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Adaptive Multiple-Surface Sliding Mode Control of Nonholonomic
Systems with Matched and Unmatched Uncertainties

Antonella Ferrara, Gian Paolo Incremona and Claudio Vecchio

Abstract—The problem of stabilizing a class of nonholonomic
systems in chained form affected by both matched and un-
matched uncertainties is addressed in this paper. The proposed
design methodology is based on a discontinuous transformation
of the perturbed nonholonomic system to which an adaptive
multiple-surface sliding mode technique is applied. The gen-
eration of a sliding mode allows to eliminate the effect of
matched uncertainties, while a suitable function approximation
technique enables to deal with the residual uncertainties, which
are unmatched. The control problem is solved by choosing a
particular sliding manifold upon which a second order sliding
mode is enforced via a continuous control with discontinuous
derivative. A positive feature of the present proposal, apart from
the fact of being capable of dealing with the presence of both
matched and unmatched uncertainties, is that no knowledge of
the bounds of the unmatched uncertainty terms is required.
Moreover, the fact of producing a continuous control makes
the proposed approach particularly appropriate in nonholonomic
applications, such as those of mechanical nature.

Index Terms—Higher order sliding mode control, multiple-
surface sliding control, adaptive control, function approximation,
nonholonomic systems.

I. INTRODUCTION

The problem of controlling and stabilizing nonholonomic
dynamic systems has been receiving considerable attention
since the nineties (see for instance [1]–[5], among others).
This particular class of nonlinear systems is encountered in
modeling finite dimensional mechanical systems where non
integrable constraints are imposed on the motion, as it happens
in many wheeled mobile robots or vehicles.

The main problem in controlling this class of systems is
related to the fact that nonholonomic systems do not satisfy
Brockett’s necessary smooth feedback stabilization condition
[6] as shown in [7]. To overcome this problem, several
nonlinear approaches have been proposed in the literature.
Most of them are based on a discontinuous transformation
of the system states and on a back-stepping based design
procedure (see, for instance [8]–[14] and the references therein
cited).

The control problem is further complicated whenever un-
certainties of various nature affect the nonholonomic system
due to modeling uncertainties or external disturbances. Such
uncertainties can determine a parameter drift, causing an
overall degradation of the controlled system performance or
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even instability. For this reason, the design of control schemes
for practical control of real world nonholonomic processes
requires the adoption of robust control methodologies. Apart
from other types of robust control solutions, sliding mode
control schemes have been proposed to address the problem
of controlling nonholonomic systems in presence of matched
uncertainties [15], [16]. Following the approach developed in
[17], the main idea of these approaches is to couple the back-
stepping based procedure design with sliding mode control so
as to attain a controlled system invariant with respect to the
matched uncertainties affecting the nonholonomic dynamics
[18]. Yet, even designing a controller capable of suppressing
the effect of matched uncertainties, in field implementations
the controller has still to face residual uncertainties that can
be absolutely deleterious for obtaining the desired closed-
loop performance. Possible solutions to this issue have been
discussed in [19], where a suitable modelling in presence of
skidding and slipping effects is presented for the deployment
of various control design techniques. More recently, in [20],
the same problem is formulated and addressed via a modified
first-order sliding mode controller, while in [21], a robust
finite-time stabilization controller is proposed for an arbitrary-
order nonholonomic system in chained form.

A. Contribution with respect to the state of the art

In this paper we address the more complicated problem
of stabilizing a class of nonholonomic systems affected by
both matched and unmatched uncertainties. The presence of
unmatched uncertainties is particularly critical for any sliding
mode controller. To circumvent the difficulty, in this paper, we
propose a controller, which can be classified as an adaptive
multiple-surface sliding mode controller, by relying on a
suitable function approximation approach.

Function approximation based adaptive multiple-surface
sliding mode controllers have been introduced in [22]–[24]
to deal with nonlinear systems. In our case, with respect to
previous papers, the problem is further complicated by the
complexity of the system model necessary to capture the
nonholonomic nature of the considered class of processes,
where matched and unmatched perturbations are differently
categorized also with respect to other works on the same topic
as [20] and [21].

