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Abstract: Overweight and obesity in adults are known to be associated with in-

creased risk of metabolic and cardiovascular diseases. Obesity has now reached epi-

demic proportions, increasingly affecting children. Therefore, it is important to un-

derstand if this condition persists from early life to childhood and if different patterns
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can be detected to inform intervention policies. Our motivating application is a study

of temporal patterns of obesity in children from South Eastern Asia. Our main focus

is on clustering obesity patterns after adjusting for the effect of baseline information.

Specifically, we consider a joint model for height and weight over time. Measure-

ments are taken every six months from birth. To allow for data-driven clustering

of trajectories, we assume a vector autoregressive sampling model with a dependent

logit stick-breaking prior. Simulation studies show good performance of the proposed

model to capture overall growth patterns, as compared to other alternatives. We

also fit the model to the motivating dataset, and discuss the results, in particular

highlighting cluster differences. We have found four large clusters, corresponding to

children sub-groups, though two of them are similar in terms of both height and

weight at each time point. We provide interpretation of these clusters in terms of

combinations of predictors.

Key words: clustering; longitudinal profiles; obesity development; covariate depen-

dent priors

1 Introduction

Overweight and obesity are defined as abnormal or excessive fat accumulation that

may impair health (WHO, 2022). It is well-known that overweight and obesity in

adults are associated with higher risk of metabolic and cardiovascular diseases; see, for

instance, Després et al. (2008), Fox et al. (2007) and Pi-Sunyer (2009). Furthermore,

individuals who are obese and contracted COVID-19 are more likely to experience a
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more severe course of illness (Gao et al., 2020).

Obesity is an epidemic, increasingly affecting children. In 2018, 18% of children in

the United States were obese and approximately 6% were severely obese (Hales et al.,

2018). Prevalence of obesity in children has increased from 4% in 1975 to over 18% in

2016 among children and adolescents aged 5-19 years [WHO, Accessed: 01-06-2021];

see also Cremaschi et al. (2021). Overweight or obesity in childhood is critical as it

often persists into adulthood due to both physiological and behavioral factors, e.g.

(i) adults diet based on energy-dense foods that are high in fat and sugars and (ii)

adult physical inactivity due to the sedentary nature of many forms of work, changing

modes of transportation, and increasing urbanization. Indeed, dietary composition

and sedentary lifestyle have often been cited as main contributors to childhood obe-

sity. Moreover, existing evidence suggest an important role of parents’ socioeconomic

status and maternal prenatal health indicators; see Cremaschi et al. (2021). Recent

research suggests that susceptibility to metabolic disease may originate early in life.

Different conditions in maternal uterus seem to influence metabolic health by alter-

ing glucose metabolism and body composition (Symonds et al., 2013; Godfrey et al.,

2012). Moreover, increased adiposity has been observed in school-age children and

infants (Nightingale et al., 2010; Whincup et al., 2005; Yajnik et al., 2002, 2003).

It is therefore important to understand whether obesity persists from early life to

childhood and if different types of obesity development can be detected, as it will

be later discussed in Section 4. For instance, Zhang et al. (2019) show that rates

of change in Body Mass Index (BMI) at different childhood ages are differentially

associated with adult obesity. Our motivating application is the study of obesity over

time in a dataset of children from South East Asia (see Soh et al., 2014), with mea-
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surements taken every six months from birth. In particular, we focus on height and

weight. It is known that obesity might increase the risk of metabolic diseases, and that

this risk is higher in Asian populations than in White Caucasian population (Misra

and Khurana, 2011). In this work, we provide a flexible model for longitudinal vector

responses such as children’s height and weight to cluster children according to their

growth patterns, i.e. the longitudinal trajectories, with the aim of uncovering differ-

ent risk subgroups. This will inform the development of appropriate interventions.

Our approach combines modelling growth curves with the flexibility of a covariate-

dependent Bayesian nonparametric (BNP) mixture prior. The key idea is that we

build clusters of individuals based not only on the shape of growth trajectories, but

we also let the weights of our mixture prior depend on subject-specific covariates. As

will be shown, this leads to clusters that are more homogeneous in terms of baseline

features. Specifically, we assume a vector autoregressive (VAR) model to represent

child growth, including subject-specific VAR parameters, after adjusting for covariates

(both time-homogeneous and time-varying) available on children as well as mothers.

Thus, clustering multivariate growth curves is equivalent to cluster the VAR param-

eters. We assume a covariate-dependent Bayesian nonparametric prior for the VAR

parameters. A preliminary analysis shows that the lag 1 autoregression assumption

is a reasonable approximation, with higher order lags implying no substantial gain

in information. This is also a simpler and more parsimonious representation than

alternatives such as a mixture of multivariate Gaussian distributions. The model also

includes an overall time-dependent mean function.

