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Abstract: Particle-In-Cell (PIC) methods such as the Material Point Method (MPM)
can be cast in formulations suitable to the requirements of data locality and fine-grained
parallelism of modern hardware accelerators such as Graphics Processing Units (GPUs).
While continuum mechanics simulations have already shown the capabilities of MPM on
a wide range of phenomena, the use of the method in compressible gas dynamics is less
frequent. This contribution aims to show the potential of a GPU-based MPM parallel
implementation for compressible fluid dynamics, as well as to assess the reliability of this
approach in reproducing supersonic gas flows against solid obstacles. The results in the
paper represent a stepping stone towards a highly parallel, Multi-GPU, MPM-base solver
for Mach > 1 Fluid-Structure Interaction problems.

Keywords. Material Point Method, GPU, Compressible Flows

1 INTRODUCTION

Parallel computing is a key capability for effective advancement of industrial-grade, large-
scale computations, particularly in the fields of compressible computational fluid dynamics
and and Fluid-Structure Interaction (FSI) [1]. For these applications, numerical Particle-
In-Cell (PIC) methods such as the Material Point Method (MPM) [2, 3] are becoming
increasingly relevant, also thanks to the significant growth of computing capabilities made
available by modern High Performance Computing architectures [4, 5].
In MPM, continuum media are discretized by means of Lagrangian particles, the mate-
rial points, each one storing every state variable evaluated at its position, enabling the
description of a wide range of materials [6, 7, 8] as well as large deformations [9, 10, 11]
and fracture phenomena [12]. Notwithstanding its Lagrangian character, MPM also em-
ploys a background Cartesian grid to compute differential quantities and solve the motion
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equation, thus mediating the particle-particle interactions, taking advantage of both Eu-
lerian and Lagrangian approaches. These features make it an interesting candidate for
the development of a highly parallel, Graphics Processing Units (GPUs)-based FSI solver.
Indeed, in order to reach high efficiency levels, GPU-based solvers require the algorithm
to satisfy data locality, and to be formulated in a parallel way, up to a very fine level of
discretization. MPM implementations can naturally achieves these, since: (a) every GPU
thread can manage up to very few grid cells; (b) the link between cells and particles can
be easily built thanks to the structured character of the grid; and (c) accuracy in the
discretization of continuum bodies is obtained by means of the Lagrangian particles, so
that the grid does not have to match their boundary.
MPM was first developed from the Fluid Implicit Particle Method [13], a PIC method
[14] modified to treat history-dependent materials. Along the years, various enhance-
ments of the method were proposed, solving some of its drawbacks such as grid-crossing
error [15] and volumetric locking [16], and improving its accuracy and conservation prop-
erties. Among the many, to address grid crossing instability, variants of the method were
proposed, such as GIMP [17], CPDI [18], iMPM [19] and IGA-MPM [20], and numerical
analysis studies on the use of B-Splines as basis functions in MPM were conduced [21].
An affine and a polynomial mapping was later added to the B-Splines MPM [22, 23] re-
sulting in an angular momentum-conserving model. Other studies explored least squares
techniques [24], enabling the recovery of the affine/polynomial splines MPM [25], and the
effect of spatial and temporal discretization errors, as well as the application of symplectic
integrators [26]. In light of these developments, MPM represents an effective method for
the simulation of a wide range of materials and phenomena.
Even though in the literature there are recent GPUs MPM implementations for computer
graphics applications [27, 28], such implementations have not yet been applied to com-
pressible fluid dynamics; in fact, when addressing gas dynamics and solids mechanics,
MPM is used only for the solids, while the compressible fluid dynamic problem is solved
through a second order WENO scheme; moreover, such implementation is run on CPU
[29]. There exist also some studies on MPM for compressible flows, as [30, 31], which focus
on modelling and expand the method application field, and as [32], which considers the
numerical aspects of the topic. Nonetheless, to the best of the authors’ knowledge, there
are still no studies dedicated to the GPU based, High Performance Computing aspects of
MPM implementations for compressible fluid dynamics problems. This contribution aims
at illustrating the choices made in the design of a proof-of-concept MPM code to solve
compressible gas dynamics problems in the supersonic regime, focusing on computational
efficiency and addressing the challenge of optimizing and designing GPUs-based software
for modern HPC architectures.
The paper is structured as follows. Sections 2 and 3 recall the analytical and numerical
formulation of the method. Sections 4 and 5 show and motivate the chosen algorithm and
the current and planned implementation choices. Section 6 illustrates the results obtained
against standard test cases, and the final section 7 draws the conclusions of the performed
work and prospects the future developments.
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2 ANALYTICAL FORMULATION

We are interested in simulating supersonic gas flows, which can be modelled as inviscid
fluid in a domain Ω governed by the compressible Euler equations [33]:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = 0

