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Abstract: This paper proposes an integral sliding mode (ISM) based unknown input observer
(UIO) which is able to perform fault diagnosis (FD) in condition of lack of knowledge of the
plant model. In particular, a two-layer neural network (NN) is employed to estimate online the
drift term of the system dynamics needed to compute the so-called integral sliding manifold. The
weights of such a NN are updated online using adaptation laws directly derived from theoretical
analysis, carried out in this paper. Finally, the proposal has been assessed in simulation relying
on a benchmark model of a DC motor.
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1. INTRODUCTION

Fault diagnosis (FD) has become more and more rele-
vant in the industrial context, where a large number of
electromechanical systems are implied in everyday work.
The aim of FD is to determine the causes of deviations of
the control status from the desired behavior, interpreting
information that comes from sensors or from the process
model (Isermann, 2005).

In order to compensate the effects of faults and guarantee
the continuity of the work processes, detection, isolation
and identification must be performed. The detection pro-
cedure allows to understand if and when a fault is affecting
the system, without prior knowledge on the faulty com-
ponent. Isolation and identification take care of finding
the faulty element and reconstructing the fault signal,
respectively. Furthermore, the FD methodologies proposed
in literature during the years can be distinguished in
two main categories, i.e., passive methods, in which the
input is fed both into the actual process and its nominal
model in order to check differences in the system behaviour
(Isermann, 2011), and active methods, which rely on the
injection of auxiliary signals to improve detectability of
faults (Scott et al., 2014; Punčochář and Škach, 2018).
Other FD techniques rely instead on NNs (Baimukashev
et al., 2021), robust or optimal control approaches, like
linear quadratic controllers (LQR) (Zhan and Jiang, 1999)
and model predictive control (MPC)(Jarrou et al., 2019).
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In this context, also Sliding Mode Control (SMC) has been
successfully adopted thanks to its robustness against a
wide class of uncertain terms, especially the matched ones
acting directly on the input channel (Ferrara et al., 2019a).
In the domain of FD, sliding mode based approaches have
been studied to control, for instance, robotic systems, as
in (Bartolini et al., 1997; Capisani et al., 2009). Other
works have proposed sliding mode based observers to
design fault tolerant control schemes. In particular, robust
estimates of the fault signals can be generated using the so-
called equivalent control concept, see e.g., (Capisani et al.,
2010; Incremona and Ferrara, 2019; Sacchi et al., 2023).
However, such an equivalent control holds only during the
sliding phase, while the system is still sensitive to the
uncertainties in the reaching phase interval.

In order to improve the robustness of SMC, the concept of
ISM has been then introduced in (Utkin and Shi, 1996).
Indeed, such an improvement allows to enable a sliding
mode, along with the robustness property, since the initial
time instant, thus removing the reaching phase. The ben-
eficial effects have been assessed for different applications,
as in (Ferrara and Incremona, 2015; Incremona et al., 2017;
Ferrara et al., 2019b) among many others. However, one
of the main features of the ISM approach is the required
knowledge of the nominal system model. If on the one hand
it is common to consider the terms multiplying the input
known, the same assumption cannot be made on the drift
terms. In fact, in many practical implementations, only
conservative bounds can be retrieved.

In the last years, also motivated by the growth of the
available computational power, the learning paradigm has
gained popularity. In particular, powerful function approx-
imators like NNs (Hornik et al., 1989) have been applied



in the design of a variety of control schemes, thus creating
several learning-based data-driven control approaches with
stability guarantees, like the ones presented in (Bonassi
et al., 2022). Moreover, in (Lewis et al., 1999), weight
adaptation laws for NNs based on Lyapunov stability anal-
ysis have been introduced. Such a technique has been used
to estimate part of the system model or to directly approx-
imate the optimal control law, as proposed in (Esfandiari
et al., 2022; Cheng et al., 2021). Moreover, several method-
ologies which combine NNs with SMC have been proposed,
see, e.g., (Tai and Ahn, 2010; Fei and Lu, 2017). More
recently, in (Sacchi et al., 2022), a two-layer NN which
estimates the plant model, while using the aforementioned
weight adaptation laws, has been proposed relying on ISM
control, giving rise to a novel NN-ISM control method.

