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Abstract

Objective: This study aims to assess the statistical significance of training parameters in 240
dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled
MRI in various acquisition protocols. The objective is to determine the validity of differences
between different DUNet configurations and their impact on image quality metrics.

Methods: To achieve this, we trained all DUNets using the same learning rate and number of
epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths.
We calculated evaluation metrics for two metric regions of interest (ROI). We employed both
Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical
significance of the independent parameters, aiming to compare their efficacy in revealing
differences and interactions among fixed parameters.

Results: ANOVA analysis showed that, except for the acquisition protocol, fixed variables were
statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their
interactions held statistical significance. This emphasizes the need for advanced statistical
analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by
ANOVA.

Discussion: These findings highlight the importance of utilizing appropriate statistical analysis
when comparing different deep learning models. Additionally, the surprising effectiveness of the
UNet architecture in enhancing various acquisition protocols underscores the potential for
developing improved methods for characterizing and training deep learning models. This study
serves as a stepping stone toward enhancing the transparency and comparability of deep learning
techniques for medical imaging applications.
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Introduction

In the field of Magnetic Resonance (MR), there is an ever-growing body of work in deep learning
(DL) techniques [1-5], including feed-forward convolutional neural networks (CNN) [5-7], UNets
[4, 8-14], and generative adversarial networks (GANs) [15-17]. Among the most common
applications are the use of DL in reconstructing undersampled k-space data [3-5, 18] and the
enhancement of low resolution and/or low signal-to-noise ratio (SNR) images or spectroscopic
scans [19-21]. The growing number and the inherently complex nature of DL techniques
underscore the challenge of selecting the appropriate architecture, as well as its training pipeline,
which includes training data sets [22], ground truths [23], loss functions [24], and metrics of
performance [25].

Introducing a new or modified neural network typically includes comparisons with other DL and
non-DL methods [23, 26—-28], most usually based on average image quality metrics calculated
over the test populations [29, 30]. In such studies, relying on empirical results emphasizes the
importance of testing for statistical significance to ensure that results are not coincidental [31, 32].
Statistical analysis and significance testing can be critical when the reported differences in means
are small relative to their standard deviations or distributions of the metrics; such findings are
common in MRI DL studies [11, 12, 33], and subjective evaluation is eventually used as the
determinant [5]. While a significant portion of surveyed works does not assess statistical
significance when comparing methods, some works use analysis of variance (ANOVA) [34, 35].
However, in typical DL studies where the comparison is based on testing the networks on the
same data set, ANOVA is not the appropriate statistical model since it does not consider repeated
measures (ANOVA assumes different data sets with the same distribution). In these cases, the
appropriate statistical analysis is the mixed effects model (MEM) based analysis on the same set
[36].

These observations have led us to conduct the present study, which aims to evaluate whether,
and to what extent, statistical analysis can capture differences in the performance of networks in
terms of their training and outcomes characterized with the commonly used image quality metrics.
To investigate this, a simple scenario of implementing a neural network for enhancing
undersampled and/or low SNR MR images was replicated. Then, statistical analysis is conducted
to evaluate whether, and to what extent, significant conclusions can be drawn regarding the
operator- and user-selectable aspects of implementing the network that represents network
training and characterization. While the aforementioned matters relate to virtually any neural
architecture, here we focus on UNets that were designed for elucidating imaging features [37],
including image-to-image translations such as post-acquisition enhancement of low quality MRI
images [19, 38—44]. In particular, we utilized a version of Dense UNet (DUNet) that was employed
before to enhance image quality [45—49]. We chose a few significant parameters that affect
network performance, specifically related to training and metric calculation, from the countless
options available. Our investigation of this DUNet focuses on two training features (loss function
and ground truth) and outcomes (metrics calculated on the entire image or a specific area).

The first training-related aspect investigated in this work is the loss function [24, 50]. A
characteristic of the multifaceted nature of DL training is that loss functions can be even more
important than the details of the network architecture [51]. From the wide range of used loss
functions, we trained the DUNet with simple pixel-to-pixel ones: (a) the fundamental functions L1
[50, 52], L2 [6-10, 14], structural similarity index measure (SSIM) [50, 52-55], and (b) composite
loss functions (CLFs), i.e., weighted additions of the aforelisted fundamental ones [24, 56-59].
CLFs are used to train networks to improve multiple image properties concurrently. As an
example, in UNets, the inclusion of edge information [60] or SSIM [58] along with pixel-to-pixel



loss (L1 or L2), incorporates the presence of structural information that is also optimized during
network training. The second training-related aspect was the ground truth (GT), which also
determines the features of the image the network will transform. Manipulated GT were used
before, including sharpening GT, simulating GT images, acquiring GT using scanners, and
averaging signals to create GT with different SNRs [23, 61, 62]. Recently, the pioneering concept
of using undersampled MRI as GT in self-supervised MRI reconstruction was introduced by
Korkmaz et al. [63]. The third aspect evaluated image metrics calculated on the entire image or a
targeted area. Metrics measured over the entire image can present challenges for implementing
suitable DL, so focusing on a region of interest (ROI) may be necessary to optimize performance.
Sun et al. suggest that training networks on ROI tend to optimize ROls better and that networks
affect specific regions of the image differently [64]. In this work, we added a synthetic high intensity
lesion during the data augmentation phase; this artificial lesion was used to prescribe the ROI for
focused metrics.