The function approximation technique here adopted is used
to transform the uncertain terms into a finite combination
of orthonormal basis functions in analogy with [25]. Since
the coefficients of the approximation series are time-invariant,
their update laws are derived relying on a Lyapunov approach
with the aim of guaranteeing the closed-loop stability of the
overall controlled system. As a novelty with respect to other
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proposals appeared in the literature to deal with nonholonomic
uncertain systems (see for instance, [10], [11], [26]–[29]), in
this paper it is not assumed that the functions of the system
states that constitutes the bounds on uncertain terms are a
priori known, while only the knowledge of the bound of
some terms which depends in an aggregate way from the
uncertainties is required. Then, another novelty in the present
proposal is that the control signal is designed so that a second
order sliding mode [30]–[32] is enforced. This implies that
the discontinuity necessary to produce the sliding mode is
confined to the control vector derivative. As a result, while
the control vector derivative is a discontinuous signal, the
actual control is continuous, which mitigates the problems that
may arise when a conventional discontinuous sliding mode
control law is applied to a real plant [33], [34]. This can be
a fundamental advantage for nonoholonomic systems which
often are processes of mechanical nature, and, as such, very
sensitive to control induced vibrations.

B. Outline of the paper

This paper is organized as follows. The considered control
problem is formulated in Section II, where the control law
for the component of index zero of the control signal, and
a discontinuous state scaling are introduced. The adaptive
multiple-surface sliding mode design procedure is described in
Section III. The proposed second order sliding mode control
law to complete the design of the control signal is dealt with
in Section IV. Section V explores the particular yet relevant
case when the initial condition of the first state is zero. The
stability of the overall closed-loop control system is proved
in Section VI to complete the theoretical discussion. Finally,
simulation results and some final comments are reported in
Section VII and VIII to conclude the paper.

II. PROBLEM STATEMENT

Consider the following class of maximally nonholonomic
[2] systems captured by the perturbed chain model given by

ẋ0 = d0u0 + x0f0(x0)

ẋi = xi+1u0 + δi(x0, x̄i, u0), 1 ≤ i ≤ n− 1

ẋn = dnu1 + δn(x0, x, u0) ,

(1)

where [x0, x
⊤]⊤ ∈ R

n+1 are the system states, with x0 ∈ R,
x = [x1, . . . , xn]

⊤ ∈ R
n, and u0, u1 are scalar control vari-

ables. Moreover, x̄i ≜ [x1, . . . , xi]
⊤, f0(x0) and δi(x0, x̄i, u0)

are unknown functions which represent the possible modeling
errors and parametric uncertainties affecting the system, and d0
and dn are the unknown control gains. Note that δi(x0, x̄i, u0)
can also include uncertain drift terms or parametric uncer-
tainties. As for the uncertain terms f0(x0) and δi(x0, x̄i, u0),
we assume that a known constant c0, and unknown smooth
nonnegative functions ϕj(x0, x̄i, u0) exist such that

|f0(x0)| ≤ c0 (2)

δi(x0, x̄i, u0) ≜
i∑

j=1

xjϕj(x0, x̄i, u0), 0 ≤ i ≤ n . (3)

Assumption (3) implies that the uncertainties δi(x0, x̄i, u0)
satisfy a triangularity structure requirement. Note that this
assumption is a quite common assumption in the framework of
robust and adaptive nonlinear control [8]. As a consequence of
(3), the origin is a possible equilibrium point of the considered
system (1). It is important to observe that this assumption is
significantly less stringent than requiring the knowledge of a
function of the state bounding the uncertainty terms as usually
done in the classical nonholonomic literature. Moreover, in
this paper, we assume that the control gains d0 and dn are
unknown but bounded as

0 <d̄0 ≤ d0 (4)
0 < dn1 ≤ dn ≤ dn2 , (5)

where the known bounds d̄0, dn1 and dn2 can be retrieved
for instance from the physical characteristics of the plant.
Taking into account the foregoing problem formulation, the
control objective is to design the control laws u0 and u1

appearing in (1) such that [x0, x
⊤]⊤, as t → ∞, converges to a

small vicinity of the equilibrium point, which will be formally
defined in the sequel of the paper relying on the concept
of Input-to-State Stability [35], and all the other signals in
the closed-loop system are bounded. Note that the triangular
structure of system (1) allows us to design the control inputs u0

and u1 in two separate steps. The control input u0 is designed
so as to globally asymptotically stabilize the x0-subsystem
described by the first equation of (1), while the control input
u1 takes into account the x-subsystem given by the remaining
equations in (1).

A. The x0-subsystem

The case x0(t0) ̸= 0 is now considered. The case when
x0(t0) = 0 deserves a special treatment, and will be dealt
with in Section V. When x0(t0) ̸= 0, the following theorem
can be proved.

Theorem 1. Consider the chained form uncertain system (1).
Then, for any initial condition x0(t0) ̸= 0, the control law u0

given by

u0(x0) = x0g0 (6)

with

g0 = −c0 + k0
d̄0

, (7)

where k0 > 0 is a design parameter, can globally asymptot-
ically regulate the state x0 to zero, i.e., limt→∞ x0(t) = 0.
Moreover, since x0(t0) ̸= 0 is assumed, u0 ensures that x0

does not cross zero ∀ t ≥ t0.