Motivated by (Sacchi et al., 2022), and having in mind a
FD application, in this paper we propose a novel NN-ISM
Unknown Input Observer (UIO) to detect faults affecting
the input of a general nonlinear system. In particular,
differently from the literature, the main advantage of this
work is that we use a two-layer NN to estimate online
the a priori unknown drift term of the system dynamics
needed to compute the so-called integral sliding manifold.
The weights of such a NN are randomly initialized and
then updated according to adaptation laws derived by Lya-
punov stability analysis. The validity of the proposed NN-
ISM UIO is assessed in simulation relying on a benchmark
model of a DC motor.

The paper is structured as follows. In Section 2 the consid-
ered nonlinear system, and the concept of ISM observers
are presented. In Section 3 the universal approximation
property of NNs is introduced. In Section 4, the proposed
NN-ISM UIO and the main theoretical results are pro-
vided. Section 5 describes the numerical simulation and
presents the results, while some conclusions are finally
drawn in Section 6.

Notation: Let x ∈ Rm be a column vector, then x⊤ ∈
R1×m represents its transpose. Given a real matrix A ∈
Rm×m, then λ(A) and λ(A) are the greatest and smallest
singular values of A, while tr(A) is its trace. Given two
real matrices A, B ∈ Rm×m, then tr(A + B) = tr(A) +
tr(B), while given A ∈ Rn×m, B ∈ Rm×n, then tr(AB) =
tr(BA). Given two real column vectors a, b ∈ Rm, the
trace of the outer product is equivalent to the inner
product, i.e., tr(ba⊤) = a⊤b. Given a real matrix A ∈
Rn×m, then A† ∈ Rm×n is its pseudo-inverse, defined as
A† = (A⊤A)−1A⊤. Let 1p×1 ∈ Rp be a column vector of
p ones.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, first the class of considered systems and
faults is presented, and then some preliminaries on the
design of a ISM based input observer are recalled.

2.1 The considered faulty system

Consider a nonlinear system affected by an actuator fault,
expressed in state-space form as

ẋ = f(x(t)) +B(x(t)) [u(t) + ∆u(t)] , (1)

where x(t) ∈ Rn is the system state vector, f(x(t)) :
Rn → Rn is the drift dynamics, B(x(t)) : Rn → Rn×m

is the control effectiveness matrix, u = κ(x) ∈ Rm is any
suitable (in whatever appropriate sense in terms of desired
response) stabilizing control law for the system without
faults, while ∆u(t) : R → Rm is the actuator fault. Note
that, the fault is modelled as an additive disturbance in the
input channel, see e.g., (Capisani et al., 2010; Incremona
and Ferrara, 2019; Sacchi et al., 2023). Moreover, the
following classical assumptions on the fault, the drift term,
and the effectiveness matrix need to be introduced.

A1: There exist known constants δ, f , b ∈ R>0, so that the
actuator fault ∆u(t), the drift dynamics f(x) and the
effectiveness matrix B(x) are bounded as

sup
t∈R>0

∥∆u(t)∥ ≤ δ,

sup
x∈Rn

∥f(x)∥ ≤ f,

sup
x∈Rn

∥B(x)∥ ≤ b

Note that, to recall the concept of ISM UIO, we consider
now only the fault ∆u unknown but bounded, while the
rest of the dynamics is known and bounded.

2.2 ISM based UIO

The goal of this work is to perform a fault diagnosis in
presence of actuator fault. More precisely, to estimate the
unknown control fault which affects (1), it is possible to
design an UIO of the form

˙̂x = f(x̂) +B(x̂) [u+ v] , x̂(0) = x(0), (2)

where v ∈ Rm is the observer input, which is designed,
relying on an ISM strategy, as the sum of two components,
i.e., v = v0 + v1. In particular, v0 = κ0(e) is selected so
as to stabilize the nominal dynamics of the observer error
e := x− x̂ ∈ Rn, that is in the case of ∆u = 0. The second
term, v1, has a discontinuous nature and it is selected as

v1 := ρ
s

∥s∥
, (3)

where ρ ∈ R>0 is a constant gain to dominate the
mismatches with respect to the nominal model, and s :
Rn → Rm is the so-called integral sliding variable, defined
as

s := s0 + z. (4)

In the considered case, it is convenient to select s0 ∈ Rm

dependent on the observer error e, i.e., s0 := Λe, with
Λ ∈ Rm×n being a matrix which satisfies the following
assumption.