In more detail, we assume the children-specific VAR coefficients to be independently

distributed according to a truncated stick-breaking prior with weights that depend

on baseline covariates. This construction induces a covariate-dependent prior on
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the partition of the children in the sample. Moreover, it allows for potentially empty

components, in which case the number of clusters is interpreted as the number of non-

empty components in the stick-breaking representation, i.e. components to which

at least one observation is assigned. The dependent stick-breaking prior adopted

here can be seen as a finite-dimensional version of the logistic stick-breaking process

described in Ren et al. (2011), which belongs to the family of covariate dependent

random probability processes. See, for example, MacEachern (2000); Chung and

Dunson (2009); Rodŕıguez and Dunson (2011); Müller et al. (2011); Park and Dunson

(2010) and Quintana et al. (2022) for a review. A BNP approach is particularly

appealing for the application under study, since comparison with alternative models

shows that a parametric dependence structure is unable to fully capture the data

complexity. We compare our approach also with a popular covariate-dependent prior,

the linear dependent Dirichlet process (Linear-DDP); in this case, our prior shows

better performance in terms of standard model metrics.

On the other hand, VAR models provide a flexible and powerful representation of

longitudinal data, since they allow a straightforward representation of the covariance

matrix of the data; see, for instance, Canova and Ciccarelli (2004) and Daniels and

Pourahmadi (2002). Bayesian nonparametric methods have been successfully applied

to VAR models in recent years. See Kalli and Griffin (2018) for such a model applied

to single subject data, and Billio et al. (2019) and Kundu and Lukemire (2021) for

multiple subject data. In Billio et al. (2019) the authors propose a Dirichlet pro-

cess mixture of Normal-Gamma priors on the VAR autocovariance elements, as a

Bayesian-Lasso prior. In Kundu and Lukemire (2021) the focus is on matrix-variate

data, providing a class of nonparametric Bayesian VAR models, based on hetero-

geneous multi-subject data, that enable separate clustering at multiple scales, and
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result in partially overlapping clusters. An alternative modeling approach is offered

by longitudinal data techniques with fixed and/or random effects functions in time

and latent stochastic processes (see, for instance, Li et al., 2010; Quintana et al.,

2016, and references therein). The general context of dynamic models representation

of longitudinal data with priors for the associated covariance matrices is illustrated

in Daniels and Pourahmadi (2002), with the class of VAR models being a particular

case. Instead Quintana et al. (2016) present a BNP model for longitudinal data that

includes flexible mean functions and autoregressive covariance structures. Similarly

to our proposal, their clustering is imposed on the autocorrelation structure across

subjects, though cluster estimates are not their main inferential focus. Finally, Cre-

maschi et al. (2021) consider a more complex model in a similar framework, i.e. they

propose a joint model for multiple growth markers and metabolic associations, which

allows for data-driven clustering of the children and highlights metabolic pathways

involved in child obesity. Unlike our approach, they model the longitudinal trajectory

with a Gaussian Process and the metabolic associations with a Gaussian Graphical

model, assuming a joint Bayesian nonparametric random effect distribution on the

parameters characterizing the growth curves and the graph.

We introduce a Bayesian model to cluster obesity growth patterns whose key com-

ponents are given by: (i) a VAR model, (ii) a covariate-dependent BNP prior for

the VAR parameters driving the clustering, and (iii) the inclusion of fixed-time and

time-varying covariates in the likelihood. An alternative to jointly model height and

weight is the adoption of the unidimensional BMI curve as a response. However, when

checking for children health growth, pediatricians usually focus on growth charts of

both height and weight. This is how we proceed in this manuscript. We design a tai-

lored efficient Gibbs sampling algorithm to perform posterior inference, that exploits
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the recent results on logit stick-breaking priors by Rigon and Durante (2021).

The paper is structured as follows. We first describe the motivating application (Sec-

tion 2), and then we introduce the finite mixture of VAR models and discuss its main

features (Section 3). Next (Section 4) we present the results from the main applica-

tion; we also include predictive goodness of fit measures to compare with alternative

models. The paper concludes with a discussion in Section 5. Supplementary material

file provides further plots, details on the Gibbs sampler algorithm for posterior simu-

lation and on extensive simulation studies carried out to explore model performance

and compare versus competitor models.

2 Motivating application

We focus on the analysis of obesity in children from Singapore, particularly on its

evolution over time. As mentioned in the Introduction, it is relevant to understand

whether obesity persists from early life to childhood. Such information is of particular

relevance when designing intervention policies. We describe the main features of

the data and introduce the research questions. Then, we present the results of an

exploratory analysis carried out to highlight the main modelling challenges and further

motivate our approach.

2.1 GUSTO Child growth dataset

We consider data from the Growing Up in Singapore Towards healthy Outcomes

(GUSTO) study, which is one of the most carefully phenotyped parent-offspring co-

horts with a particular focus on epigenetic observations; see Soh et al. (2014) for
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description of subject participants and objectives of the cohort study. The data

consist of measurements of child height (or length, depending on the child’s age) in

centimeters and weight in kilograms from periodic visits of 1139 children from birth

to the age of seven. We consider only visits that occurred every six months, though

during the first year of life, infants were examined every three months. This has

been done since, after preliminary analysis, we have focused on autoregressive models

for the bidimensional response. Such a class requires time units to be homogeneous.

