks for class 𝑐, while 𝛼
and 𝛽 are pre-defined constants that balance the importance of false
positives and false negatives.

3.3. BEV pixel-level map

In order to generate accurate HD maps, survey systems generally
collect data from different mapping sensors in a synchronized manner.
The camera system captures a stream of images, while RTK-GNSS data
contains information about the position of the vehicle. The fusion of
these data, together with inertial system data, enables the estimation
of the camera’s absolute location and orientation when capturing each
image. Inverse Perspective Mapping (IPM) is then used to map the
image pixels into a relative planar coordinate system to obtain a BEV
of the scene [42]. The IPM model leverages a homography projec-
tion matrix that mathematically describes the relationship between
the frontal and rectified views [43]. Intrinsic and extrinsic camera
parameters are needed to define such homography matrix, where the
intrinsic parameters depend on the type of camera and are generally
constant. Conversely, the extrinsic parameters are dynamic and can
be estimated using vision-based calibration algorithms or additional
sensors’ data [44,45]. By combining the IPM model with the camera’s
position and orientation, the predicted road line marking pixels can be
4

mapped in the global world reference system. Images from several cam-
eras, when available, can be combined for more precise and complete
outputs.

The proposed method for generating BEV pixel-level maps, which
idea is simplified in Fig. 3, is designed to be both modular and ex-
tendable, providing flexibility and adaptability to different surveying
scenarios. We break the map into small chunks, and this allows us to
save memory and reduce RAM consumption, while still maintaining
the required level of detail. The first step of our method involves
calculating the number of map blocks, or chunks, that will be needed
to cover the surveyed area. Each chunk is associated with a selection
of camera images whose vertices fall within its corresponding space
domain. Using RTK-GNSS data and the IPM model, we are indeed able
to project the vertices of each image onto the absolute planar system
to accurately determine the size and location of each chunk. Once the
chunks have been defined, we can project all pixels of the camera
frames into the corresponding chunk of the map. During this projection
phase, road line marking pixels are augmented with their estimated
road line marker class, allowing a more accurate representation of the
road layout.

In the end, the map chunks can be combined to derive the full
map of the surveyed area. This modular approach not only reduces
the computational burden but also provides the flexibility to adjust
the size and number of chunks based on the specific needs of each
surveying task. Moreover, our method allows for future map expansion,
as additional chunks can be added as needed to incorporate new data or
extend the area covered by the map. This extendable approach makes
our map generation method particularly well-suited for large-scale
surveying projects, where a flexible and scalable solution is sought.

4. Graph-level map extraction

This section outlines the transition from a pixel-level BEV to a
more practical and efficient graph-based model for representing road
line markings. Indeed, a BEV pixel-level model is often not a practical
model to be integrated with other components. Data interpretation is
less efficient than other analytical models or models based on precise
data structures, as road line markings are represented sparsely by many
pixels and noise tends to be always present as it is inherited from the
network output and the projection. For this reason, we propose to use a
semantic colored graph model representation, which is more practical
and easier to handle, as well as cleaner, indeed it reduces noise and
requires much less memory for storage. The idea indeed is to progress
from a set of georeferenced pixels to a graph in which the road line
markings are represented by a series of points belonging to road lines
and connected by edges.

4.1. Graph-level mapping algorithm

We present our algorithm as an evolution of the window-based
line following (WLF) algorithm presented in [46], in which a double
search window locally follows pixels indicating the presence of road
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Fig. 3. From left to right: segmented front camera frame, its BEV projection, and derived pixel-level map by combining 3 consecutive BEV frames.
Fig. 4. From left to right: pixel-level map with extracted bounding boxes, extracted centroids, and derived graph connections where each color represents a different class of road
line markings.
line markings to obtain a set of distinct points along the direction
of the curves. Our algorithm works similarly, but firstly it does not
operate frame-by-frame, thus resulting in an efficient solution for mod-
eling the skeleton of road line markings of large maps in fewer steps.
Furthermore, whereas the WLF algorithm only allows modeling the
two side lines locally, our approach allows modeling all the different
types of road line markings at the cost of a small approximation. Such
approximation is due to the fact that a graph can at most model a curve
by means of a polyline of first-order segments due to the nature of
edges, which are intended as segment-level connections of two nodes.