Proof. Consider the Lyapunov function candidate

V0 =
1

2
x2
0 . (8)
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The first time derivative of (8) is given by

V̇0 = x0(d0g0x0 + x0f0(x0))

≤ x0

[
d0
d̄0

(−c0 − k0)x0 + c0x0

]
= −d0

d̄0
k0x

2
0 −

d0
d̄0

c0x
2
0 + c0x

2
0

≤ −k0x
2
0 , (9)

then one can conclude that x0 → 0 as t → ∞. Applying
the control law (6) to system (1), the solution x0(t) of the
closed-loop system is given by

x0(t) = x0(t0)e
−

∫ t
t0

(
(k0+c0)

d0

d̄0
−f0(τ)

)
dτ

. (10)

Thus, for any initial instant t0 ≥ 0, and any initial condition
x0(t0) ̸= 0, u0 ensures that x0 does not cross zero ∀ t ≥
t0.

B. Discontinuous state scaling

As previously proved, the control law (6) can globally
asymptotically regulate the state x0 to zero. However, in doing
so, the control u0 will converge to zero as t → ∞. This causes
a serious problem since, in the limiting case, when u0 = 0,
the x-subsystem is uncontrollable via the control input u1. As
in [10], [11], to overcome the loss of controllability of the
x-subsystem in the limiting case, the following discontinuous
state scaling transformation is performed [9], that is

zi ≜
xi

xn−i
0

, 1 ≤ i ≤ n . (11)

The discontinuous state coordinate transformation (11) pos-
sesses the property of increasing the resolution around a
given point [36] so that x0 cannot converge to zero before
xi, i = 1, . . . , n. By applying the state transformation (11) to
system (1), it yields

żi =
ẋi

xn−i
0

− (n− i)
ẋ0xi

xn−i+1
0

=
u0xi+1 + δi

xn−i
0

− (n− i)
xi(d0u0 + x0f0)

xn−i+1
0

= g0zi+1 +∆i(x0, z̄i) (12)

where

∆i(x0, z̄i) =
δi(x0, x̄i, u0)

xn−i
0

−(n−i)(d0g0+f0(x0))zi . (13)

Then, the resulting z-subsystem is given by{
żi = g0zi+1 +∆i(x0, z̄i), 1 ≤ i ≤ n− 1

żn = dnu1 +∆n(x0, z)
, (14)

where z̄i ≜ [z1, . . . , zi]
⊤. In this paper we assume that

∆i, i = 1, . . . , n are unknown functions satisfying the Dirich-
let conditions [37]. To meet such conditions the functions
must be absolutely integrable over a period, with bounded
variation in any given bounded interval, and they must have
at most a finite number of discontinuities in any given bounded
interval, and the discontinuities cannot be infinite. This class of

functions is rather broad and it includes all the uncertain terms
usually considered in classical sliding mode theory. The z-
subsystem formulation in (14) has the advantage of making the
matched and unmatched uncertainty terms appear explicitly,
thus being instrumental for the design of the proposed control
approach. Note that, in the following, the time dependence of
all the variables will be omitted for the sake of simplicity.

III. THE ADAPTIVE MULTIPLE-SURFACE
SLIDING PROCEDURE

Most of the control schemes appeared in the literature
capable of stabilizing an uncertain nonholonomic system are
based on the back-stepping procedure (see for instance [8],
[10], [11], [16], [17] and the references therein). However,
the back-stepping design procedure cannot be applied to
the z-subsystem (14) due to the time-variant nature of the
uncertainties. Moreover, since the bounds of the uncertainty
terms ∆i(x0, z̄i) are unknown, even traditional sliding mode
controllers [18] and multiple-surface sliding controllers [24]
cannot be designed. To deal with the particularly hard kind of
uncertainty considered in this paper, we rely on the function
approximation based adaptive multiple-surface sliding control
approach proposed in [22]. The function approximation tech-
nique is based on the fact that if a piecewise continuous real-
valued function h(t) satisfies the Dirichlet conditions, then
it can be transformed into the Fourier series within a time
interval [0;Ts] as

h(t) = a0 +

∞∑
j=1

(aj cos(vjt) + βj sin(vjt)) , (15)

where vj =
2jπ
Ts

are the frequencies of the sinusoidal function.
Equation (15) can be rewritten as

h(t) = w⊤b(t) + ϵ(t) (16)

where

w⊤ ≜ [a0, a1, β1, . . . , aN , βN ] (17a)

b⊤(t) ≜ [1, cos(v1t), sin(v1t), . . . , cos(vN t), sin(vN t)]
(17b)