The tested statistical analysis models were applied in comparing the performance of the
aforelisted DUNets to enhance MRI images with a variety of Signal-to-Noise Ratio (SNR) and
image structural information. Those images were in silico generated using five different acquisition
protocols (AcqPr) corresponding to different combinations of k-space sampling and repetitions
per k-space line. Since the objective of this work was to assess the statistical analysis, we
implemented those AcgPr with: (a) simple Cartesian undersampling (i.e., along the phase
encoding of a conventional pulse sequence), (b) all AcqPr had the same total number of k-space
lines (i.e., same duration of acquisition), (c) variations of image quality was secondary to adjusting
k-space sampling pattern and repetitions per k-space line. It is noted that this work, does not entail
evaluation of reconstruction algorithms, rather investigates a simple UNet-based image
enhancement of reconstructed MRI images. The design of this study focuses first on assessing
the statistical analysis in investigating the impact of various factors (like loss function, GT, and
AcqPr) that contribute to the overall training and the Al model.

We compared the performance of a DUNet using four commonly used image quality metrics:
mean squared error (MSE), mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and
structural similarity index measure (SSIM) [65]. Statistical analysis was based on descriptive
statistics (i.e., mean % standard deviation) on the test set and testing for statistical significance
using both ANOVA and MEM. Descriptive analysis was performed for 480 cases corresponding
to all possible combinations of the twenty four CLFs, the two GT, the five AcqPr, and the two
measurement regions of interest (MeROI). Our significance tests focused on identifying the
contributions of weightings in composite loss functions, acquisition protocols, and their interaction.
By conducting significance tests on Al components, such as loss functions and AcgPr, we aim to
improve interpretability and create more explainable Al systems.

Materials and Methods

Study Design

In this study, we utilized an appropriately trained DUNet to enhance low SNR and undersampled
images. The image quality was then evaluated using conventional image evaluation metrics. The
study was conducted in three steps, which are summarized in Table 1: (I) data acquisition, i.e.,
generation of the acquired images (IMacq), using specific acquisition protocols (AcgPr). The
IMacq were then used as input to the DUNet. (Il) DL step that included (a) training of the DUNet,
with the IMacq and GT training sets, matching GT and LF, and (b) applying the DUNet on the test
set of IMacq to generate the enhanced images (IMenh), and (lll) processing the IMenh for
statistical analysis of the evaluation metrics. These in silico studies need networks to be trained
and tested with spatially matched pairs of IMacq and corresponding GT, which are not publicly



available and hard to collect. So, we synthesized them from the publicly available OASIS project
[66] (as discussed below).

A simple cartesian scanning approach is utilized, with k-space undersampling along the phase
encoding axis, followed by a weighted k-space acquisition which determines the distribution (or
number) of repetitions (Nreps) per k-space line; this is the acquisition protocol (AcgPr). In
suboptimal conditions, an AcgPr of Nreps = 100 is assumed to be the best choice to improve SNR
for all lines of the complete (100%) k-space (matrix size of the OASIS images 176x208). The time
required to collect such an image is (100%)x100xTR = TRx10* These images serve as one of
the types of tested GT, the acquired ground truth (GTacq). Assuming a 10-fold reduction in
acquisition duration, AcqPr with a time cost of TRx10° can be prescribed. Table 1 reports the five
AcqPr used to acquire the IMacq, and Fig. 1 illustrates the simulated IMacq for each AcqPr and
their difference with GTacq.

Table 1 lists the 240 in silico experiments, each one corresponding to a combination of an AcqPr
(x5), an LF/CLF (x24), and a GT (x2). Each experiment entailed training, testing, and validation
of a DUnet dedicated to a particular combination of parameters. The testing outcomes of the 240
experiments were used to calculate the evaluation metrics for the two cases of meROI. This
resulted in 480 cases, and these cases were analyzed using ANOVA and MEM to statistically
evaluate the differences in performance between independent parameters.

To generate the input IMacq, we simulated the acquisition of the k-space for each experiment
using five different AcqPr (N=5), keeping the total number of collected k-space lines constant.
These protocols produce images with varying degrees of blurring artifacts and SNR, as shown in
Table 1 and visualized in Fig. 1.

Twenty four loss functions composed of three single and two composite functions were tested.
The single functions consisted of two pixel-to-pixel loss functions (1) L1 [50, 52] and (ll) L2 [6-10,
14], and a perceptual metric loss function to measure image similarity, (Ill) the SSIM loss (LSSIM)
[50, 52-55] computed with window sizes 3 and 7 (LSSIMw3 and LSSIMw7). The LSSIM is defined
as

(1)

N
LSSIM = — x z 1 - SSIM(n)
n=1

where ‘N’ is the number of total pixels in the image, and ‘n’ is any given pixel location in the image.

A e

The two composite loss functions that combined pixel-to-pixel and structural information were (IV)
CLF1 = kxL1+(1-K)%L1canny, Wwhere k € [0.0,0.9] in steps of 0.1 [56]. CLF1 combines pixel-to-pixel
L1 loss over the entire image and the edge map loss component L1canny Calculated as shown in
equation 2, and (V) CLF2 = L1+AxLSSIM, where A € [0.0 — 0.5] in steps of 0.1 and LSSIM window
sizes are 3 and 7 [58].

N 2)
1 (
LlCanny = N X 2|EdgeYTrue X YTrue — EdgeYTme X YPred|
i=0

where ‘N’ is the number of total pixels in the image. Ytwe and Ypeq are the GT and IMenh,
respectively. Edgey.  _ is the edge map of the ground truth generated using the Canny filter. To
calculate L1canny, Edgey, . is multiplied on a pixel-by-pixel basis with both Ytwe and Yerea. It is



important to note that only the edge map of the Ytwe is used for pixel-by-pixel multiplication for
both Yre and Yeea because Edgey, . represents the true edges expected in the GT image.