Let us consider a region of interest (ROI) extracted from the seg-
mented BEV pixel-level map starting from a given RTK-GNSS position
of the survey vehicle; to perform the conversion into a graph format,
our pipeline first locates the vertices of the graph. To do this, a window-
based algorithm is employed: following the trend of each road line
using a scan window, the algorithm extracts a series of bounding boxes
whose size is dynamically adapted. The search starts in the direction
of the vehicle. The centroid of each bounding box defines a node of
the graph, while the connections are established when two or more
bounding boxes overlap each other. For each of these groups, a cluster
that defines a particular road line marking is defined, and nodes are
connected according to their relative distances and by exploiting the
bounding boxes’ overlaps to build the set of edges. In addition, the
class to which each vertex belongs is also extracted based on the type
of road line marking it represents (e.g., dashed double line). Types are
determined based on the pixels’ classes around the node, by selecting
the most frequent class. At the end of the process, we obtain a semantic
colored graph 𝐺 = (𝑉 ,𝐸, 𝐶, 𝑓𝑐 ), where 𝑉 is the set of vertices, 𝐸 is the
set of edges, 𝐶 is the set of colors representing the different classes, and
𝑓𝑐 ∶ 𝑉 → 𝐶 is a function that maps each vertex to an associated color.
Fig. 4 summarizes the steps of the pipeline just described.

From a set of RTK-GNSS vehicle positions, a local graph can be
derived for each associated ROI. It is possible to merge the graphs
dynamically by exploiting the absolute positions of vertices and any
areas of intersection between graphs. Indeed, if a set of successive
positions is close enough, a typical situation occurs in which the same
portion of a road line marking is common to both graphs. As multiple
bounding box groups cover the same intersection area (in successive
5

frames), the information can be used to fine-tune the positions of al-
ready extracted vertices and to establish new edges to connect possible
new nodes. Intuitively, it is possible to achieve complete map coverage
and automatically derive a single global semantic colored graph 𝐺 =
(𝑉 ,𝐸, 𝐶, 𝑓𝑐 ).

4.2. Rule-based post-processing techniques

A series of rule-based post-processing techniques are now proposed
to clear the output graph and correct frequent inaccuracies that may
appear during the autonomous graph-building procedure. Additionally,
these methods help in reducing inaccuracies or inconsistencies that may
have resulted from the data collection process. Fig. 5 illustrates the
main post-processing techniques and their effects on the starting input
graph.

Line fitting. The proposed post-processing operation fits nodes be-
longing to the same road line with a curve. Road line nodes are
identified easily as the set 𝐸 already defines connections between
vertices 𝑉 . The relative axis with the highest variance is identified and
nodes, treated as points, are fitted with a polynomial curve using the
Least Squares (LS) algorithm. With this operation, nodes can be re-
arranged according to the curve shape to reduce distribution sparsity
and noise within the graph; this is achieved by sampling a set of
nodes from the curve and by establishing connections between them in
accordance with the original configuration defined by 𝐺 = (𝑉 ,𝐸, 𝐶, 𝑓𝑐 ).

Circle fitting. This post-processing technique is designed to improve
roundabout modeling by fitting and replacing entire sub-graphs with
circumferences. It creates smooth roundabouts without distortions and
it can even fill in missing parts. This process involves the use of
the Random Sample Consensus (RANSAC) algorithm [47], which is
a non-deterministic algorithm. At each iteration, a circumference is
fitted to three randomly sampled sub-graph nodes, ignoring edges.
The algorithm then computes the number of outliers that are too far
away (above a threshold) to select or reject the fitted circumference.
Selected circumferences are then compared using the mean distance to
all the points. The circumference with the minimum average distance
is used to replace the sub-graph with a new sub-graph sampled from

the detected circumference shape.
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Fig. 5. Examples of rule-based post-processing. The first row displays graphs depicting selected ROIs before applying any post-processing method. The second row (post-processed
graphs), from left to right, visually demonstrates the effects of line fitting, circle fitting, and box replacing techniques on the above associated graph.
Box replacing. We propose also a post-processing operation to sim-
plify the graph 𝐺 = (𝑉 ,𝐸, 𝐶, 𝑓𝑐 ) in areas where nodes represent road
markings that are better identified by nodes arranged in a polygonal
shape. In the case of a pedestrian crossing, for instance, it is often
sufficient to identify the area that indicates the crossing rather than
modeling the zebra crossing lines. The proposed method searches for
groups of nodes that form pre-defined polygonal areas and replaces
them with a smaller number of nodes that identify the boundaries of
the areas of interest.