A2: The matrix Λ ∈ Rm×n is chosen so that, ∀x, x̂ ∈ Rn,
the matrices ΛB(x) ∈ Rm×m and ΛB(x̂) ∈ Rm×m

are positive definite. Moreover, there exists a known
constant c ∈ R>0 so that |1⊤

m×1Λ1n×1| ≤ c.

As for the term z(x(t)) : Rn → Rm, which is the so-called
transient function, it is defined so that

ż := −∂s0
∂e

ė0, z(0) = −s0(0), (5)

with e0 being the nominal evolution of the observer error
dynamics obtained subtracting (2) to (1), with ∆u = 0.
Then, as stated in the following theorem, selecting a
suitable gain ρ for (3), it is possible to enforce a sliding
mode since the initial time instant and, exploiting the



concept of equivalent control, estimate the control fault
∆u(t).

Theorem 1. Consider system (1) and the UIO (2), with v1
defined as in (3). If A1 and A 2 hold, and ρ is selected so
that

ρ >
λ(ΛB(x))

λ(ΛB(x̂))
δ, (6)

then a sliding mode s = 0 is enforced for any t ≥ 0.
Moreover, letting ṽ1 be the equivalent control, one has
that

ṽ1 = B(x̂)†B(x)∆u. (7)

Proof. Selecting the Lyapunov function

V (x) =
1

2
s⊤s, (8)

and computing its time derivative V̇ (x) := s⊤ṡ, one has

V̇ (x) = s⊤ΛB(x)∆u− s⊤ΛB(x̂)ρ
s

∥s∥
≤ λ(ΛB(x))δ∥s∥ − λ(ΛB(x̂))ρ∥s∥
≤

[
λ(ΛB(x))δ − λ(ΛB(x̂))ρ

]
∥s∥ = −η∥s∥,

with η := −
[
λ(ΛB(x))δ − λ(ΛB(x̂))ρ

]
. Therefore, if as-

sumptions A1 and A2, along with condition (6), are

satisfied, then V̇ (x) ≤ −η∥s∥ < 0, which implies that a
sliding mode s = 0 is enforced. Moreover, since s(0) = 0,
the sliding mode is enforced since the initial time instant.
Finally, computing ṡ = 0 and solving for ṽ1 allow to obtain
the equivalent control (7), which concludes the proof.

As detailed in (Utkin and Shi, 1996), in practice, ṽ1 is
achieved by using a first-order filter (that is, a low-pass
(LP) filter) having in input the discontinuous signal v1.

Note that the previous result is valid in the case of fully
known nominal dynamics. In this work we want to address
the case of partial information on the system dynamics and
we assume that the drift term is unknown. This condition
requires the introduction of a new approach to compensate
the lack of knowledge on the system.

3. NN-BASED FUNCTION APPROXIMATION

Motivated by the problem stated at the end of the pre-
vious section, in the following a NN-based approach is
introduced to estimate the unknown drift term, which is
instrumental to design the integral sliding variable.

Indeed, as detailed in (Utkin and Shi, 1996) and evident
in (5), in order to design an ISM observer, the nominal
dynamics must be known. However, in this paper the
drift term f(x) is assumed to be unknown. Exploiting the
universal approximation property introduced in (Hornik
et al., 1989), a NN is therefore adopted to approximate
the unknown component of the system.

Let Ω ⊂ Rn be a compact set with x ∈ Ω, and Sn(Ω) the
space in which the drift term f(x) is continuous. Then,
there exists an ideal two-layer NN so that

f(x) = W⊤g(Φ⊤x) + ε(x), (9)

where W ∈ RL×n and Φ ∈ Rn×L, with L ∈ N>0, are ideal
weights, g(·) : RL → RL is the ideal activation function
vector, while ε(x) : Rn → Rn is the so-called function

reconstruction error. The following assumption about the
bounds of the ideal NN must be introduced.

A3: There exist known constants W,Φ, g, ε ∈ R>0 such
that

sup
x(t)∈Ω

∥W∥ ≤ W, sup
x(t)∈Ω

∥Φ∥ ≤ Φ,

sup
x(t)∈Ω

∥ε(x)∥ ≤ ε, sup
x(t)∈Ω

∥g∥ ≤ g.