∂E

∂t
+∇ · ((E + p)v) = 0

where ρ is the density, v the velocity, p the pressure and E the total energy. In standard
MPM, where the total number of Lagrangian material points is kept constant, mass
conservation is automatically satisfied by the discretization of continua through such
particles; moreover, modelling a perfect gas, energy conservation equation is substituted
by the state equation [30, 31]:

p = (γ − 1)ρe (2)

where e is the specific internal energy and γ = cp/cv = 1.4 for a bi-atomic gas.
By standard arguments, the motion equation in (1) can be re-formulated in the Lagrangian
framework as:

ρv̇ = ∇ · σ + ρb (3)

and written in weak form [2, 31]:∫
Ω

ρv̇ ·wdΩ = −
∫
Ω

ρσ : ∇wdΩ +

∫
∂Ω

ρτ ·wdΓ +

∫
Ω

ρb ·wdΩ (4)

3 NUMERICAL FORMULATION

As in standard MPM, in order to solve numerically the motion equation, we take a dual
Eulerian-Lagrangian approach using both a computational grid and a set of particles. On
the Eulerian side, we use a Q1 discretization, with Lagrangian hat functions, linear in
1D and bilinear in 2D, as basis of the solution and test functions spaces. Therefore, we
get the following expressions for mappings among grid and particles [2], where we denote
with capital letters the Lagrangian particles variables, with lowercase letters the Eulerian
grid ones. For the 2D case we have:

a = P2G(A;X, Y ) :=

[
Np−1∑
k=0

Ak ui(Xk, Yk)

]
(5)

A = G2P(a;X, Y ) :=

(nx+1)(ny+1)−1∑
i=0

ai ui(Xk, Yk)


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∇a = P2GD(A;X, Y ) :=

[
Np−1∑
k=0

Ak ∇ui(Xk, Yk)

]
(6)

∇A = G2PD(a;X, Y ) :=

(nx+1)(ny+1)−1∑
i=0

ai∇ui(Xk, YK)


where P2G is an acronym for Particles-To-Grid mappings, G2P Grid-To-Particles map-
pings and D stands for derivative, ui(Xk, Yk) denotes the basis function centred on the
i− th grid node and evaluated in the k− th particle position, a is a generic grid variable,
A is its particle counterpart, nx, ny are the cell numbers in the x and y direction.1

In order to model the flow around obstacles, we subtract the inward component of linear
momentum and force from the grid nodes whose cell is marked as an obstacle cell, slightly
modifying the method first proposed by [35] for granular material, as follows:

(mvo
i )

′ = mvo
i −

mvo
i · no

i − |mvo
i · no

i |
2

no
i , (foi )

′ = foi − foi · no
i − |foi · no

i |
2

no
i (7)

where the subscript denotes the i − th grid node, the superscript o stands for obstacle
and n is the normal unit vector, positive if directed outward from the obstacle.

4 ALGORITHM DESCRIPTION

Being interested in modelling supersonic flows with MPM on highly parallel architectures,
we started from existing MPM algorithm descriptions [36, 37], ported it to CUDA-C and
tested the implementation on the Sod shock tube [38] problem (see section 6 for test
cases).
In so doing, we also had the chance to make some changes to the algorithm, so as to adapt
it to GPUs architecture, see algorithm 1. Specifically, we postponed particles movement
to the end of the time loop, in order not to have to store the basis function evaluated at
previous particle positions, and computing them on the fly instead - memory fetches are
more costly than arithmetic operations on modern computing hardware. Moreover, we
turned all the loops involving grid or particle operations into loops on grid cells. In case
of particle-based loops, these were turned into inner loops on each cell’s particles. This
is important to guarantee data locality, especially in fast dynamics fluid simulations, and
will be complemented with a proper particles sorting currently under development. The
need of keeping data representing geometrically close quantities close in memory becomes
particularly evident with a view to the development of a Multi-GPU code based on domain
decomposition techniques. With this approach, it will be possible to distribute to different
GPUs portions of domain together with the particles contained therein. Finally, we
modified the step 2 in [37], where essential and natural boundary conditions are applied
to the grid nodes, also adding the obstacle treatment as anticipated in section 3.