We tested two types of ground truth. The first, GTsyn, was the outcome of the augmentations
step (i.e., steps corresponding to random rotations and the hyperintense lesion shown in Fig. 2)
applied to the images from the OASIS dataset with complete k-space data; as such, it corresponds
to zeroing the signal of the empty space. The process to generate GTsyn involved rotations,
addition of hyperintense lesions with random attributes, and elastic deformation applied to white
and gray matter regions. Additionally, Gaussian noise was introduced to the resulting images.
The combination of rotated gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
images produced synthetic MRI (synMRI) images, serving as the Ground Truth with a resolution
of 176 x 208. A more detailed description of GTsyn generation can be found from the work of
Sharma et al. [49]. The second, GTacq, was generated by averaging Nreps = 100 images
synthesized from the complete k-space (each with random Gaussian noise applied to its k-space),
replicating the scenario where ground truth is experimentally determined. The performance of the
240 DUNets was assessed by measuring evaluation metrics MSE, MAE, PSNR, and SSIM on (l)
the entire image and (ll) lesion-focused ROI.

Training and Testing Dataset

These in silico studies used brain MRI from the OASIS project dataset [66]; originally tailored for
investigations related to Alzheimer's disease and brain aging. It comprises high-quality structural
MRI scans of the brain from a diverse group of participants, encompassing both healthy
individuals and those diagnosed with Alzheimer's disease. We started with 436 T1 weighted MRI
images randomly selected from the OASIS project (in gif format included in the database) [66]
and synthesized 2616 synthetic images based on the augmentation pipeline reported in previous
work [49]. Each synthetic data set (5 images generated with the five AcqPr and the two GTs)
comprises ten pairs of unique AcqPr and GT. Fig. 2 illustrates the two steps of the implemented
synthesis: (I) Augmentation in the real space by random rotations of segmented WM, GM, and
CSF maps, followed by their weighted addition on an empty zero signal matrix. Subsequently,
random diameter and position circular hyperintense lesions (subjected to elastic deformation [33])
limited to the WM and GM were added to generate GTsyn. (lI) Generation of IMacq and GTacq
computed by (a) adding random Gaussian noise, with 0.05-0.01% standard deviation of the
maximum k-space Sl and applying the AcqPr weighting to the k-space of GTsyn, followed by (b)
inverse Fourier transformation to generate the IMacq. The corresponding GTacq was generated
by the same pipeline with a complete k-space and 100 Nreps, i.e., 100 repetitions per line.

Network Implementation and Training

The DUNet was implemented using Keras with TensorFlow 2.2, and it was trained and tested
on Nvidia V100 tensor core GPUs with an Adam optimizer [67], a batch size of 32, a learning
rate of 0.001, and 100 epochs. To ensure consistency throughout the 240 experiments, 2616
images, which comprised of 1680 training images, 516 testing images, and 420 validation
images, were split based on patient identification numbers to prevent any data leakage into the
testing set. We kept other hyperparameters constant except loss functions to ensure
consistency.

Evaluation Metrics and Statistics

In this study, we compared the performance of DUNet-enhanced images to two ground truth
datasets using the metrics of MSE, MAE, PSNR, and variable size window SSIM (windows [3x3,
5x5, ..., 11x11, 13x13] pixels) [24,49]. These metrics were applied to a sample of 516 testing
images for the two MeROI and reported as mean + standard deviation. We performed statistical
analysis using ANOVA and MEM to assess the significance of (1) k values (i.e., k € [0.0, 0.1, 0.2,



..., 0.9]) in CLF1 and AcgPr, and (2) A values (A € [0.0, 0.1, 0.2, ..., 0.5] and LSSIM window sizes
(WS) in CLF2, and AcgPr. We selected the SSIM with a window size of 11 to represent the SSIM
class in the statistical analysis due to the high correlation with SSIM of different window sizes
(Figs. 3 to 6, and Tables 2 and 3, and in relation to Fig. 7). The evaluation metrics (MSE, MAE,
PSNR, and SSIMw11) were used as response variables for the statistical analysis. We excluded
the two levels of GT from the ANOVA and MEM analysis since the significance of GT was evident
from the descriptive statistics and only used data acquired with GTacq for statistical analysis.

Statistical Analysis

In our study, we conducted statistical analysis on two subgroups. Firstly, we tested the effect of
on the loss function kxL1+(1-k)XL1canny (CLF1), where k varies from 0.1-1.0 with a step size of
0.1. We excluded k = 0 (i.e., L1canny loss function) as it showed significantly inferior performance
than other values of K, as evidenced by the descriptive statistics results. The fixed variables for
this subgroup in the mixed effects model were (I) k with ten distinct levels ranging from [0.1-1.0]
with a step size of 0.1 and (Il) input AcqPr with five levels (Table 1). Secondly, we tested the effect
of Ain L1+AxLSSIM (CLF2). For this subgroup, the fixed variables were (I) A with six levels ranging
from [0.0-0.5] with a step size of 0.1, (II) window sizes of LSSIM with two levels (3 and 7), and
(1) input AcgPR with five levels (Table 1). The test images formed the random effects in the
mixed effects model, on which the repeated measures were performed for all possible
combinations of fixed variables.

We performed ANOVA and MEM analysis using custom software written in R, version 4.2.2 [68].
The classical ANOVA is capable of treating only fixed effects, that is for every level of the fixed factors
considered in the study, we assume that we have a different random sample (i.e., a different data set)
from a normal distribution. All the Normal distributions are assumed to have the same variance and
the classical ANOVA will examine whether we have any differences in the means. However, in DL
studies, we typically have only one data set (i.e., a set of images) and for each level of the fixed factors
considered in the study we perform measurements on the exact same images. Therefore, we have a
repeated measure design, where the images constitute the random effects, leading to what is known
as MEM design. So, the basic difference on the two approaches is that while ANOVA considers that
at each level we have a different set of images, the MEM is taking into account that the same image
is measured multiple times, i.e., MEM is capable to consider the image to image differences, while
ANOVA neglects this.