Additional techniques. Our post-processing pipeline also includes
different methods for operations that smoothen the overall output,
including joining line sub-graph patches with discontinuities, removing
small sub-graphs with a low number of nodes, or replacing very short
cycles of nodes with their midpoint. The proposed suite of meth-
ods is extensible and methods can be combined to provide a more
homogeneous and smooth output.

These proposed techniques for post-processing can be combined
depending on the reference domain. For instance, if there are no
roundabouts in the area where data is collected, it may not be necessary
to use the circle fitting technique. These methods are invoked sequen-
tially, as they are substantially independent. At the end of this process,
a manual intervention may be still required to correct the graph to
obtain an error-free output. As the output format is particularly simple,
a simple viewer can be used to display and manipulate the graph
as desired, such as by moving or by deleting nodes. Modifying the
graph requires much less time than manually designing it from scratch,
making our pipeline particularly suitable for deriving HD maps in an
effective, precise, and fast manner.

5. Lanelet2 format extraction

HD maps contain various information about the structure of roads,
their morphology, and their connections. There are several formats
currently in vogue for representing road-level information in a stan-
dardized manner. In this section, we propose to model the output of
our system according to the Lanelet2 format [7]. Although various
alternatives exist, this format is simple and suitable for the collection
of the information extracted with our pipeline.

In Lanelet2, it is possible to model road line markings by di-
rectly exploiting the previously extracted semantic colored graph 𝐺 =
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(𝑉 ,𝐸, 𝐶, 𝑓𝑐 ). Indeed, Lanelet2’s topological model and relational model
are based on primitives including points and linestrings, which form the
physical model. A linestring is defined from an ordered list of nodes
(vertices) linearly interpolated, which defines a set of connections
(edges). Since each linestring has a tag defining its associated type,
graph semantic coloration plays a crucial role. Indeed, when a class
change occurs or a line splits (i.e., when a node 𝑣 ∈ 𝑉 has deg(𝑣) > 2),
the list of nodes is split, and multiple linestrings are created to model
the portion of the graph under examination. The analyzed components
serve to determine a number of fundamental elements of the road
within the Lanelet2 format, such as lanes.

Lanes in Lanelet2 format are defined via the use of lanelets, which
are atomic lane sections, i.e., portions of lanes where traffic reg-
ulations remain consistent. Each lanelet is intuitively composed of
two linestrings that define its lateral borders and which comprise
the drivable area. To maintain a similar and consistent number of
lanelets across lanes in multi-lane roads, we devise a split propagation
algorithm. Whenever a linestring split occurs at a certain node 𝑣 ∈
𝑉 , a perpendicular line is derived to obtain the closest nodes, called
propagated nodes, in other linestrings within the same, eventually
multi-lane, road (a local search using a scan box is applied). An example
is shown in Fig. 6. Split and propagated nodes are exploited to establish
and define the lanelets that covers the underlying road, so as to be able
to guarantee the atomic property of the lanelet elements. In particular,
two linestrings are intuitively paired to form a lanelet when start and
end nodes are related to the same graph cuts. Also, other types of road
markings can instead be modeled within Lanelet2 as polygons or areas
(e.g., parking slots).