ϵ(t) ≜
∞∑

j=N+1

(aj cos(vjt) + βj sin(vjt)) . (17c)

Therefore, if N is chosen large enough, function h(t) can be
approximated as

ĥ(t) = ŵ⊤b(t), (18)

where ŵ is an estimate of w.
In this paper, (18) is used to represent the unmatched

uncertainties affecting system (14). Since the vector w of the
coefficients of the approximation series is time invariant, the
update laws for determining the estimate ŵ can be derived
relying on a standard Lyapunov approach so as to ensure
the closed-loop stability. The control design procedure can be
subdivided into several steps:
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Step 1: With reference to system (14), the following quan-
tities are defined:

s1 ≜ z1 (19)

s2 ≜ z2 − α1 . (20)

By differentiating (19), it yields

ṡ1 = g0s2 + g0α1 + ∆̄1, (21)

where ∆̄1 is the function approximation of ∆1 according to
the technique introduced in [25], and it can be represented as

∆̄1 = w⊤
1 b1 + ϵ1 (22)

with w1 ∈ R
N1 being a weighting vector, b1 ∈ R

N1 being
a vector of orthonormal basis, ϵ1 ∈ R representing the
approximation error, and N1 being the number of basis used
in the approximation.

Let ∆̄1 = ∆1 and ˆ̄∆1 = ŵ⊤
1 b1, with ŵ1 ∈ R

N1 being a
suitable estimate of w1 such that

˙̂w1 = Q1b1s1 , (23)

where Q1 = Q⊤
1 ≻ 0. Consider now the Lyapunov function

candidate
V1 =

1

2
s21 +

1

2
w̃⊤

1 Q
−1
1 w̃1 , (24)

where w̃1 = w1 − ŵ1. By differentiating (24), it yields

V̇1 = s1
(
g0s2 + g0α1 + ∆̄1

)
− w̃⊤

1 Q
−1
1

˙̂w1

= s1
(
g0s2 + g0α1 + ∆̄1

)
− w⊤

1 b1s1 + ŵ⊤
1 b1s1 . (25)

Choosing the virtual control α1, that is

α1 ≜
1

g0

(
−k1s1 − ˆ̄∆1

)
, (26)

where k1 > 0 is a positive parameter design, one has that

V̇1 = g0s1s2 − k1s
2
1 + ϵ1s1 . (27)

Step i = 2, . . . , n− 1: Introduce the quantity

si ≜ zi − αi−1 (28)

where the virtual control αi−1 will be defined later and is such
that

α̇i−1 =

i−1∑
k=1

∂αi−1

∂zk
g0zk+1 +

i−1∑
k=1

∂αi−1

∂zk
∆k − ∂αi−1

∂ ˆ̄∆i−1

˙̄̂
∆i−1 .

(29)
Posing the lumped uncertainty term ∆i equal to

∆i = ∆i −
i−1∑
k=1

∂αi−1

∂zk
∆k +

∂αi−1

∂ ˆ̄∆i−1

˙̄̂
∆i−1 , (30)

and representing this term as

∆i = w⊤
i bi + ϵi , (31)

from (28), it yields

ṡi = g0si+1 + g0αi +∆i − α̇i−1 (32)

= g0si+1 + g0αi + ∆̄i −
i−1∑
k=1

∂αi−1

∂zk
g0zk+1 , (33)

where wi ∈ R
Ni is a weighting vector, bi ∈ R

Ni is a vector of
orthonormal basis, and ϵi ∈ R is the approximation error, Ni

being the number of basis used in the approximation. Consider
now the Lyapunov function candidate

Vi = Vi−1 +
1

2
s2i +

1

2
w̃⊤

i Q
−1
i w̃i , (34)

where Qi = Q⊤
i ≻ 0, yielding

V̇i = V̇i−1 + siṡi − w̃⊤
i Q

−1
i

˙̂wi

= −k1s1 + g0s1s2 + ϵ1s1

+

i∑
j=2

sj

(
g0sj+1 + g0αj + ∆̄j −

j−1∑
k=1

∂αj−1

∂zk
g0zk+1

)

−
i∑

j=2

w⊤
j bjsj +

i∑
j=2

ŵ⊤
j bjsj , (35)

where, analogously to (23), it yields

˙̂wj = Qjbjsj . (36)

By selecting the virtual control αj as

αj ≜
1

g0

(
−kjsj − g0sj−1 − ˆ̄∆j +

j−1∑
k=1

∂αj−1

∂zk
g0zk+1

)
,

(37)
with kj > 0, substituting in (35), exploiting (31) and posing
ˆ̄∆j = ŵ⊤

j bj , one has

V̇i = −
i∑

j=1

kjs
2
j + g0sisi+1 + ϵ1s1 +

i∑
j=2

∆̄j −
i∑

j=2

w⊤
j bjsj

= −
i∑

j=1

kjs
2
j + g0sisi+1 +

i∑
j=1

ϵjsj . (38)

Then, by relying on the concept of Input-to-State-Stability
(ISS) [35], the following result can be proved.