More specifically, the response vector yit ∈ R2 is given by the measurements of (length,

weight) up to the 12th month of age (t = 3) and (height, weight) from the 18th month

onwards (t = 4, . . . , 14). Besides gender of the child, information is also available on

the mother. However, the original sample includes missing observations: 77 subjects

are discarded from the analysis, because only information on the first visit (i.e. right

after birth) is available. Moreover, we discard children with less than two consecutive

visits, and with missing baseline covariates. The number of children with missing

baseline covariates is 217, while the number of children with less than two consecu-

tive visits is 79. This leads to a final sample size of N = 766. Note that we keep

children with missing responses, since in a Bayesian framework it is straightforward to

impute these as part of the MCMC. To this end, we simulate the missing responses

(percentages of missing height and weight are 3.1% and 0.14%, respectively) from

their full conditional distribution at every iteration of the algorithm. See the MCMC

algorithm in the Supplementary Material, Section 2.

The available baseline covariates are:

� age: mother’s age. it ranges from 18 to 46 years.

� parity : number of previous pregnancies carried to a viable gestation by the
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mother, ranging from 0 to 5. If parity equals to 0, the child is the first born.

� OGTT fasting Pw26 (in what follows referred to as OGTT fasting): oral glu-

cose tolerance test (OGTT) at 24th-26th week of pregnancy. It assumes values

between 2.9 and 8.7 mg/dL. Mothers are tested after fasting for at least eight

hours.

� OGTT 2hour Pw26 (in what follows referred to as OGTT 2h): oral glucose

tolerance test at 24th-26th week of pregnancy. It ranges from 2.9 to 15.1 mg/dL.

Mothers are tested two hours after having assumed a glucose solution containing

a high dose of sugar.

� ppBMI : pre-pregnancy body mass index of the mother. Values in the sample

range from 14.6 to 41.3 Kg/m2.

� GA: gestational age in weeks, i.e. the length of the pregnancy. It assumes values

between 28 and 41.4.

� sex : gender of the child.

� Mother’s ethnicity : Chinese, Malay or Indian with proportions consistent with

the Singaporean population.

� Mother’s highest education: categorical variable with three ordered levels. Level

1 corresponds to no education or primary school, level 2 corresponds either to

primary school, GCE (Singapore-Cambridge general certificate of education (O-

level)) or ITE NTC (institute of technical education, national technical certifi-

cate) and level 3 corresponds to university degree.

The main goal of the analysis is to understand differences in obesity growth patterns
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among ethnic groups via the construction of clusters of individuals exhibiting different

profiles. We are also interested in assessing the effect of gender, parity and gestational

age of the children on the development of obesity (Tint et al., 2016). Gender, age

and parity have been reported in the medical literature as associated to neonatal

adiposity. Girls are known to have greater adiposity than boys even at birth (Simon

et al., 2013; Fields et al., 2009; Rodŕıguez et al., 2004). Increasing parity is associated

with increasing neonatal adiposity in Asians as well as in Western populations (Joshi

et al., 2005; Catalano et al., 1995). Gestational age and postnatal age have also been

shown to be associated with increasing weight and adiposity (Simon et al., 2013;

Catalano et al., 1995). Other important factors relating to the mother are the results

of the glucose tolerance test and pre-pregnancy body mass index, since metabolic

diseases are heritable, though they do not necessarily lead to obesity (CDS, 2018);

see also, for instance, Qasim et al. (2018). Since obesity might also be related to

family nutritional habits, we include in the model education as a proxy for the family

socioeconomic status.

In the next subsection, we present an exploratory data analysis, which will drive the

choice of interactions between covariates to include in the model.

2.2 Exploratory data analysis

The three main ethnic groups in Singapore are Chinese, Malay and Indian. Their

sample frequencies in the dataset, 56%, 26% and 18%, respectively, are consistent

with the overall population distribution. In Figure 1 we plot the sample correlation

of the numerical covariates. We find that the largest correlation (equal to 0.42)

is between OGTT fasting and OGTT 2h, as expected. To better investigate the
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Figure 1: Sample correlation between numerical covariates in the Child Growth

dataset.

relationship between categorical and continuous covariates, Figure 2 shows boxplots of

the continuous covariates, stratified by each categorical covariate level. There appears

to be a linear trend between parity and age, which is to be expected, and also between

parity and ppBMI. Additionally, the distribution of mother’s age is concentrated on

smaller values for Malay and Indian ethnicity, compared to Chinese women. No

other association is detectable between categorical and continuous covariates by visual

inspection.

Figure 3 shows the scatterplots of the children’s height (left) and weight (right) at

lag 1, i.e. sample points (yit, yit+1) for all t and all subject i for both responses y. We

identify two sub-groups in both plots, corresponding to newborns and infants (the

group of datapoints on the left bottom corner of each panel) and older children. For
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Figure 2: Boxplots of numerical variables (by column) for each level of the categorical

variables (by row).

the latter the autoregressive assumption is very clear, while for the infant group, as

expected, the linearity relationship is not strong, though it could be assumed as a

first approximation.