1It is also possible to derive the same formulation adopting the standard Finite Element procedure,
but considering the material points as quadrature points [34].
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Algorithm 1 Time loop

1: while t < tf do
2: Grid reset
3: Mass, momentum and force P2G:m = P2G(M), mv = P2G(MV), f = P2GD(P )
4: Boundary conditions enforcement on mv, f & obstacle treatment as in (7)
5: Momentum equation solution on the grid: (mv)′ = mv + dtf
6: G2P mapping & velocity update: V = G2P(v), A = G2P(a), V′ = V + dt ∗A
7: Momentum P2G & grid velocity computation: mv = P2G(MV), v = mv

m

8: Boundary condition enforcement on mv, v
9: Particles properties update:

9a: ∇V = G2PD(v)

9b: E ′ = E + dt−P
ρ
∇ ·V

9c: ρ′ = ρ
1+dt∇·V

9d: P ′ = (γ − 1)ρ′E ′

10: Particles moving X′ = X+ dtV
11: CFL condition check & time advance
12: end while

5 IMPLEMENTATION

First, a CUDA-C implementation of an existing algorithm for compressible flows [30] was
carried out. This language was chosen because of its known performance capabilities,
especially on our target architecture, based on NVIDIA A100 GPUs [39]. The imple-
mentation strategy has consisted in defining two structures, one for the grid and one for
material points, holding the respective variables, with a Structure of Array (SoA) ap-
proach, and with member methods decorated as both host and device functions, in order
to be able to run them on both CPU and GPU. At the beginning of the main program,
a grid variable and a material points variable are constructed on the CPU, and data is
copied to a pair of pointers to grid and material points on the GPU. For each step of the
algorithm, a CUDA kernel was written and decorated as global only, so that the algorithm
executes only on GPU, employing its global memory. These CUDA kernels are essentially
as in [37], but without for loops, since they are launched by one CUDA thread per each
grid node or particle. For example, the third step is modified from:

1 void step3 (Grid& grd){

2 for(idx_t inode = 0; inode < grd.nn; ++inode)

3 grd.mv[inode] += grd.f[inode]*dt;}

to:

1 __global__ void step3(Grid* grd){

2 idx_t inode = blockIdx.x * blockDim.x + threadIdx.x;

3 if(inode > NC) return;

4 else {grd->mv[inode] += grd->f[inode]*dt;}}
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where NC denotes the total number of cells. Moreover, when a variable is read and modified
by multiple cores simultaneously, atomic operations are performed, so, for example in mass
P2G we modified:

1 for(idx_t mpind=0; mpind<mps.n; ++mpind){

2 grd.m[mps.inode[mpind]] += mps.m[mpind]*mps.N1[mpind];

3 grd.m[mps.inode[mpind]+1] += mps.m[mpind]*mps.N2[mpind];

4 }

into:

1 idx_t mpind = blockIdx.x * blockDim.x + threadIdx.x;

2 if (mpind>=NC*MPPC) return;

3 else {

4 atomicAdd(&(grd->m[mps->inode[mpind]]),mps->m[mpind]*mps->N1[mpind]);

5 atomicAdd(&(grd->m[mps->inode[mpind]+1]),mps->m[mpind]*mps->N2[mpind]);

6 }

where MPPC denotes the number of initial material points per cell. At the end of the time
loop, updated data are copied back to the CPU grid variables and material points vari-
ables, their GPU counterparts are freed and the final output is written to file by the CPU.
By doing so we minimize host-device memory transfers, obtaining a significant speed-up
(section 6).
Second, the code has been re-implemented from scratch to address supersonic 2D test
cases, using C++17 and its Standard Template Library (STL)-based parallelism for per-
formance portability reasons, since they can be used both on CPUs and GPUs [40]. In
this implementation, every kernel operation has been rewritten relying on standard al-
gorithms, passing the parallel vectorized execution policy whenever possible. Regarding
the data structure, from recent developments on GPUs computing literature [28, 5], it
emerges that the best performance is achieved by adopting an Array of SoA. However, for
simplicity, the SoA approach has been kept for the time being, leaving AoSoA for future
work. In fact, the current data structure gives a conceptually straightforward extension
towards multi-GPU implementations, where a further level of parallelization through an
MPI-based domain decomposition will make each GPU hold a SoA as the current one,
giving rise globally to an AoSoA data structure.
Finally, a remarkable performance gain has been obtained swapping the P2G and G2P
kernels inner loops, looping first on every variable, and then on each grid cell and its inner
particles, in order to guarantee better data locality, given the SoA structure.

6 RESULTS

This section contains numerical results obtained with the MPM implementations de-
scribed in the previous section. First, the efficiency of the GPU-based MPM code for
compressible flows is verified in 1D. Second, the STL-based 2D implementation is tested
on a supersonic flow case and the results compared with those obtained with an established
finite element library.
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6.1 Sod shock tube

The first gas dynamics test case is the 1D Riemann problem known as Sod shock tube
[38, 41], where two fluids initially at rest are divided by a diaphragm, which is removed
at t = 0, determining the formation of several discontinuities. Indeed, while the two
initial zones shrink progressively towards the domain boundaries, these phenomena are
expected:

• a rarefaction wave propagates toward the high density zone, leading to continuity
of solutions with discontinuity of derivatives;

• in the position where the diaphragm was, which now is moving towards low densities,
a contact discontinuity develops, leading to continuity of pressure and velocity plus
discontinuity of density and internal energy density;

• a shock wave propagates towards low density zones, leading to discontinuity of all
involved quantities.