Theorem 2. The dynamic system{
ṡ1 = ż1

ṡi = żi − α̇i−1, 2 ≤ i ≤ n− 1 ,
(39)

where the states si, i = 1, . . . , n − 1, are given by (19)
and (28), zi, i = 1, . . . , n − 1 are defined in (14), αi,
i = 1, . . . , n − 2 as in (26) and (37), is ISS with respect
to µ ≜ [0, 0, . . . , g0sn]

⊤ and ϵ ≜ [ϵ1, . . . , ϵn−1]
⊤, and if

both µ and ϵ go to zero, then limt→∞∥s∥ = 0, where
s = [s1, . . . , sn−1]

⊤.

Proof. The Lyapunov function (34) is an ISS Lyapunov func-
tion [35]. Indeed, from (39) one has that

V̇n−1 ≤ −k∥s∥2 + s⊤ϵ+ s⊤µ

≤ −k∥s∥2 + ∥s∥∥ϵ∥+ ∥s∥∥µ∥ , (40)

where k ≜ min1≤j≤n−1{kj}. Thus, from (40), it turns out
that

∀ ∥s∥ ≥ max{∥ϵ∥; ∥µ∥}
σk

, (41)
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where σ ∈ (0, 1), and the following inequality holds

V̇n−1 ≤ −k(1− σ)∥s∥2 . (42)

This implies that there exists a function χ(∥s∥, t) of class KL
and functions ρϵ(∥ϵ∥) and ρµ(∥µ∥) of class K (called ISS gain
functions) such that, for any initial state s(t0) one has that

∥s(t)∥ ≤ χ(∥s(t0∥, t) + ρϵ(∥ϵ∥) + ρµ(∥µ∥) . (43)

Hence, if ∥ϵ∥ and ∥µ∥ are bounded, then ∥s∥ is bounded [35].
Moreover, if ϵ → 0 and µ → 0, for t → ∞, then s →
0. Furthermore, by applying the LaSalle’s Invariant Theorem
[38], it follows that w̃i, 1 ≤ i ≤ n−1, and, as a consequence,
ŵi, 1 ≤ i ≤ n− 1, are bounded.

Note that ϵ can be steered to zero by choosing a sufficiently
large number of basis functions, while µ can be turned to zero,
for instance, by designing a control law u1 such that sn is
steered to zero in a finite time.

IV. THE CONTROL SIGNAL u1

From Theorem 2 one can observe that, if a sufficiently large
number of basis functions are chosen so as to have ϵ ≈ 0, it
is possible to steer s to zero with a control law u1 capable
of steering sn to zero. In the present work, a second order
sliding mode control law is designed to steer to zero not only
sn but also its first time derivative ṡn, and this is attained
in finite time. This implies that a second order sliding mode
is generated. Moreover, the design procedure is carried out so
that the discontinuity is connected to the control derivative u̇1.
As a result, while u̇1 is constructed as a discontinuous signal,
guaranteeing the attainment of a second order sliding mode
on the sliding manifold sn = ṡn ≡ 0, the actual control u1 is
continuous, and thus more acceptable, in terms of chattering,
in systems of mechanical nature [34].

Step n: From (28), it yields

ṡn = dnu1 + ∆̄n −
n−1∑
k=1

∂αn−1

∂zk
g0zk+1 , (44)

being the lumped uncertainty term ∆n equal to

∆n = ∆n −
n−1∑
k=1

∂αn−1

∂zk
∆k +

∂αn−1

∂ ˆ̄∆n−1

˙̄̂
∆n−1 . (45)

Now, consider the Lyapunov function candidate

Vn =
1

2
s2n +

1

2
w̃⊤

nQ
−1
i w̃n +

1

2
γ−1
n d̃2n , (46)

where Qn = Q⊤
n ≻ 0, γn > 0, and d̃n = dn − d̂n, with d̂n

being a suitable estimate of dn. The first time derivative of
(46) is

V̇n = sn

(
dnu1 + ∆̄n −

n−1∑
k=1

∂αn−1

∂zk
g0zk+1

)
(47)

− w̃⊤
nQ

−1
i

˙̂wn − γ−1
n d̃n

˙̂
dn . (48)

Thus, the control signal u1 can be chosen as

u1 = ū1 + τ1 (49)

with

ū1 =
1

d̂n

(
−knsn − ˆ̄∆n +

n−1∑
k=1

∂αn−1

∂zk
g0zk+1

)
, (50)

where kn > 0 is a design parameter, and τ1 will be designed
later so as to robustly steer sn to zero in finite time.