In Section 1 of the Supplementary Material we show the unidimensional scatterplots

of the responses (height and weight) at t = 0, 1, 2 versus the continuous covariates,
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Figure 3: Scatterplots of Singapore children’s height (left) and weight (right) at lag

1, i.e. of the sample points (yit, yit+1), for t = 1, . . . , Ti − 1 and i = 1, . . . , N for each

response y; the colors correspond to the age of the children as defined in the colorbar

which are useful to identify overall effects of these time-homogeneous (i.e. recorded

at baseline) covariates, on the time-varying responses. For categorical covariates, we

show the boxplots of responses stratified by level. Supplementary Material Figures 1

and 2 display a response pattern increasing with time, though there does not seem

to be a clear dependence of weight and height on such covariates.

The lagged scatterplots in Figure 3 justify adopting a VAR model with lag 1 for the

responses. Moreover, we include in the analysis the time-homogeneous covariates zi

and a function of time, xit =
√
t, to account for a global growth trend over time. We

have fitted different trends in a preliminary analysis, but the best fit was for
√
t, which

is what we use here. No other time-varying covariate is available in the dataset. We

also consider interaction terms between (i) the mother’s highest education and age,

and (ii) ethnicity and gender of the child. Finally, denoting by X : Y the interaction



14 Mario Beraha et al.

term between X and Y , Table 1 lists all the covariates included in the model:

Covariate Type Covariate Type

(1) intercept (9) education2:age discrete

(2) age discrete (10) education3:age discrete

(3) parity discrete (11) parity:age discrete

(4) OGTT fasting cont (12) Indian binary (=1 if the mother

is Indian and zero other-

wise)

(5) OGTT 2h cont (13) Malay binary (=1 if the mother

is Malay and zero other-

wise)

(6) ppBMI cont (14) Male:Chinese binary (=1 for a male

child born to a Chinese

mother)

(7) GA cont (15) Male:Indian binary (=1 for a male

child born to an Indian

mother)

(8) education1:age discrete (16) Male:Malay binary (=1 for a male

child born to a Malay

mother)

Table 1: Final model covariates and their data types: cont and discrete denote

continuous and discrete numeric variables, respectively.

The baseline category for the categorical covariates corresponds to a female child born
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to a Chinese mother. As a final pre-processing step, we standardize each numerical

covariate at baseline by subtracting their sample mean and dividing by the sample

standard deviation.

In summary, the Child Growth dataset used in the anaysis contains information

on N = 766 children, k = 2 responses, p = 1 time-dependent covariate (i.e.
√
t)

and a q = 16-dimensional design matrix for time-homogeneous covariates (including

intercepts, interactions and dummy variables to represent categorical covariates).

3 The VAR model and the logit stick-breaking prior

for the VAR parameters

Our motivating application requires the development of statistical methodology able

to describe the evolution of a k-dimensional response vector Yit for individuals i,

i = 1, . . . , N recorded at discrete time points t, t = 1, . . . , Ti, accounting for time-

varying covariates xit and time-homogeneous covariates zi, measured at the baseline.

Motivated by the exploratory analysis above, for any i = 1, . . . , N , we assume:

yit = Φiyit−1 +Bxit + Γzi + εit, εit
iid∼ N (0,Σ), t = 1, . . . , Ti (3.1)

where Φi = [Φijl] is a k×k matrix of autoregression coefficients, xit is a p−dimensional

vector of time-varying covariates, zi is a q−dimensional vector of time-homogeneous

covariates, B = [bjl] and Γ = [γjl] are k × p and k × q matrices of regression co-

efficients, respectively. For ease of explanation, we vectorize matrices Φi, B and Γ.

Specifically, denoting with (·)T the transpose of a column vector, we introduce the
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following notation

φi = (Φi11, . . . ,Φi1k,Φi21, . . . ,Φi2k, . . . ,Φik1, . . . ,Φikk)
T

b = (b11, . . . , b1p, b21, . . . , b2p, . . . , bk1, . . . , bkp)
T

γ = (γ11, . . . , γ1q, γ21, . . . , γ2q, . . . , γk1, . . . , γkq)
T

so that φi, b and γ are vectors with k2, k × p and k × q elements (vectorization

of the matrices Φi, B,Γ, respectively). We assume yi0 = 0, that is, conditionally

to the remaining parameters, yi1 has a Gaussian distribution with mean Bxi1 +

Γzi. Alternatively, we could consider the responses at baseline as exogenous, or a

different initial distribution could be specified. We assume that a priori (Φ1, . . . ,ΦN),

b, γ and Σ are independent. As random effect distribution, we assume a Bayesian

nonparametric prior which depends on the baseline covariates. Specifically, we assume

that

Φi | zi
ind∼

H∑
h=1

wh(zi)δΦ0h
i = 1, . . . , N (3.2)

and we impose a stick-breaking construction on the weights wh. This implies that

equation (3.2) defines a truncated stick-breaking prior with H support points {Φ0h}