Figure 1: Sod shock tube - 100 cells, 3 material points per cells; exact solution from [41].

While some oscillations in the numerical solution are visible close to the discontinuities,
the solution quality is deemed acceptable given the current stage of the implementation,
and are in accordance with those in [36, 34].
In addition, comparison of the execution time versus the increasing spatial resolution for
the CUDA-C code and the serial C++ code shows that, once the computational effort is
relevant enough to overcome the initial cost of moving data to the GPU, the GPU MPM
code can be significantly faster than the CPU code (Fig. 2).
Specifically, defining 17 cell numbers as ncells = 100*(2.^[0:16]), thus log-scale evenly
distributed between 100 and 100 × 216, it can be seen that the execution time on CPU
and GPU scales linearly with the number of cells, even though the GPU implementation
requires an additional initialization time, which is about 10 times the total wall-clock
time of the reference CPU run with 100 grid cells. Nonetheless, as resolution increases
and computational effort grows, the fine-grained parallelism of MPM makes the GPU

7
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Figure 2: Sod shock tube test, execution time for the 1D MPM code as a function of resolution.
Blue and yellow: actual data points. Orange and purple: linear functions represented to ease comparison

implementation faster than the serial CPU implementation by a factor of 100×, and even
1000× from 51200 cells on, as the L3 cache of the CPU saturates.

6.2 Supersonic flow past a cylinder and over a rectangular step

Two 2D test cases are shown, both regarding supersonic flows against an obstacle. Denot-
ing with the ∞ subscript the unperturbed conditions, we have density ρ∞ = 1.4, pressure
p∞ = 1, specific heat ratio γ = 1.4, so that initial equilibrium sound speed is cs,∞ = 1,
velocity v = (3, 0), and thus Mach∞ = v∞

cs,∞
= 3 (same units of Sod’s problem [38]).

Boundary conditions are wind tunnel-like, with slip conditions applied at the horizontal
walls, Dirichlet conditions at the inflow boundary and no enforced condition at the out-
flow boundary - particles leaving the domain from the outflow boundary are re-inserted
in a random cell at the inflow boundary with initial, undisturbed conditions.
The first test (Fig. 6.2) concerns the flow in the domain [0, 4]× [0, 2] past a cylinder whose
cross section is a circle of radius 0.25 centred in (0.6, 1); the grid is made by 400 × 200
cells, 4 material points per cell are initially placed in the fluid domain according to a uni-
form random distribution. As gas particles encounter the cylinder, a shock wave develops
at the front and two oblique shocks in the rear; the first shock is reflected by walls and
interacts with the back shocks.
In the second test (Fig. 6.2), the Mach 3 flow proceeds against a [0.6, 3]× [0, 0.2] rectan-
gular step; the grid is made by 300 × 100 cells, material points are initially distributed
as in the previous case. Also in the step case, a frontal shock develops, and it is later
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reflected from the top wall and successively from the step. In both cases results with the

Figure 3: Mach 3 flow past a cylinder, computed log-scale normalized density gradient.

Figure 4: Mach 3 flow past a rectangular step, computed log-scale normalized density gradient.

MPM method are qualitatively comparable with the ones in the literature [33, 42], and
the ones obtained with the deal.II finite element library. Specifically, Figure 6.2 compares
very well with the result of the step 69 from deal.II tutorial, which uses a comparable
resolution to the one used in the MPM simulation.2

7 CONCLUSIONS AND NEXT STEPS

This paper has explored the potential of accelerating the Material Point Method on GPU-
based hardware via CUDA porting of a standard MPM code for compressible flows. In-
sight has been given on algorithm adaptations which will provide further benefits, espe-
cially when addressing a second level of parallelization through an MPI-based domain
decomposition approach on Multi-GPU hardware. Moreover, the simulation of standard
test cases of supersonic flow has provided results comparable with the literature and with
established software runs with the same polynomial order (first order - Lagrangian hat

2https://www.dealii.org/current/doxygen/deal.II/step 69.html#Results.
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functions) and number of degrees of freedom. These results show that MPM is able to
simulate Mach 3 gas dynamics, giving qualitatively good results with a prototype based
on existing implementations [30, 37], and serve as further step towards the design of a
highly efficient MPM-based supersonic FSI solver.
On the High Performance Computing side, interesting themes under development con-
cern the porting of the existing code to Multi-GPU architecture via MPI, the realization
of scalability studies, and the addition of a CFL-based adaptive time step and a grid-
particles adaptive refinement through a quad-tree approach [43, 44]. On the modelling
side, more complex test cases will be simulated, eventually leading to a 3D extension and
Fluid-Structure Interaction models. In addition, a more accurate higher order B-Splines
based method is being developed, and the effect on parallel performance due to related
stencil growth and halo overlapping will be the subject of careful investigation.
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