By substituting (49) in (46), since dn = d̃n + d̂n, it results

V̇n = sn(dnτ1 + ϵn) + d̃nū1sn + d̂nū1sn

+ sn

(
ˆ̄∆n −

n−1∑
k=1

∂αn−1

∂zk
g0zk+1

)
− γ−1

n d̃n
˙̂
dn

= sn(dnτ1 + ϵn)− kns
2
n − γ−1

n d̃n

(
˙̂
dn − γnū1sn

)
.

(51)

Letting πn = γnū1sn, by selecting the initial value for the
estimate dn1 ≤ d̂n(t0) ≤ dn2, and by choosing its update law
as follows

˙̂
dn =


πn, if dn1 < d̂n < dn2

πn, if (d̂n = dn1 ∩ πn>0) ∪ (d̂n = dn2 ∩ πn<0)

0, if (d̂n = dn1 ∩ πn≤0) ∪ (d̂n = dn2 ∩ πn≥0)
(52)

it yields

V̇n ≤ sn(dnτ1 + ϵn)− kns
2
n

+


0 if dn1 < d̂n < dn2

0, if (d̂n = dn1 ∩ πn>0) ∪ (d̂n = dn2 ∩ πn<0)

γ−1
n d̃nπn, if (d̂n = dn1 ∩ πn≤0) ∪ (d̂n = dn2 ∩ πn≥0).

Since in V̇n the term which depends on the update law (52)
is nonpositive, it follows that

V̇n ≤ sn(dnτ1 + ϵn)− kns
2
n . (53)

Relying on the concept of ISS, (53) implies that if τ1 and ϵn
are bounded, then sn is also bounded. Moreover, it turns out
that w̃n and d̃n, and consequently ŵn and d̂n are bounded.

A. The second order sliding mode control

Now the point is to design τ1 according to the second order
sliding mode control technique in order to steer sn to zero in
finite time in presence of uncertainties. To this end, the chosen
sliding variable is equal to

sn = zn − αn−1 . (54)

The first and the second time derivative of (54) are given by

ṡn = d̃nū1 + d̂nū1 + dnτ1 + ∆̄n −
n−1∑
k=1

∂αn−1

∂zk
g0zk+1

= d̃nū1 − knsn + ˜̄∆n + dnτ1 (55)

s̈n = d̃n ˙̄u1 − ˙̂
dnū1 − knṡn +

˙̄̃
∆n + dnτ̇1 , (56)

where ˜̄∆n ≜ ∆̄n − ˆ̄∆n, while τ̇1 can be regarded as an
auxiliary control signal. Now, by using the sliding variable
and its first time derivative as states of a new dynamical
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system, i.e., by introducing the auxiliary variables y1 = sn
and y2 = ṡn, equations (55) and (56) can be rewritten as{

ẏ1 = y2

ẏ1 = ξ + dnτ̇1
. (57)

The auxiliary system (57) is a double integrator affected by
the uncertainty terms dn and

ξ ≜ d̃n ˙̄u1 − ˙̂
dnū1 − knṡn +

˙̄̃
∆n (58)

Relying on assumptions (5) and on the previous results, one
can observe that the term ξ is uncertain but its components
are bounded, i.e.,

|ξ| ≤ ξ̄ (59)

where ξ̄ > 0 is assumed to be a known constant. Note that
the quantity y2 can be viewed as an unmeasurable quantity.
Then, the following theorem can be proved.

Theorem 3. Given the auxiliary system (57), where ξ, and dn
satisfy (59) and (5), respectively, and y2 is not measurable,
the auxiliary control signal τ̇1 given by

τ̇1(t) ≜ −U sgn
(
y1(t)− 1

2y1max

)
, (60)

where

U > max

{
ξ̄

dn1
;

4ξ̄

3dn1 − dn2

}
, (61)

and y1max is a piece-wise constant function representing the
value of the last singular point of y1(t) (i.e., the most recent
value y1max such that ẏ1(t) = 0), causes the convergence of
the system trajectory to the origin of the auxiliary plane in
finite time.

Proof. The control law (60) can be classified as a suboptimal
second order sliding mode control law [30], and by following
a theoretical development as that provided in [30] for the
general case, it can be proved that the trajectories on the
auxiliary plane are connected within limited parabolic arcs
which include the origin. As shown in [39], under condition
(61), the following relationships hold

|y1| ≤ |y1max| (62)

|y2| ≤
√

|y1max| , (63)

and the convergence of y1max to zero takes place in finite time.
As a consequence, the origin of the plane, i.e., y1 = y2 = 0,
is reached in finite time since y1 and y2 are both bounded by
max

{
|y1max|;

√
|y1max|

}
.