and covariate-dependent weights summing up to 1. Similarly to Rigon and Du-

rante (2021), we assume that the weights are generated via a logit stick-breaking

construction, that is, w1(zi) = ν1(zi), and wh(zi) = νh(zi)
∏h−1

l=1 (1− νl(zi)) for

h = 1, . . . , H − 1, and νH(zi) = 1. The dependence on the covariates zi is intro-

duced by assuming a logistic model for νh(zi):

logit(νh(zi)) = zT
i αh, h = 1, . . . , H − 1

αh
iid∼ Nq(µα,Σα), h = 1, . . . H − 1

(3.3)
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An equivalent formulation of (3.2) can be obtained by introducing auxiliary variables

ci’s (usually referred to as cluster allocation indicators) such that

ci | zi,α ∼ Categorical ({1, . . . , H};w(zi))

and letting Φi = Φ0ci . Availability of the ci’s allows us to make a fundamental dis-

tinction between mixture components and clusters. In the following, we refer to any

of the Φ0h’s as a component, while a cluster of observations is a component to which

some observations are assigned to; see, for instance, Argiento and De Iorio (2022).

The marginal prior (3.2) - (3.3) is represented by a finite, though large number of

parameters, and can be regarded as the truncation of a dependent Bayesian nonpara-

metric prior. We complete the prior specification with the marginal parametric prior

distributions for b, γ and Σ:

b ∼ Nkp(0,ΣB), γ ∼ Nkq(0,ΣΓ) Σ−1 ∼ W(Σ0, ν) (3.4)

where W(Σ0, ν) denotes the Wishart distribution with expectation equal to νΣ0 for

ν > p − 1. To obtain more robust inference, we assume a hierarchical prior for the

φ0h’s:

φ0h | φ00, V0
iid∼ Nk2(φ00, V0), h = 1, . . . , H (3.5)

φ00, V0 | φ000, λ, V00, τ0 ∼ NIW(φ000, λ, V00, τ0) (3.6)

In (3.6), NIW(φ000, λ, V00, τ0) denotes the normal-Inverse Wishart distribution, i.e.

V0 ∼ IW(τ0, V00) and φ00 | V0 ∼ N (φ000, λ
−1V0), where IW(τ0, V00) denotes the

inverse-Wishart distribution defined over the space of k2×k2 symmetric and positive

definite matrices with mean V0/(τ0 − k2 − 1).

Posterior inference is performed through a Gibbs sampler algorithm, as detailed in

the Supplementary Material, Section 2. However, it is worth noting that the full-
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conditional of the weights parameters {αh} in Equation (3.3) can be derived in closed-

form with the introduction of auxiliary variables, using results in Polson et al. (2013)

and Rigon and Durante (2021). The full conditional distributions of b and γ are

derived as in a standard multivariate Bayesian linear regression models. The full

conditionals of the atoms {Φ0h} in the stick-breaking prior (3.2) are given in the

blocked Gibbs sampling of Ishwaran and James (2001). The code is implemented in

C++ and linked to Python via pybind11 (Jakob et al., 2017) and is publicly available

at https://github.com/mberaha/BNP-VAR.git.

4 Child Growth data

We now present posterior results for the Child Growth dataset, detailing prior spec-

ification and inference. In the latter case we include a comparison between the pro-

posed prior and the linear-DDP prior, as well as with a parametric counterpart of our

model. Recall that the dataset contains information on N = 766 children with k = 2

responses, height and weight of the children over time.

4.1 Prior elicitation

Given the complexity of the model and the high-dimensionality of the dataset, prior

elicitation needs to be carefully considered. Preliminary analysis shows that when

the variances of the αh’s (see (3.3)) or of the atoms Φ0h’s (see (3.5)) in the logit

stick-breaking are large, then all the observations tend to be assigned to the same

component. Moreover, the missing data simulation step has a strong impact on

posterior inference. In particular, when using the vague prior described above, in the

https://github.com/mberaha/BNP-VAR.git
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initial iterations of the MCMC algorithm, typically large missing values are imputed

(e.g. 105) since both Σ and {Φ0h} would assume unusually large values. Sampled

values for all the other parameters are affected, leading to a poor fit. Hence, the

use of an uninformative prior is not advisable, as it causes poor mixing and slow

convergence of the chain. This is a common situation in complex hierarchical models

when non-informative priors are adopted in lower levels.

As such, we opt for informative priors. To set the hyperparameters in the hierarchical

marginal prior in (3.5)-(3.6), we adopt an empirical Bayes type of approach and obtain

the maximum likelihood estimator of a vector autoregressive model:

yit | yit−1 ∼ N (Φyit−1,Σ), t = 1, . . . T − 1, i = 1, . . . , N (4.1)

which corresponds to (3.1) when B and Γ are set to zero (their prior expected value)

and H = 1. We fit (4.1) using only subjects with no missing responses. Let Φ̂, Σ̂

denote the maximum likelihood estimator for Φ and Σ respectively. We fix Φ000 = Φ̂,

λ = 1, and select (V00, τ) in (3.6) so that E[V0] = I and Var[{V0}ii] = 1.5. Similarly,

we fix Σ0 and ν in (3.4) so that E[Σ] = Σ̂ and Var[{Σii}] = 10.