Since the ideal weights and the ideal activation function
vector are not known, an estimation of them is used. The
drift term is then rewritten as

f̂(x) := Ŵ⊤ĝ(Φ̂⊤x), (10)

with ĝ(·) : RL → RL being a user defined activation
function vector, which may differ from the ideal one. For
the sake of readability, from now on the terms g(Φ⊤x)

and ĝ(Φ̂⊤x) are substituted with their shortcomings g and
ĝ, respectively. Moreover, the following assumption about
ĝ(·) is needed.

A4: There exists a known constant ĝ ∈ R>0 such that

sup
x(t)∈Ω

∥ĝ∥ ≤ ĝ.

Finally, the weight estimation errors are computed as

W̃ = W − Ŵ , (11a)

Φ̃ = Φ− Φ̂. (11b)

We are now in a position to introduce the proposed FD
based NN-ISM strategy.

4. THE PROPOSED NN-ISM
FAULT DIAGNOSIS SCHEME

The objective of this section is to present the proposed
NN-ISM observer, along with the fault detection scheme,
illustrated in Fig. 1.

κ(x) ++
u

∆u

ẋ = f(x) +B(x)[u+∆u]
∫

x

++
˙̂x = B(x̂)[u+ v]

∫
− +

x̂

v0 = κ0(e)+ +

v

s0 = Λe

NNż
f̂∫

++
zv1 = ρ s

||s||
s

LP

(28)

ṽ1

Fig. 1. The proposed scheme with NN-ISM based UIO.

Since the drift term f(x) is considered unknown, the
UIO proposed in (2) cannot be implemented. Instead, the
proposed UIO is given by

˙̂x = B(x̂) [u+ v] , x̂(0) = x(0), (12)

where u = κ(x) ∈ Rm is the stabilizing control law as
defined in §2, while the observer input v ∈ Rm is defined
as follows

v := v0 + v1. (13)



The first component, i.e., v0 = κ0(e), is chosen so that it
stabilizes the dynamics of the nominal observer error e,
which, using (10), can be expressed as

ė0 = Ŵ⊤ĝ + [B(x)−B(x̂)]u−B(x̂)v0. (14)

As for the discontinuous part of the signal, i.e., v1, it is
defined as in (3). In particular, the integral sliding variable
is chosen as

s := Λ(x− x̂) + z, (15)

where x̂ is the state of the observer characterized by the
dynamics (12), while ż is defined so that

ż = −Λ
[
Ŵ⊤ĝ +B(x)u−B(x̂)u−B(x̂)v0

]
. (16)

Now, the dynamics of the sliding variable, i.e., ṡ = Λ(ẋ−
˙̂x) − ż can be computed. Specifically, exploiting (1), (9),
(12), (16), and the structure of v, it is possible to express
ṡ as

ṡ = Λ
[
W⊤g − Ŵ⊤ĝ + ε(x) +B(x)∆u−B(x̂)v1

]
. (17)

The weight adaptation laws, derived from the Lyapunov
analysis reported hereafter, are defined as

˙̂
W := ΓW ĝs⊤Λ, (18a)

˙̂
Φ := ΓΦx

[
˙̂gŴ (s⊤Λ)⊤

]⊤
, (18b)

where ΓW ∈ RL×L and ΓΦ ∈ Rn×n are diagonal gain

matrices with positive entries, while ˙̂g is the gradient of
the activation function vector. If one selects ĝ as a vector
of logistic sigmoid functions, its gradient can be computed
as

˙̂g = diag{ĝ}(IL×L − diag{ĝ}), (19)

where diag{ĝ} ∈ RL×L is a diagonal matrix built with the
elements of ĝ, while IL×L ∈ RL×L is the identity matrix.

In the following, the main theoretical results relevant to
the proposed FD scheme are presented. In particular, the
following theorem provides conditions on the gain of the
discontinuous part of the observer which, if satisfied, allows
to provide an estimate of the actuator fault ∆u affecting
system (1), with a bounded estimation error.

Theorem 2. Consider the nonlinear system (1), the un-
known input observer (12), the integral sliding variable
(15) with transient function dynamics (16), and the neural
network update laws (18a), (18b). Then, if A1, A2, A3

and A4 hold and the condition

ρ >
c
(
W (g + ĝ) + ε

)
+ λ(ΛB(x))δ

λ(ΛB(x̂))
(20)

is satisfied, a sliding mode is enforced and it yields

ṽ1 = B(x̂)†
[
W⊤(g − ĝ) + W̃⊤ĝ + ε(x)

]
+

+B(x̂)†B(x)∆u, (21)

with ṽ1 being the equivalent control.