V. THE CASE x0(t0) = 0

As previously mentioned, the case x0(t0) = 0 is a critical
case to cope with separately. Different schemes have been pro-
posed in the literature (see for instance [10], [11], [27] and the
references therein) to circumvent the loss of controllability. In
this paper, the adaptive switching proposed in [11] is adopted
because this approach is rather general and also capable of
solving the finite time escape problem for systems with non-
Lipschitz nonlinearities. When x0(t0) = 0, the control signal
u0 is chosen as

u0 = x0g0 + ū0 (64)

where ū0 ∈ R
+ is a constant. Choosing the Lyapunov function

(8), its first time derivative is such that

V̇0 ≤ −k0x
2
0 + d0ū0x0 , (65)

which leads to the boundedness of x0. Moreover, x0 does not
escape and x0(t̄) ̸= 0, ∀ t̄ > t0. Thus, the discontinuous state
scaling discussed in Section II-B can be applied. The control
law u0 defined by (64) is applied during time interval [t0; t̄],
and, since x0(t̄) ̸= 0, at time t̄ we can switch the control
inputs u0 and u1 to (6) and (49), respectively.

VI. STABILITY CONSIDERATIONS

In this section, the stability properties of the proposed
control scheme are analyzed.

Theorem 4. Under assumptions (4) and (5), the control
laws (6) and (49), with adaptation laws (36), along with
the switching strategy described in Section V, makes the
nonholonomic uncertain system (1) ISS with respect to the
approximation error ϵ̄ ≜ [0, ϵ1, . . . , ϵn−1]

⊤, while keeping
the estimated parameters bounded. Moreover, if a sufficiently
large number of basis functions are chosen such that ϵi ≈ 0,
1 ≤ i ≤ n − 1, then system (1) is globally asymptotically
regulated to the origin.

Proof. To analyze the stability properties of the overall closed-
loop system (1) with (6) and (49), consider the Lyapunov
function candidate

V = V0 +Vn−1 =
1

2
x2
0 +

n−1∑
j=1

1

2
s2j +

n−1∑
j=1

1

2
w̃⊤

j Q
−1
j w̃j . (66)

Then, the first time derivative of (66) results in

V̇ ≤ −k0x
2
0 −

n−1∑
j=1

kjs
2
j + g0sn−1sn +

n−1∑
j=1

sjϵj . (67)

Since sn is steered to zero in finite time by the control law
u1 as proved by Theorem 4, it yields

V̇ ≤ −k0x
2
0 −

n−1∑
j=1

kjs
2
j +

n−1∑
j=1

sjϵj . (68)

Now, let s̄ ≜ [x0, s1, . . . , sn−1]
⊤, then one has that

∀ ∥s̄∥ ≥ ∥ϵ̄∥
σk0

, (69)

with σ ∈ (0, 1), and it holds

V̇ ≤ −(1− σ)k0∥s̄∥2 , (70)

where
k0 ≜ min

0≤j≤n−1
{kj} . (71)

Since (66) is an ISS Lyapunov function, the closed-loop
system with state s̄ is ISS with respect to ϵ. Moreover, the
estimation errors w̃i, 1 ≤ i ≤ n − 1, remain bounded. As
observed in Section IV, also w̃n and d̃n are bounded. Since
wi, 1 ≤ i ≤ n, and dn are constant quantities, then, we can
conclude that ŵi, 1 ≤ i ≤ n, and d̂n are bounded. Note that,
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if a sufficient large number of basis functions are chosen so
that ϵi ≈ 0, 1 ≤ i ≤ n− 1, then (68) results in

V̇ ≤ −k0x
2
0 −

n−1∑
j=1

kjs
2
j . (72)

and s̄ → 0 as t → ∞. In this latter case, (28) gives

lim
t→∞

zi = αi−1, 1 ≤ i ≤ n , (73)

and, from the assumption that ϵi ≈ 0, it follows that

lim
t→∞

zi = − ˆ̄∆i−1 ≈ −∆̄i−1, 1 ≤ i ≤ n . (74)

Taking into account (3) and (11), we can conclude that

lim
t→∞

xi = 0, 1 ≤ i ≤ n . (75)

Thus, the perturbed nonholonomic system (1) is globally
asymptotically regulated to the origin.