Note that the Lanelet2 format requires an elevation measure for
each point. While such a measure can be set to zero, in the proposed
pipeline, we associate each node of the graph with an estimated eleva-
tion data. Specifically, for each node 𝑣𝑖 ∈ 𝑉 , we estimate its elevation
𝑧′𝑖 from a set of RTK-GNSS positions 𝐆𝑖 close (in the plane) to node 𝑣𝑖
via Inverse Distance Weighting (IDW):

𝑧′𝑖 =
⎛

⎜

⎜

⎝

∑

(𝑥𝑗 ,𝑦𝑗 ,𝑧𝑗 )∈𝐆𝑖

1
𝑑𝛾𝑖𝑗

⎞

⎟

⎟

⎠

−1

⋅
∑

(𝑥𝑗 ,𝑦𝑗 ,𝑧𝑗 )∈𝐆𝑖

𝑧𝑗 − ℎ

𝑑𝛾𝑖𝑗
(4)

where 𝛾 is a positive pre-defined constant, ℎ is the height of the RTK-
GNSS sensor from the ground, and 𝑑𝑖𝑗 is the associated flat distance
between node 𝑣 and (𝑥 , 𝑦 ). When there are no neighboring RTK-GNSS
𝑖 𝑗 𝑗



Robotics and Autonomous Systems 172 (2024) 104513M. Bellusci et al.
Fig. 6. Example of split propagation algorithm output; linestring cuts occurred at pink nodes, while black nodes represent the propagated nodes. In green, an example of a scan
box used by our cut propagation algorithm to identify propagated nodes.
positions, the node elevation is estimated from the 𝑘-nearest nodes’
elevations.

6. Experimental results

Experiments were carried out using a computer featuring an Intel®
CoreTM i7-3770K processor and a NVIDIA® GeForce® GTX 970 GPU,
with all algorithms implemented in Python. All networks have been
trained on a custom and modified version of the Berkeley Deep Drive
100k (BDD100k) dataset [48], which offers a series of annotated images
with road line markings and drivable area labels, based on [15]. Our
networks have been trained using Adam optimizer [49] with a learning
rate of 10−4 and batch size of 4. To verify the mapping capabilities of
the proposed approach, we utilized a dataset obtained from a moving
vehicle equipped with a ZED stereo-camera and a Swiftnav RTK-GNSS,
which was captured on the Monza Eni Circuit track (for more informa-
tion, please refer to [46,50]). The dataset includes ground truth data
for the position of road line markings for the entire 5.8-km-long circuit.
Furthermore, to evaluate the pipeline more effectively, we divided the
circuit into various ROIs that present significant challenges for the map-
ping system due to their non-straightforward road structures, such as
fast direction changes and long curves. Circuit sections are highlighted
in Fig. 7. We also qualitatively tested the proposed pipeline in an extra-
urban setting in Milan (Italy), for which we collected data using the
same survey vehicle. Compared to the race circuit track, this setting
features different challenging characteristics, such as multi-lane road-
ways. In addition, we provide examples of qualitative results achieved
on an urban-like dataset captured in Tavagnacco (Italy). In this case,
the experimental vehicle was equipped with a SITECO Road-Scanner C
mobile mapping system, including a FLIR® LadyBug®5 spherical cam-
era system. In contrast to the circuit dataset, the Tavagnacco dataset did
not contain precise ground truth line positions, but LiDAR point cloud
data were available, which can be exploited to visualize the overall
output results more comprehensively.

6.1. Pixel-level map assessment

We assessed the effectiveness of our mapping pipeline using two dis-
tinct metrics. The first metric, called mean prediction distance (Dist.),
calculates the average distance between all predicted line pixels and
the center of the related ground truth line. It should be noted that
this metric overestimates the error due to the fact that the road line
markings have a width that is not accounted for in the ground truth
annotation. A second metric we considered simultaneously is cover-
age (Cov.), which measures the linear percentage of the total road
line markings that were appropriately mapped. We compared our
method, using the two different proposed training losses, against state-
of-the-art neural networks for road line markings identification, such
7

Fig. 7. ROIs considered for the Monza Eni Circuit track.

as YOLOP [15], YOLOPv2 [16], and HybridNets [17]. We refer to
the two proposed models as RoadStarNet-F* (trained with 𝐿𝐹∗) and
RoadStarNet-FT (trained with 𝐿𝐹+𝑇 ). Each weight 𝑤𝑐 (𝑐 ∈ 𝐂, where
𝐂 is the set of classes) of the 𝐿𝐹∗ loss used for training RoadStarNet-
F* was set to 1 except for the weight of the background class, which
was set to 0.1 to allow the model to focus more on the lines. Note,
however, that the weights can be fine-tuned according to the reference
scenario. In fact, this is a feature of RoadStarNet-F* that allows the
user to select weights in a way that moves the focus of the network to
particular types of classes over others. Regarding RoadStarNet-FT, we
have set 𝜉 = 1 in order to equally balance the two components 𝐿𝐹 and
𝐿𝑇 . The quantitative results obtained for the pixel-level mapping phase
are summarized in Table 1.