The variance hyperparameter Σα in (3.3) also has an important effect on posterior

inference. To set this quantity, we look at the prior distribution of the number of

clusters (i.e. occupied components) and of the size of the largest cluster. To this end,

we perform Monte Carlo simulations. Specifically, we fix the number of componentsH

in the stick-breaking prior equal to 50, set Σα = σ2
αI, and simulate α1, . . . , αH−1 from

(3.3) with µα = 0. Then, for each of the N = 766 subjects, we compute the associated

weights w(zi) from the logit stick-breaking process, using observed covariates zi, and

allocate each subject to one of theH components with probability given by the weights

w(zi). The above procedure is repeated independently for M = 10, 000 iterations and
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we record the number of clusters and the size of the largest cluster. Figure 4 shows the

distributions obtained from the Monte Carlo simulation. As σ2
α increases, the number

of clusters shrinks to 1 and the size of the largest cluster increases accordingly. Hence,

we fix σ2
α = 5 so that a priori we should expect approximately 4− 7 clusters. Finally,

we assume µα = 0, ΣB = I2 and ΣΓ = I18 (see (3.4)); recall that all continuous

covariates are standardized.
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Figure 4: Prior distribution of the number of clusters (left panel) and of the size of

the largest cluster as percentage of the whole dataset (right panel), for different values

of σα.

4.2 Posterior inference results

We apply the model described in the previous section to the Child Growth dataset

with hyperparameters set as above. Recall that the model includes p = 1 time-

dependent covariate (that is,
√
t) and a q = 16-dimensional design matrix for time-

homogeneous covariates (including intercepts, interactions and dummy variables to

represent categorical covariates). We run the MCMC algorithm for 100, 000 iterations,

discarding the first 50,000 as burn-in and thinning every 10 iterations, obtaining a
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final sample size of 5,000 iterations. The chain has reached convergence as we can see

from Figure 3 in the Supplementary Material file.
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Figure 5: Child Growth dataset: posterior distribution of the number of clusters.

Figure 5 shows the posterior distribution of the number of clusters, i.e. of occupied

parametric components, that is clearly centered around 10-12 clusters. However, in-

terpreting these as the “number of distinct profiles” in the y’s may be misleading.

Recall that we have specified a covariate-dependent prior for the random partition

of patients. Indeed, some clusters can be essentially identical when looking at the

response trajectories, but different in terms of baseline features. As a point estimate

of the latent partition, we choose the one that minimizes the posterior expectation of

Binder’s loss function (Binder, 1978). This loss function selects the clustering allo-

cation that minimises the distance with the true probability of co-clustering between

each pair of subjects, by assigning a cost b when two elements are wrongly clustered

together and cost a when two elements are erroneously assigned to different clusters.

We assume equal misclassification costs, i.e. a = b. The estimated partition consists

of seven clusters, of which only four contain at least 15 observations. As it is usual

in this type of literature (see, e.g. Page and Quintana, 2015), we focus only on these
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four large clusters. In Figure 6 we display the response trajectories clustered accord-

ing to the estimated partition. Note that the fourth cluster (bottom row) consists of

subjects with at most three visits, except for one single subject with four visits. For

this reason, we do not discuss this cluster. Figure 6 shows the time trajectories for

patients’ height (first column), weight (second column) and BMI. The third row in

Figure 6 shows that this cluster contains children with lower weight, and consequently

lower BMI than the other two clusters.

As already mentioned, the main three clusters could differ either in the responses or in

the covariate patterns (or both). To better understand what discriminates the three

main clusters, we perform homogeneity tests for the equality in distribution of both

responses and covariates in the different clusters. The results should be considered as

a descriptive tool. In particular, for the responses we consider the data on both height

and weight at each visit separately and test equality of the distributions for each pair

of clusters. For each of the covariates, we test the equality of their distributions in

each possible pair of clusters. For the response variables and continuous covariates,

we employ the Kolmogorov-Smirnov (KS) test for equality in distribution and the

Pearson’s chi- squared test of homogeneity for categorical covariates. Table 2 reports

the p-values associated to the KS test for responses, while Figure 7 shows the cluster

specific empirical distribution of covariates. From Table 2 and Figure 7, it is clear

that clusters 2 and 3 (second and third rows in Figure 6, respectively) are similar in

terms of both responses at each time point. However, Figure 7 (bottom row) suggests

that the three main clusters cannot be explained only in terms of ethnicity, even

though cluster 3 contains almost exclusively Chinese children.

Because the model-based clustering of children’s multivariate trajectories is driven by
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the clustering of the VAR parameters Φi’s, as a further assessment of differences in

cluster responses, we estimate those parameters. Since the Φi’s are not identifiable

due to label-switching of its mixture prior, we use an ad-hoc estimation procedure

that has become standard. See Section 1 of the Supplementary Material. Those

figures show that the estimates by cluster are different, including clusters 2 and 3.