VII. SIMULATION RESULTS

In this section, the proposed control scheme is applied to the
parking problem of a wheeled mobile robot of unicycle type
affected by parametric uncertainty [40]. The model equations
are 

ẋl = d2v cos θl

ẏl = d2v sin θl

θ̇l = d0ω

, (76)

where xl, yl denote the coordinates of the center of mass on
the plane, θl denotes the heading angle measured from the x⃗-
axis, v denotes the magnitude of the translational velocity of
the center of mass, ω denotes the angular velocity of the robot,
and d0, dn are unknown positive parameters determined by the
radius of the rear wheels and the distance between them.

System (76) can be transformed into the perturbed chain
form (1) via the following choice of auxiliary variables

x0 = θl
x1 = xl sin θl − yl cos θl
x2 = xl cos θl + yl sin θl
u0 = ω
u1 = v

, (77)

so that the resulting transformed system is
ẋ0 = d0u0

ẋ1 = x2u0 + δ1

ẋ2 = d2u1 + δ2

, (78)

where f0 = 0, δ1 = (d0 − 1)x2u0 and δ2 = −d0x1u0. We
assume that the unknown parameters are such that d0 ≥ d̄0 and
d21 ≤ d2 ≤ d22. Letting t0 = 0, the simulation parameters are
[x0(0), x1(0), x2(0)]

⊤ = [1, 1, 1]⊤, k0 = 1, k1 = 10, k2 = 20,
U = 10, γ2 = 0.1, d0 = d2 = 2 (the value of d0 and d2 is
unknown to the controller), d̄0 = 1, d21 = 1 and d22 = 5. All
the simulations have been executed using the MATLAB toolbox
Simulink, with automatic selection solver, fixed-time step
equal to 1×10−5 s and simulation window of 3 s. The steady-
state value of the estimate of d2 provided by the estimator (52),
with d̂2(0) = 3, is given by d̂2 = 2.16. The time evolution

Fig. 1. The time evolution of control signals u0 and u1.

Fig. 2. The time evolution of the transformed system states with initial
condition [x0(0), x1(0), x2(0)]⊤ = [1, 1, 1]⊤.

Fig. 3. The time evolution of the robot states (left), and parking motion on
the plane (right), with heading angle (orange arrows) and initial condition
[xl(0), yl(0), θl(0)]

⊤ = [1.3818, 0.3012, 1]⊤ (green circle).

of the control signals u0 and u1 is reported in Figure 1. Note
that control u1 is a continuous control signal as previously
discussed. From Figure 2 it appears that all the states x0,
x1, and x2 converge to zero as expected, while Figure 3
shows the corresponding evolution of the robot states, with
initial condition [xl(0), yl(0), θl(0)]

⊤ = [1.3818, 0.3012, 1]⊤,
and the parking motion on the plane. The time evolution of
the sliding variable s2 is reported in Figure 4. As one can
note, the sliding variable s2 is steered to zero quite rapidly. In
Figure 4, also the first time derivative of the sliding variable
is shown, which is steered to zero, since a second order
sliding mode is enforced. The time evolution of the state
of the system (78) starting from the critical initial condition
[x0(0), x1(0), x2(0)]

⊤ = [0, 1, 1]⊤ is still satisfactory. The
global asymptotic convergence to zero is maintained as can
be seen in Figure 5, where t̄ = 0.05 s, while ū0 = 10 in the
time interval [0; t̄].

VIII. CONCLUSIONS

In this paper an adaptive multiple-surface sliding procedure
generating second order sliding modes has been proposed for
stabilizing a class of nonholonomic systems in chained form
affected by matched and unmatched uncertainties. Differently
from other proposals appeared in the literature, after the
application of the discontinuous state scaling transformation,
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Fig. 4. The sliding variable s2 (left), and the phase portrait with respect to
time of the sliding variable s2 and its first time derivative ṡ2 (right).

Fig. 5. The time evolution of the system states with initial condition
[x0(0), x1(0), x2(0)]⊤ = [0, 1, 1]⊤.

no knowledge of the bounds of the uncertain terms is required
to accomplish the control design. The key idea is to apply a
function approximation technique to deal with the unmatched
uncertainties, while the matched uncertainties are coped with
by the sliding mode controller. By virtue of the second order
nature of the generated sliding modes, the overall stabiliza-
tion problem is solved via a continuous control signal. This
fact enables the application of the proposed strategy even
to nonholonomic systems, such as the mechanical ones, for
which a discontinuous control input may be unacceptable. By
applying the proposed control strategy, in spite of the presence
of uncertainties, the system states globally asymptotically
converge to the origin, while the estimated parameters remain
bounded. Simulation results have shown the effectiveness of
the proposed control scheme.

Future works will be devoted to the extension of the present
proposal to more complex situations, in particular to the case
of models characterized by a generic number of inputs.
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