Proof. Consider the Lyapunov-like candidate function

V (x) =
1

2
s⊤s+

1

2
tr{W̃⊤Γ−1

W W̃}. (22)

Then, its derivative with respect to time can be computed
as

V̇ (x) = s⊤ṡ+ tr{W̃⊤Γ−1
W

˙̃
W}. (23)

Substituting (17) and exploiting (11a) to write
˙̃
W = − ˙̂

W ,
(23) can be then rewritten as

V̇ (x) = s⊤Λ
[
W⊤g − Ŵ⊤ĝ + ε(x) +B(x)∆u−B(x̂)v1

]
+

− tr{W̃⊤Γ−1
W

˙̂
W}

= s⊤Λ
[
W⊤(g − ĝ) + W̃⊤ĝ + ε(x) +B(x)∆u+

−B(x̂)v1

]
− tr{W̃⊤Γ−1

W
˙̂
W}. (24)

Using the definition of v1 and rearranging the terms, one
can write the above equation as

V̇ (x) = s⊤Λ
[
W⊤(g − ĝ) + ε(x)

]
+ s⊤ΛB(x)∆u+

− ρs⊤ΛB(x̂)
s

∥s∥
+ s⊤ΛW̃⊤ĝ − tr{W̃⊤Γ−1

W
˙̂
W}.

(25)

Then, substituting the weight adaptation law (18a) and
exploiting the trace property,

V̇ (x) = s⊤Λ
[
W⊤(g − ĝ) + ε(x)

]
+ s⊤ΛB(x)∆u+

− ρs⊤ΛB(x̂)
s

∥s∥
+ s⊤ΛW̃⊤ĝ − s⊤ΛW̃⊤ĝ. (26)

If assumptions A1, A2, A3 and A4 hold, the above
equation can be upper bounded as

V̇ (x) ≤ 1
⊤
m×1Λ1n×1

[
W (g + ĝ) + ε

]
∥s∥+

λ(ΛB(x))δ∥s∥ − ρλ(ΛB(x̂))∥s∥

≤ c
[
W (g + ĝ) + ε

]
∥s∥+ λ(ΛB(x))δ∥s∥+

− ρλ(ΛB(x̂))∥s∥ = −η∥s∥, (27)

with

η = −
[
c(W (g + ĝ) + ε) + λ(ΛB(x))δ

]
+ ρλ(ΛB(x̂)).

Hence, if condition (20) is satisfied, then V̇ (x) ≤ −η∥s∥ <
0, ∀x ∈ Ω, implying that a sliding mode s = 0 is enforced.
When this happens, the fault can be estimated relying on
the equivalent control signal (21), obtained by posing (17)
to zero, which concludes the proof.

Therefore, by virtue of Theorem 2, the equivalent control
signal in (21) can be used to implement a fault detection
strategy which raises a flag ϕi ∈ {0, 1} if a fault is present
on the ith control variable, i.e.,

ϕi :=

{
1 if |ṽ1,i| ≥ τi,

0 if |ṽ1,i| < τi,
(28)

where ṽ1,i denote the ith component of ṽ1, while τi is the
ith element of the threshold vector τ(x̂) ∈ Rm. The latter
is computed as

τ(x̂) = B(x̂)†1n×1

(
Wg −min(Ŵij)ĝ + ε

)
, (29)

where W , g, ĝ and ε are the known bounds introduced in

assumptions A3 and A4, while Ŵij ∈ R is the entry at ith

row and jth column of matrix Ŵ . Moreover, ṽ1 is achieved
using a first-order filter having in input the discontinuous
signal v1, see (Utkin and Shi, 1996) for further details. As

for the term min(Ŵij), it does not affect the applicability
of the fault detection mechanism proposed in (28). In fact,
by virtue of Theorem 2, if condition (20) is satisfied, the



weight estimation error W̃ is always bounded, implying

the boundedness of Ŵ .