We now discuss posterior inference on the two parameters contained in B, i.e. the re-

gression parameters for the square root of time t for the two responses; see (3.1). The

posterior means are 5.55and0.96, respectively, with marginal standard deviations 0.02

and 0.01, thus indicating a non-negligible growth trend for both height and weight, as

expected. Figure 8 displays posterior credible intervals for all the parameters in Γ de-

fined in (3.1), that is, the regression coefficients corresponding to time-homogeneous

covariates. The reference group for the categorical covariates is a Chinese female

child. Covariates such as OGTT 2h, ppBMI, the interaction between education and

age, ethnicity (Malay) and the interaction between gender and ethnicity have the

strongest effects on height. On the other hand, parity, OGTT 2h, ppBMI, the inter-

action between education and age (but only the second level of education) and the

interaction between gender and ethnicity have a strong association with weight. It

is clear from Figure 8 that most of the posterior mass of the marginal distribution

of regression coefficient ethnicity is concentrated on positive values. Correcting for

the autoregressive effect, we see that ethnicity might impact obesity as Indian and

Malay children are characterized by a larger posterior expected weight, combined in

some cases with a lower posterior expected height. Moreover, also correcting for the

autoregressive effect, our analysis shows that the posterior expected height of a Chi-

nese male child is larger than the reference (Chinese female child). Similar comments

can be made, for instance, regarding Indian male children being smaller than Indian
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female children, and so on.

Mother’s age and gestational age do not have a strong effect on the child’s height

and weight, though this might be due to the fact that these variables are associated

with ethnicity (see Figure 2). It is known from the literature that increasing parity

is associated with increasing neonatal adiposity in Asian and Western populations

(see Tint et al., 2016); this is confirmed by the marginal posterior distribution of the

parameter corresponding to the effect of parity on weight in Figure 8.

The time-homogeneous covariates zi play also a key role in defining the stick-breaking

prior as seen from (3.3). To assess if the proposed covariate-driven stick-breaking prior

provides significant advantages over more standard models, we compare it with three

possible competitors. The first one is the parametric version of our model obtained

by setting H = 1. The second model assumes a truncated Dirichlet process as a

prior for Φi’s, with H = 50, similarly to what is done in the simulation study in the

Supplementary Material file. The third competing prior assumes that the Φi’s take

into account information from the time-homogeneous covariates through the atoms

Φ0h’s. Specifically, the prior for Φ is specified as in (3.2), but for each h = 1, . . . , H we

define a matrix Ωh ∈ Rk2×q and we let vec(Φ0h(zi)) =: φ0h(zi) = Ωhzi. The weights

w in (3.2) do not depend on the value of zi (i.e., wh(zi) = wh) and follow a truncated

Dirichlet process prior with H = 50. This model can be seen as a finite dimensional

approximation of the Linear-DDP in De Iorio et al. (2004).

For all the models, we match the prior for B, Γ, Σ and, when possible also H and

the marginal prior distribution of Φ0h. For the Linear-DDP we assume that the

vectorization of the Ωh’s are independent and identically distributed multivariate

Gaussian random variables with mean zero and identity covariance matrix. Since the
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full conditional distribution of the Ωh’s in the case of the Linear-DDP prior does not

belong to a known parametric family, we update them via an adaptive Metropolis

Hastings (Andrieu and Thoms, 2008) step.

The different models are compared using the widely applied information criterion

(WAIC, Watanabe, 2013). Higher values of WAIC correspond to better predictive

performance. We marginalise the missing values from the predictive distribution of

the response trajectory and consider just the marginal predictive distribution for the

non-missing values. We found that WAIC is equal to −3.4× 106 for the Linear-DDP,

−6.7 × 105 for the parametric model, −3.9 × 105 for the DP model and −3.4 × 105

for our model, confirming that our model performs better than the competitors.

Moreover, we report that the MCMC algorithm for the Linear-DDP requires a much

larger number of burn-in iterations (105 vs. 104) than the other models to reach

satisfactory convergence, and that the posterior expected number of cluster in the

Linear-DDP is around 42. It is then clear that (i) assuming linear dependence of the

fixed-time covariates in the autoregressive parameters matrices Φi does not give good

predictive fit (or at least not better than our model), and that (ii) adding covariate

information in the stick-breaking prior improves the prediction performance. This is

in line with the fact that models with covariate-dependent weights are more flexible

than models that assume dependence only in the locations of a collection of random

distributions.



26 Mario Beraha et al.

5 Conclusions

Obesity is an epidemic, increasingly affecting children. Overweight or obesity in child-

hood may be critical as they often persist into adulthood due to both physiological

and behavioral factors. The aim of this manuscript is to gain a better understanding

of the factors affecting childhood obesity patterns.

We develop a Bayesian nonparametric VAR joint model for height and weight profiles

and fit it to data from a Singaporean cohort study. One key aspect behind our mod-

eling strategy is to cluster the joint time-evolving profiles using available covariate

information. The model assumes a logit stick-breaking construction that can accom-

modate covariate dependent weights in the mixture model. This allows us to relate

certain baseline features of children, such as gender or ethnicity, to obesity patterns.