Results

In our MRI study, we collected a large amount of data by calculating output image metrics for a
total of 480 discrete cases. These cases encompassed twenty-four LF, two GT (GTsyn and
GTacq), five k-space AcgPr (complete, hat-like, US-1, US2, and US3), and two MeROI (i.e., entire
image and lesion-focused ROI). A single case corresponds to the average value per metric for
516 test images calculated for nine evaluation metrics (MSE, MAE, PSNR, and six variable
window size SSIM). We found distinct patterns in the data, and therefore, we present selected
outcomes in the main body of the manuscript (Tables 2 and Figs. 3 to 6), while the complete set
of evaluation metrics is available in the supplemental tables 1 to 20. This comprehensive analysis
provides a better understanding of the effects of different combinations of LF, GT, AcqPr, and
MeROI on the enhancement of MRI images.

Figs. 3 and 4 summarize the MAE and SSIM descriptive Statistics of images enhanced by DUNets
trained with the cost functions kxL1+(1-k)XL1canny (CLF1) and L1+AxXLSSIMw7 (CLF2),
respectively. Only the MAE and SSIM are shown as representative results and manifest identical
patterns, as in supplemental tables 1-20. Figs. 3 and 4 have identical structures presenting the



results for (i) the two GT, GTacq (100 repetitions of complete k-space) being the graphs in the left
column 3/4(a, c, e, g) and GTsyn (signal-zeroed empty space) the graphs in the right column
3/4(b, d, f, h), and (ii) the two MeROlI of the entire image in the upper two rows 3/4(a, b, c, d) and
the lesion-focused ROI the lower two rows 3/4(e, f, g, h). Inspection of these figures, in
accordance with Tables 2 and 3, provides a birds-eye view of the outcomes of these studies that
can be summarized in three observations. First, it appears that there is no effect of the kK or A
values of CLF1 and CLF2, respectively, on the performance of the DUNet. Second, differences
can only be seen between the outcomes of DUNet trained with GTacq and GTsyn. Third, all LF
performed similarly well for all acquisition protocols except US-3 (k-space coverage with 10%
central and 10% equidistant lines outside), and this was irrespective of k or A values of the loss
function or ground truth or on which area of the image the metrics were calculated.

Impact of GT

The choice of GT causes the most observable difference in the results of DUNet. Comparing the
two GT in Tables 2 and 3, the five AcqPr had higher SSIM when they were enhanced by a DNUet
trained with the GTsyn (five rightmost columns) than those enhanced with the GTacq and no post-
acquisition processing (five leftmost columns). For example, Table 2, with L1 loss function (the
tan rows), indicates that the SSIMw5 metric for the complete k-space AcqPr is significantly higher
with GTsyn (0.9603+0.0093) than with GTacq (0.8501+0.0474), and the standard deviation based
ranges do not overlap. This trend can also be observed in all other loss functions and AcqPr in
Table 2 and Figs. 3 and 4. Comparing GTsyn with GTacq over the lesion-focused area reveals
some different results. In Table 3, with the L1 loss function (tan rows), the SSIMw5 metric for
complete AcqPr is 0.9591+0.0313 for GTsyn and 0.9221+0.0469 for GTacq. However, there is an
overlap in the standard deviation-based range when metrics are calculated over the lesion-
focused ROI area. In Figs. 3 and 4, we observe similar trends, which suggest that the use of an
empty-space noiseless GTsyn results in better denoising of empty space by DUNet, as reflected
by the improved evaluation metrics. This applies to all other metrics in supplemental tables 1-20.
The effect of GT is also evident when comparing image-to-image Figs. 5 and 6, which are
enhanced with DUNet trained with GTacq and GTsyn, respectively. For instance, images in Fig.
5(c) or 5(e) exhibit higher errors when correspondingly compared to Fig. 6(c) or 6(e), and this is
evident in both the empty space (expected as the GTsyn is trained on a zeroed-empty space) as
well as on the tissue area.

Impact of CLF

The effect of the tested CLF can be assessed by inspecting Tables 2 and 3 along any column
(each column corresponding to a combination of GT and AcqPr), as well as in Figs. 3 and 4 (in
each graph, the same color boxes). It appears that the k or A values of the CLF1 and CLF2 have
no significant effect; the differences in the means of the metrics lie within a standard deviation.
The same is the observation in the visual inspection of the example DUNet outcome images in
Figs. 5 and 6; indeed, when comparing outcomes collected with the same AcqPr (i.e., same
column), we see no clear visual difference between the two presented A (Figs. 5(b) vs. 5(d) and
Figs. 6(b) vs. 6(d)). The same applies when comparing the error maps, column-wise Figs. 5(c)
vs. 5(e) and Figs. 6(c) vs. 6(e). Although there are some high-intensity hotspots in the zoomed-in
areas, these differences are relatively small compared to the brightness of the error map, which
is five times that of the images. This behavior was quite unexpected as prior works have clearly
stated preferred values like for k=0.7 [56] or A=0.1 [58].