Our proposed RoadStarNet-F* achieves consistently the highest
coverage, at the cost of a slightly higher mean prediction distance
(Dist.). Compared to the highest coverage model in the state-of-the-
art, i.e., YOLOPv2, our network still performs better in prediction
distance in different sections with a slightly improved coverage. In
terms of high-coverage requirements, our model achieves the best
trade-off among the considered state-of-the-art methods. RoadStarNet-
F* results to be more suitable for semantic aerial mapping of road line
markings due to its fine-tuning capability and its ability to identify
lines more decisively, albeit at the cost of potentially finding more false
positive pixels. On the other hand, our RoadStarNet-FT model showed a
more relaxed trade-off in coverage, achieving low prediction distances
while retaining good and robust coverage capabilities. Therefore, it
is a reasonable alternative to RoadStarNet-F* when a reduction in
coverage is acceptable. Finally, it can be seen that HybridNets achieved
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Fig. 8. Examples of qualitative results obtained from the urban dataset by converting the pixel-level map (1st row) into a graph-level map: raw (2nd row), post-processed (3rd
row), and edited (4th row). Roundabouts are only partially visible in the original graph as the survey vehicle path did not cover their entirety.
Table 1
Mapping error distance and coverage on sections of the Monza Eni Circuit pixel-level map. For a comprehensive insight, rows are arranged
according to the considered metrics’ values.

Monza Eni Circuit track

1: Chicanes 2: Lesmo 3: Ascari 4: Parabolica

Dist. (m)↓ Cov. (%)↑ Dist. (m)↓ Cov. (%)↑ Dist. (m)↓ Cov. (%)↑ Dist. (m)↓ Cov. (%)↑

RoadStarNet-F* 0.4047 98.73 0.6277 99.96 0.5457 99.82 0.4750 98.90
YOLOPv2 [16] 0.3723 94.56 0.7340 98.77 0.5955 98.07 0.4545 97.58
YOLOP [15] 0.2933 86.73 0.4222 90.03 0.4162 93.38 0.4074 78.00
RoadStarNet-FT 0.2872 83.64 0.4222 83.69 0.3752 90.20 0.3842 80.30
HybridNets [17] 0.3163 85.49 0.3236 61.69 0.3377 64.76 0.3109 64.70
a much lower coverage rate than the other methods, thus mitigating the
advantage of achieving a lower pixel placement error.

6.2. Graph-level map assessment

To quantitatively evaluate the graph-based map, we evaluated the
average error (in meters) and the coverage percentage for graph ver-
tices. Different versions of the graph were considered, starting with
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the raw version obtained without applying any post-processing tech-
niques. Then, the aforementioned metrics were evaluated using the
post-processed graph map and, finally, the manually edited graph map
(within a given correction time limit). In particular, we used our
manual editing tool on the graph map in its post-processed state and
measured the metrics after 15, 30, 45, and 60 minutes of manual
correction. These time intervals represented edits of 6.65%, 13.43%,
20.82%, and 31.82%, respectively, of the initial 10121 nodes. Results
are summarized in Table 2. The results indicate that even with a
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Fig. 9. Examples of qualitative results (right) obtained by projecting obtained Lanelet2 model of the Monza Eni Circuit track via Autoware.AI and RViz.
Table 2
Average node-ground truth distance and coverage on sections of the Monza Eni Circuit graph-level map generated using RoadStarNet-F*. Time
values are expressed in minutes.