5. NUMERICAL EXAMPLE

In this section, the proposal is assessed in simulation
relying on a benchmark example, that is a DC motor
(Raimondo et al., 2016), whose state space representation
is given by[

ẋ1

ẋ2

]
=

[
−RaL

−1x1 −K−1
e x2

KtJ
−1
1 x1 − FrJ

−1
1 x2

]
+

[
L−1

0

]
(u+∆u), (30)

where x1 ∈ R is the electrical current, x2 ∈ R is the
angular speed, u ∈ R is the input voltage, while Ra, L,
Ke, Kt, J1, Fr ∈ R are the motor resistance, inductance,
torque constant, back EMF constant, motor inertia and
friction coefficient, respectively. In the simulations, Ra =
1.203 Ω, L = 5.584× 10−3 H, Ke = 8.574× 10−2V rad/s,
Kt = 1.0005 Ke, J1 = 1.3528 × 10−4 Nms2/rad and
Fr = 2.3396× 10−4 Nms/rad. For physical reasons all the
quantities are bounded, as required by A1.

The simulation window is 15 seconds, starting with initial

condition x(0) = [0 0]
⊤
. The motor is controlled in order

to reach a desired angular velocity ω⋆ = 50 rad/s using

a PI controller, i.e., u(t) = 0.1(ω⋆ − x2(t)) + 0.4
∫ t

0
(ω⋆ −

x2(y))dy, while being subject to a fault defined as ∆u(t) =
0.8 sin(2π(t− 5)) if 5 ≤ t ≤ 8, ∆u(t) = 0.7 sin(2π(t− 9))+
0.2 cos( 32π(t − 9)) if 9 ≤ t ≤ 14, and ∆u(t) = 0 for any
other value of t.

The drift term used for computing the dynamics of the
transient function z is estimated using a NN with 2 inputs,
L = 32 hidden layers, and 2 outputs. The parameters of

the network, i.e., Ŵ and Φ̂, are initialized with small ran-
dom numbers and then updated by using the adaptation
laws (18), setting ΓW = 1.5 · I32×32 and ΓΦ = 5 · I2×2. The
stabilizing part of the observer input is chosen again as a

PI law v0(t) = kPe(t) + kI
∫ t

0
e(y)dy, with kP = [0.2 0.2]

Fig. 2. Time evolution of the fault ∆u (blue line), of the
equivalent control ṽ1 (orange line) and detection layer
[−τ, τ ] (red line).

Fig. 3. Time evolution of the integral sliding variable s
(blue line) and its components s0 (orange line) and z
(yellow line).

(a) outer layer weights, Ŵ

(b) inner layer weights, Φ̂

Fig. 4. Time evolution of the bounds for the NN outer
weights (a) and inner weights (b).

and kI = [0.5 0.5], while the sliding variable parameter
vector is chosen as Λ = [5 5]. Moreover, selecting the

bounds W = 15, g = ĝ = 1, ε = 3, δ = 1 and c = 10
implies ρ = 1.6, which satisfies (20).

The results of the fault identification and detection using
the settings specified above are presented in Fig. 2. In par-
ticular, as highlighted in (21), the proposal is able to esti-
mate a quantity which includes the fault plus a term which
depends on the NN estimation error. Nevertheless, the
identification is accurate enough to successfully perform
fault detection. This performance is further highlighted in
Fig. 2 on the bottom, where the flags ϕi are reported: apart
from a false positive detected during the first transient (2
seconds) in which weights were not adjusted, the detection
strategy (28) is able to correctly detect the occurrences of



fault. As for the integral sliding variable, Fig. 3 shows that,
apart from the very first time instants, even without the
exact knowledge of the drift term, a sliding mode is always
enforced. Finally, one of the results derived by Theorem 2
is the boundedness of the weight estimation error (11a),

that is the boundedness of the estimated weights Ŵ , as
shown in Fig. 4.

6. CONCLUSIONS

In this paper, a novel NN-ISM based UIO for the detection
of faults affecting the control input of nonlinear systems
has been proposed. In general, to update the transient
function of the integral sliding variable, the drift term
should be known, which is not true in the considered
case. Therefore, the sliding manifold has been designed
relying on the approximation provided by a two-layer
NN, whose weights are adapted following laws derived
directly from theoretical analysis. Such an analysis also
provides conditions for the enforcement of a sliding mode,
hints about the shape of the estimation of the fault,
and a formula to design the detection threshold. The
performances of the proposal have been finally assessed
in simulation with satisfactory results.
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