Impact of AcqPr
The effect of AcqPr can be observed by inspecting Tables 2 and 3 along rows for either of the
GTs (rows correspond to one of the 24 LF) that indicate a dependence of enhancement



performance to the AcqPr, especially when considering metrics calculated on the entire image
versus the lesion-focused ROI. Table 2, Figs. 3(a) to 3(d), and Figs. 4(a) to 4(d) reveal clearly
that images enhanced from undersampled k-space (US-1 and US-2) have a higher SSIMw5 than
those enhanced with the complete and hat-like AcgPr. However, when we inspect Table 3, Figs.
3(e) to (h), and Figs. 4(e) to (h), i.e., lesion-focused ROI, the reverse trend is observed: the
complete and hat-like AcqPr yields higher SSIMw5 than US-1, US-2, and US-3. One can also
observe that the DUNet performs sub-optimally under US-3 acquisition for both entire image and
lesion-focused ROI for any combination of LF and GT. Notably, there is no clear difference
between the other four AcqPr. This is also supported by the images in Figs. 5 and 6. Comparing
the outcomes when the input images were enhanced with the same A=0 in Fig. 6(c), we observe
differences relative to GT in the zoomed areas as hotspots. These hotspots are relatively brighter
among images enhanced from US-1, US-2, and US-3, with US-3 exhibiting the strongest
hotspots. Yet, such hotspots are absent in the images enhanced from complete and hat-like k-
space acquisitions. Similar results were seen in Figs. 6(e), 5(c), and 5(e).

Fig. 7 shows scatter plots (lower triangle), Pearson’s correlation scores (upper triangle), and
distribution plots (diagonal) for evaluation metrics on different cost functions. The correlation
matrix provides statistical evidence that SSIM with different window sizes is highly correlated
(>=0.99). The density plot along the diagonal visually represents the distribution of data by
depicting the density of data points along a continuous axis. Every cell in the lower triangular
refers to the scatter plots between the two variables that corresponds to the column and the row
of that particular cell. For example, row three from the top and column one from the left
corresponds to the cell that shows the scatter plot for values obtained for PSNR and MSE for the
enhanced images; and, the respective cell on the upper triangle measures the correlation that
these two variables have up to a second decimal point. Therefore, the main diagonal reports the
individual histogram and density plots for the variables. The lower triangle reports all possible
scatter plots among the variables and the respective cell on the upper triangle quantifies the
strength of the linear relationship in this scatter plot using Pearson’s correlation coefficient.

Fig. 7 serves as a foundational step for response variable reduction in statistical analysis as SSIM
with different window sizes is correlated, and an observation made on one is therefore applicable
to the other with near-perfectly correlated metrics.

ANOVA vs MEM

Table 4 reports the significance scores as F-ratios (and p-values in square brackets) for ANOVA
(Tables 4a and 4b) and mixed effects model (MEM) (Tables 4c and 4d). We conducted a statistical
analysis that focused on two factors. Firstly, we tested the impact of kappa values of CLF1, AcqPr,
and their interactions (Tables 4a and 4c), referred to as (1). Secondly, we investigated the effect
of lambda values and LSSIM window size (WS) in CLF2, AcqPr, and their interactions (Tables 4b
and 4d), referred to as (2). The significance level was set to alpha=0.05. The p-values in Tables
4a and 4b demonstrate that AcqPr is a significant component and affects the DUNet
enhancement. The mean response values for US-3 are different from other AcqPr, which
contributes to this significance. All other factors reported with ANOVA in Tables 4a and 4b are
insignificant (p>>0.05). The insignificance of these factors (except AcqPr) is due to the repeated
measure design in the studies, which are ignored by classical ANOVA. We use MEM to account
for the repeated measure design of this study, and the results of MEM analysis are reported in
Tables 4c and 4d. MEM analysis clearly shows that all the factors in (1) and (2) are highly
statistically significant (p<<0.05) except for the WS, which was marginally significant (p=0.055)
for the response variable MSE (Table 4d). Observations in Tables 4c and 4d suggest that due to
image-to-image variation, we need to look at the interaction plots (reported in Fig. 8). The



interaction plots reveal patterns in the conditional means of the test images (random effects in
MEM). Figs. 8(a) and 8(b) display the predicted values for significant interaction of fixed variables
in (1) and (2), respectively corresponding to different response variables and allowing us to
interpret the effect of fixed variables in (1) and (2) visually.

Visual Representation of Image-to-lmage Variation

Four representative examples of individually enhanced IMenh, generated using the US-2 and US-
3 protocols, were visually inspected (see Figs. 9 and 10). The results revealed differences among
the CLFs that are visually apparent but not captured by ANOVA. Notably, when comparing Figs.
9(a-c), two low-intensity CSF structures (pointed by arrows) appeared to have different widths for
the three CLFs, with the smallest one observed in Fig. 9(a). While these differences are relatively
minor, when combined with other differences across the image, they may contribute to the
different SSIM. For instance, Fig. 9(a) has an SSIM of 0.9014, which was lower than that in Fig.
9(b) (SSIM = 0.9016) and Fig. 9(c) (SSIM = 0.9025). Similarly, the arrow-pointed structures in
Figs. 9(d-f) have different sizes in the different CLFs. These differences are apparent in the error
map shown in Fig. 9(d), which exhibits higher intensity hotspots than Figs. 9(e) and 9(f). These
differences may explain the corresponding SSIM of 0.9074, 0.9082, and 0.9085,
respectively. However, since the average SSIM is 0.9021+0.0310, the minor differences are
insignificant in ANOVA.

In Fig. 10, we examine the two IMenh cases generated from IMacq obtained from the US-3 outlier.
The three different CLFs, used for enhancement cause substantial observable differences in the
results. For instance, in Figs. 10(a) to 10(c), the orange arrows in zoomed area 1 highlight
differences in the shape and contrast of low-intensity structures. Similar differences are observed
in the structure of the synthetic lesion in zoomed area 2. In Fig. 10(d), the thickness of the low-
intensity CSF in zoomed area 1 and the white matter in zoomed area 2 were lower than that of
Figs. 10(e) and 10(f). These differences are visible in the error maps, where bright hotspots are
present. In addition, the SSIM values (reported under each image) vary, as in Fig. 9.