Monza Eni Circuit track

1: Chicanes 2: Lesmo 3: Ascari 4: Parabolica

Dist. (m)↓ Cov. (%)↓ Dist. (m)↓ Cov. (%)↓ Dist. (m)↓ Cov. (%)↓ Dist. (m)↓ Cov. (%)↓

Raw 0.4338 98.52 0.6673 98.93 0.5659 99.39 0.4495 99.18

Post-processed 0.3293 99.33 0.4628 97.32 0.4235 99.49 0.3698 99.20

Edited in 15’ 0.2966 99.86 0.3029 98.52 0.4012 99.75 0.3659 99.79
Edited in 30’ 0.2966 99.86 0.2956 98.52 0.3408 99.87 0.3968 99.85
Edited in 45’ 0.2788 99.86 0.2513 98.76 0.3188 99.91 0.3968 99.85
Edited in 60’ 0.2571 99.76 0.2513 98.76 0.3188 99.91 0.3923 99.85
short manual intervention, it was possible to obtain a complete map
of the circuit with high precision and a high percentage of coverage.
Indeed, while the proposed pipeline achieves effective accuracy and
coverage capabilities in the mapping phase, some inaccuracies may
still occur, requiring manual corrections to fine-tune the overall out-
put. Furthermore, it is important to note that the proposed pipeline
is limited to mapping road line markings and lanes, so integrating
our algorithm’s capabilities with others that can identify other road
elements (e.g., traffic signs) will be necessary for a comprehensive
representation of the surveyed environments.

In addition to the quantitative results, we also qualitatively evalu-
ated the graph map conversion in critical selected road sections (Fig. 8)
and the 3D positioning of the lanelets by exploiting the Tavagnacco
urban dataset which contains also processed LiDAR point cloud data.
From Fig. 8, it can be noted that the graph conversion pipeline is
effective, and the post-processing techniques are capable of cleaning
and smoothing the initial output while correcting some inaccuracies
present in the raw, non-post-processed graph. Next, a manual editing
allowed in a short time to refine the graph to make it more accurate
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and reduce noise. Regarding the 3D positioning of the lanelets, using
Autoware.AI and RViz, it is possible to visualize a projection of the
Lanelet2 model obtained with our pipeline on the global point cloud
of the navigation environment. Examples of these qualitative results
are shown in Fig. 11, from which it can be seen that our pipeline
has effective capabilities for positioning road line markings and lanes.
Moreover, additional qualitative results from the Monza Eni Circuit
track are shown in Fig. 9. Lastly, we also evaluated the placement of
the lanelets on the extra-urban Milan dataset we collected; despite the
presence of a large number of (long) laneways in the environment, the
graph-level map and final reconstruction are accurate and well overlaid
with the background aerial view, as shown in Fig. 10.

7. Conclusions

In this work, we presented a novel semantic-oriented pipeline to
derive lane-level HD maps starting from common sensors on a survey
vehicle. Sensors provide vehicular and surrounding environment infor-
mation in a numeric, machine-oriented format; to interpret this data,
we first introduced RoadStarNet, a deep learning model that detects
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Fig. 10. Examples of qualitative results showing our final reconstruction of the surveyed extra-urban area of Milan. In order: aerial view of the section of interest, reconstructed
Lanelet2 model, post-processed graph, and final edited graph; on the last row, we showed an overlay of the model with the associated aerial background (left), as well as a similar
result on a different (subsequent) section of the area (right).
Fig. 11. Examples of qualitative results obtained by projecting obtained Lanelet2 model on the Tavagnacco dataset point cloud via Autoware.AI and RViz.
and classifies road line markings from imagery data. We then fused
RKT-GNSS information to create a semantic BEV of the road line mark-
ings and represent it as a semantic colored graph to model complex
structures. This representation is then used to create an HD map in the
Lanelet2 format. Our pipeline represents a remarkable and significant
advancement in the automated generation of HD maps, showcasing an
10
innovative methodology based on deep learning and sensor fusion. We
assessed our approach in both urban and extra-urban scenarios, where
it demonstrated effective accuracy and coverage capabilities.

There are many opportunities for future work to further advance the
creation of HD maps, as well as the development of novel techniques
aimed at enhancing the proposed pipeline’s effectiveness. In particular,
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upcoming future work will focus on developing methods for the inte-
gration of other sensor data, such as LiDAR and radar data, to provide a
more complete representation of the environment, while including also
different road elements into the reconstructed map, such as road signs
or traffic lights.
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