Ethnic differences in obesity are of interest as they could be due to genetic factors,

dietary habits, cultural or socioeconomic factors. The analysis allows us to identify

children sub-groups characterized by differences in time trajectories, covariates or

both. Our discussion focused on three of the largest clusters detected. They differ

most in terms of OGTT 2h. This is screening for maternal gestational diabetes, which

is typically associated to their offspring’s overweight and obesity risk. Cluster 3 is

characterized by lower weight and slightly lower height than others, while cluster 1

differs in age from the others. Moreover, the estimates of Φi’s in the Supplementary

Material file in the main three clusters exhibit clear differences.

Posterior inference is carried out via an efficient sampling scheme that exploits re-

cently developed results on logit stick-breaking priors. The results obtained are com-

pared against competitor models, and we find that our approach provides superior
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performance as measured by model choice criteria such as the WAIC.

An interesting characteristic of our model is that, though it clusters obesity patterns,

when we characterize the estimated clusters we need to account for “number of distinct

profiles” in the responses, as well as for the fact that the random partition of the

subjects is covariate-dependent. In fact, some of the estimated clusters are similar

when looking at the response trajectories, but different in terms of the covariate

patterns. This is one of the most appealing advantages of our model (and all models

with covariate-dependent prior for the random partition), as it allows for greater

flexibility and interpretability.

Given the complexity of the data, the model is composed of four main components:

an AR structure in the likelihood, the mean temporal trend, the interactions in the

linear regression term, and the BNP prior for clustering. Moreover, the MCMC

scheme exploits efficient computation for the logit stick-breaking prior developed by

Rigon and Durante (2021), which ensures scalability of the proposed approach.
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Figure 6: Subject-specific trajectories of height (first column), weight (second column)

and BMI (third column) by estimated cluster (by row). The figure reports only the

four largest clusters out of the seven estimated.
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Height Weight

Clusters (1, 2) (1, 3) (2, 3) (1, 2) (1, 3) (2, 3)

t = 1 0.023 0.000 0.025 0.002 0.296 0.606

t = 2 0.000 0.023 0.999 0.000 0.000 0.785

t = 3 0.000 0.003 0.797 0.000 0.013 0.815

t = 4 0.000 0.000 0.000 0.000 0.253 0.620

t = 5 0.046 0.004 0.044 0.000 0.197 0.386

t = 6 0.000 0.051 0.701 0.000 0.241 0.254

t = 7 0.003 0.113 0.878 0.000 0.431 0.375

t = 8 0.000 0.072 0.733 0.000 0.210 0.718

t = 9 0.000 0.106 0.984 0.000 0.196 0.715

t = 10 0.000 0.112 0.869 0.000 0.341 0.717

t = 11 0.000 0.213 0.726 0.000 0.244 0.854

t = 12 0.000 0.165 0.877 0.000 0.125 0.932

t = 13 0.000 0.179 0.993 0.000 0.042 0.811

Table 2: P-values of the homogeneity tests for the equality in distribution at every

visit for each pair of clusters, considering height and weight. Bold numbers correspond

to p-values lower than 5%



Bayesian Nonparametric Model for Child Obesity 37

15 20 25 30 35 40 45 50
0.00

0.02

0.04

0.06

0.08

0.10
AGE

Cluster 1
Cluster 2
Cluster 3

(a) 0.00, 0.00, 0.61

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

PARITY
Cluster 1
Cluster 2
Cluster 3

(b) 0.02, 0.00, 0.0

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

OGTT FASTING
Cluster 1
Cluster 2
Cluster 3

(c) 6e-10, 3e-5, 0.66

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
OGTT 2H

Cluster 1
Cluster 2
Cluster 3

(d) 0.00, 0.00, 0.00

10 15 20 25 30 35 40 45
0.00

0.02

0.04

0.06

0.08

0.10

0.12

PP BMI
Cluster 1
Cluster 2
Cluster 3

(e) 0.07, 0.55, 0.06

30 32 34 36 38 40 42
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
GA

Cluster 1
Cluster 2
Cluster 3

(f) 0.07, 0.01, 0.22

Female Male
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sex
Cluster 1
Cluster 2
Cluster 3

(g) 0.00, 0.00, 0.98

chinese indian malay
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ethnicity
Cluster 1
Cluster 2
Cluster 3

(h) 0.00, 0.00, 0.00

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5
ED. GROUPS

Cluster 1
Cluster 2
Cluster 3

(i) 0.00, 0.00, 0.40

Figure 7: Empirical distribution of the covariates in each cluster. The three numbers

below each plot represent the p-values for the homogeneity tests for covariates in

clusters (1, 2), (1, 3) and (2, 3), respectively.
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Figure 8: Posterior credible intervals of the regression coefficients in Γ for the height

(left plot) and weight of the children (right plot). Thin lines correspond to 95%

credible intervals, while thick lines to 80% credible intervals.
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