Discussion

Descriptive statistics, ANOVA, and MEM were used in comparing the performance of the 240
tested networks, each providing different perspectives on the effects of the independent
parameters, i.e., AcqPr, LF, and GT, on the evaluation metrics. Univariate descriptive statistics,
i.e., means and standard deviations (Figs. 3 and 4 and Tables 2 and 3) providing a summary-like
perspective, point to some initial observations. First, it is evident that the choice of ground truth
affects the network’s performance. Therefore, we proceeded to analyze with ANOVA and MEM
with other independent parameters for only the case of GTacq. Second, it is also apparent that of
all independent parameters, only AcqPr affects the evaluation metrics; and this effect can be
clearly attributed to the inclusion of US-3. When compared to the other AcgPr, US-3 evaluation
metrics exhibit different mean values and, in most cases, a larger standard deviation. The metrics
of the other AcqPr exhibit close mean values with highly overlapping standard deviations (Tables
2 and 3). The observations of descriptive statistics are also evident in the ANOVA analysis.

Indeed, the assessment of the statistical significance of the differences in network performance
(Tables 4a and 4b) with ANOVA aligns with the observations from the descriptive statistics. First,
the evaluation metrics are not affected by the weightings of the CLF functions (k in CLF1 and A in
CLF2). However, the independence is a surprise as such composite loss functions were used
before to improve image structure. Interestingly, prior works that reported preferred weightings,
such as k or A values, relied on visual assessment of the enhanced images [56, 58] rather than
quantitative metrics. Second, it is only the AcqPr that has any effect on the performance metrics,



and this originates exclusively from the US-3 protocol. This suboptimal performance of the
networks can be expected since the input IMacqg’s come from a suboptimal undersampled k-space
(10% k-space lines in the central band and 10% equidistant distribution of k-space lines outside
the center band).

We employed descriptive statistics and ANOVA to evaluate the performance of various DUNet
models in enhancing low-quality images across different acquisition protocols and cost functions.
Our results indicate that all tested models performed equally well. Nevertheless, it is important to
note that adjustments to the ground truth can impact the outcome. Notably, while US-3 had lower
performance compared to other acquisition protocols, any well-trained version of DUNet could
still be used. Despite these findings, two interrelated issues require further consideration. First,
previous works used visual inspection to report preferred networks, i.e., choices not based on the
statistical significance of the metrics. The second, and related to the former issue, is the
appropriateness of descriptive statistics and ANOVA in investigating differences among outcomes
of comparative tests.

By definition, ANOVA assumes no repeated measures: practically, each network should have
been tested on different test sets with the same distribution of investigated independent
parameters. This is not the case in the comparative studies of networks in the literature (including
the work presented here): for comparison, the same set of test images is used to compare the
outcomes of networks. MEM analysis is the appropriate statistical analysis that, by design,
addresses the issue of image-to-image variation [36] that arises by repeatedly observing the effect
of different levels of the fixed variables on the same image. After applying MEM to the 100
networks (i.e., 10 CLF1 x 5 AcgPr and 10 CLF2 x 5 AcgPr) and 51600 individual IMenh (100
networks x 516 images), a different pattern emerged: each fixed variable, i.e., k for CLF1, A and
WS for CLF2, and AcgPr, is significant (MEM results in Tables 4c and 4d). When considering
image-to-image variation through MEM analysis, differences among the 100 networks (i.e., 10
CLF1 x 5 AcqPr and 10 CLF2 x 5 AcqPr) and 51600 individual IMenh (100 networks x 516
images) emerge that are not apparent in descriptive statistics (Tables 2 and 3 and Figs. 3 and 4),
ANOVA (Tables 4a and 4b), and visual results (Figs. 5 and 6).

MEM offers insights about the interaction among the fixed variables, i.e., the impact of AcqPr, k,
and A on network performance, as measured by evaluation metrics. The interaction plots in Figs.
8(a) and 8(b) show that errors were highest with the US-3 protocol, regardless of k, A, or WS,
indicating that the DUNet's performance is primarily influenced by AcqPr rather than CLF1's k or
CLF2's A or WS values. While descriptive statistics and ANOVA provide evidence supporting the
role of US-3 in AcgPr, MEM further reveals the combined effects with other fixed variables. The
MEM analysis identified even minor differences resulting from k, A, and WS, which can inform
decisions about DUNet training given the fixed AcqPr and evaluation metric.

The fact that MEM can reveal effects due to its inherent incorporation of image-to-image variability
raises another question: whether the MEM-elucidated small variations relate to the human-
defined features that determine the subjective visual inspection outcomes. If such a relationship
exists, then MEM may be a stepping stone toward forming means to quantitatively assess and
compare network outputs.

In Fig. 10, we display the outputs of three loss functions on US-3 AcqPr images, with arrows
pointing to areas of small visual variations. We zoom in on these areas to highlight the differences
in local structures. The SSIMw11 values are slightly different (Fig. 10(a) SSIM = 0.8451, Fig. 10(b)
SSIM = 0.8460, and Fig. 10(c) SSIM = 0.8494), with a difference of only 0.0034, which is within
the reported standard deviation of 0.0310 (supplemental table 5). ANOVA determined the



variations as statistically insignificant, with a p-value of 0.307 and an F-ratio of 1.19 (Table 4b).
However, visual inspection of Figs. 10(a) and 10(b) reveals differences in local structures leading
to distinct SSIM values. MEM analysis revealed that ‘A’ is highly significant, with a p-value of 0.000
and an F-ratio of 155.68 (Table 4d), along with other fixed variables. Similarly, ANOVA reported
insignificance for the fixed variable ‘K’ with a p-value of 0.950 and an F-ratio of 0.36 (Table 4a). In
contrast, MEM reported high significance with a p-value = 0.000 and an F-ratio of 46.80 (Table
4c), indicating that MEM shows closer relation to the visual inspection. The use of MEM has
facilitated the detection of subtle variations, which are represented by the interaction plots shown
in Figs. 8(a) and 8(b).

Although it is impossible to provide a definitive answer, the differences revealed by MEM analysis
may explain the previously reported preferences for k and A based on visual inspection [56, 58].
The outcomes of the MEM can be used to optimize the training parameters of the DUNet model
for achieving the best outcomes in individual evaluation metrics. Overall, the MEM approach
offers a more comprehensive understanding of how loss functions impact model performance,
which can be useful in achieving optimal outcomes for image enhancement tasks. However, it is
important to note that the practical significance of the minor differences revealed by MEM can
only be determined through human feedback. While MEM is effective in capturing small
differences and showing high statistical significance, its applicability to real-world scenarios
ultimately depends on human feedback.

The interaction plots in Figs. 8(a) and 8(b) suggest that there is no singular optimal value of k in
CLF1 nor of A or WS in CLF2 that can yield the best results across all response variables. This
indicates that alternative metrics are needed to accurately measure the impact of different loss
functions and other fixed variables on the overall image quality. As such, previous works have
had to rely on visual inspection to find optimal k and A. Additionally, our findings suggest that the
variability in response variables, points to a potential limitation of evaluation metrics in capturing
variation at the pixel-to-pixel level and structural information. To address this limitation, it is
important to train the network with appropriate datasets (in this case, accounting for the
differences due to AcqPr).

Our study confirms the impact of AcqPr on the performance of DUNet in image enhancement.
Both ANOVA (Tables 4a and 4b) and MEM (Tables 4c and 4d) produced a p-value of ‘0.000’
across all evaluation metrics, indicating the significance of AcqPr. However, ANOVA results
suggest that the effect of AcqPr is primarily driven by US-3, which has substantially different
values than the other AcgPr. In contrast, MEM could detect small differences in SSIM values
among the other four AcqPr, where the difference in SSIM is less than 0.0045 (i.e., less than
0.45% with respect to GTacq and L1 loss for supplemental tables 1 to 4). The interaction plots in
Fig. 8(a) showed that, for any value of k, US-1 and US-2 outperformed the other AcqPr with higher
mean and confidence intervals under the PSNR or SSIM plot. MEM captured the small differences
in the SSIM values of different AcgPr. For instance, in supplemental table 1 for complete AcgPr,
the SSIM value was 0.8976, while in supplemental table 2 for hat-like AcqPr, it was 0.8991. The
difference between the two values was 0.0015, which is less than 0.15% with respect to
GTacq. The F-ratios for SSIM under AcqPr were 562.59 (Table 4a) and 71357.28 (Table 4b) for
ANOVA and MEM, respectively. The high difference in F-ratios indicates that MEM reported
higher significance than ANOVA, as MEM effectively captured image-to-image differences related
to different AcqPr.

While the study design was focused and, in certain aspects, limited to specific AcqPr, loss
functions, and GT, these do not affect the generalization of the outcomes. Despite comparing 240
individually trained and tested networks, we only tested a specific UNet architecture, trained and



tested on a small number (24) of rather simple single and composite cost functions (L1, L2, SSIM,
and L1canny) and synthetic data. Nevertheless, the underlying capability in assessing differences
between the three statistical approaches was clearly seen, with the potential need for more
sensitive analysis models, like MEM. The potential of such models can also be seen if we attribute
the lack of significant differences in the ANOVA analysis to a possible insensitivity of the used
UNet to the loss functions. Even in this case, MEM reported statistically significant differences
when comparing the loss functions (F-values and interaction plots).

The MEM analysis (compared to descriptive statistics and ANOVA) further underscores the
importance of methodology that considers subject-to-subject variability in identifying the optimal
hyperparameters for different imaging problems and considering the uniqueness of every single
patient. Moreover, those findings underscore the value of application-driven criteria; an image is
as good as its informational content to support the assessment of (patho)physiology and not the
degree of visual pleasantness (although the latter does not exclude the former). Under the same
context, it also becomes apparent the importance of human input about or enforcement of the
quality of the informational content of an image. The latter may be realized as part of network
training and/or the introduction of metrics or (composite) loss functions that capture human criteria
about the appropriateness of the outcome. We feel that this study lays a foundational step toward
explainable Al in imaging and demonstrates the importance of incorporating appropriate statistical
methods to better understand DL in imaging.

With primary objective the investigation of statistical analysis methodologies in comparing
different DL architectures, in the paradigm of enhancing low quality MRI, certain selections were
made in the design and the practical implementation of the study. All tested 240 DL models were
based on the UNet architecture (under supervised leraning) selected for its stability in training [69,
70] and its propensity to yield consistent and deterministic outputs [37, 69]. Consequently, UNet
enabled improved logistics in the execution of this study that entailed the training of 240
experiments and outcome analysis for 480 cases (cindering the two ROI versions). Moreover,
UNet have been used before for the selected paradigm of enhancing low quality MRI images [19,
38-49]. While UNet was a robust and stable choice for these studies, it should be noted that other
architectures may offer better image enhancement, such as GANs that generate perceptually
improved images [71-75]. It will be important to expand the evaluation for the statistical analysis
of the altering the training models also to GAN or other architectures. It should be emphasized
that this work does not delve into the reconstruction of undersampled MRI; rather it uses DL to
enhance already reconstructed lower-quality MRI images (originating from in silico undersampled
scans).

Several other choices were made in the design of this study. In the context of our present
investigation, out of the plurality of possible GTs we selected two GT (both generated with the
complete k-space). While the current study demonstrated the efficacy of UNet methods in relation
to those GTs, it is important to note that alternative DL techniques, such as GANs, maybe more
suitable with low-quality GT, as was recently presented in [63]. Notably, while it may be impossible
to train a model to surpass the quality limitations of the GT, subtle adjustments to the GT can
serve to ameliorate the quality of undersampled GT images, thereby facilitating the training of
more suitable DL models. It is noted that the statistical analysis comparison tests in the current
study does not include GANs or diffusion models. These DL methods have the potential to
introduce more intricate loss functions into the image enhancement process, which, in turn, can
contribute to perceptually superior outcomes in the enhanced images. In light of this, we are
committed to exploring this intriguing aspect in our future research endeavors. We also employed
the use of magnitude images form the OASIS dataset, adopted for simplicity and to keep effort
focused on the effects of specific parameters on image enhancement without the complexities



associated with reconstruction. However, it should be noted that using DICOM images, while it
serves the research objectives of this work, carries certain limitations. One notable limitation is
that it may lead to an overoptimistic evaluation of our model's performance.

In this work, the 240 different DL models were all trained with the same learning rate and number
of epochs. It is imperative to emphasize that various DL models, characterized by differing
architectural features such as loss functions and their interactions with GT, do not follow the same
learning trajectories. Consequently, the ideal approach entails training models until convergence,
however, this practice presents a challenge when comparing outcomes. When comparing two or
more DL methods, it is imperative to ensure as much methodological consistency as feasible.
One approach to achieve this entails enforcing uniformity in various hyperparameters, including
the learning rate and epochs as in Bressem et al. [76]. As an essential facet of our forthcoming
research, we intend to extend the scope by training models under varied hyperparameter
configurations and employing diverse stopping criteria. This extension aims to introduce
heightened variability, all while incorporating these parameters into the framework of the MEM.
Subsequent significance testing will be conducted through the herein presented statistical
methodologies that leverage image-to-image variations, further enhancing the rigor of analysis.

This study serves as a foundational exploration of the impact of parameter variations in image
enhancement (and is not intended to provide a one-size-fits-all solution for all MRI applications.)
As example, a potentially impactful future research thrust would be the use of statistical analysis
for assessing the performance of a wider range of DL methods with distinct parameters (i.e. to
discern which parameters hold statistical significance), include but not limited to diffusion-based
reconstruction, unrolled architectures and the use of specialized loss functions for reconstruction
[77-79]. Consequently, the reconstruction method employed will be integrated into the
parameters of the MEM and will play a pivotal role in the subsequent significance analysis. This
expansion in methodology will enable us to provide a more comprehensive understanding of the
interplay between reconstruction and enhancement, thereby enhancing the robustness and
relevance of our study.

Conclusion

In the quest to understand and practically use DL, careful consideration is needed in performing
comparison studies to ensure that the sought out improvements are well characterized and not
coincidental. Failure to account for image-to-image variability, as is the case with descriptive
statistics and ANOVA analysis, may result in the inability to accurately measure differences in
imaging features that are instrumental in determining the value of a network's outcome. These
pilot studies with MEM analysis indicate that when image-to-image variability is considered, finer
differences and interactions among the fixed variables can be captured. Such sensitivity may lead
to a more appropriate characterization of the outcomes of a DL method, and incorporating such
methods in the training stage of a network can be beneficial. Although it is not possible to provide
a definitive answer, differences captured by MEM may account for the human preference for
specific network outcomes. In general, we advocate incorporating appropriate statistical analysis
when evaluating DL methods (as statistical analysis is often overlooked when comparing different
models or hyperparameters in literature). An interesting outcome was that a conventional DL
architecture, like the DUNet, can be effectively trained to enhance the outcomes of a range of
acquisition protocols. This satisfactory performance raises questions about the effectiveness of
the utilized loss functions and metrics, particularly when the improvements/differences
correspond to a small percentage. It also reinforces the idea that a human or a human-like metric
is needed to evaluate image quality. These are among the perspectives in DL that needs to be
carefully and critically studied by MR scientists.



Data Availability
Data used in this study were accessed through the OASIS dataset [66].
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Fig. 1. (a) Acquired ground truth (GTacq) image and the low quality
images generated using complete, hat-like, US-1, US-2, and US-3
protocols. (b) Pixel-by-pixel error maps between GTacq and low quality
images.
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GTacq (a, c, e, g) and the GTsyn (b, d, f, h) and the metrics calculated
over the entire image (a, b, ¢, d) and lesion-focused ROI (e, f, g, h).
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Fig. 4. MAE (a, b, e, f) and SSIM (c, d, g, h) of images enhanced by a
DUNet trained with the CLF2 cost function (L1+AxLSSIMw7 where
LSSIM window size is 7), with the GTacq (a, c, e, g) and the GTsyn (b,
d, f, h) and the metrics calculated over the entire image (a, b, c, d)

and lesion-focused ROl (e, f, g, h).
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Fig. 5. The outcomes of enhancing the different Low Quality (LQ) input images (a) with DUNet

trained with the Acquired Ground Truth (GTacq) and the CLF2 (L1+AXLSSIMw7) for (b, ¢) A = 0,

i.e., a plain L1 loss function, and (d, e) with A = 0.5, i.e., a composite loss function of

L1+0.5xLSSIMw7. The difference maps in (c) and (e) are pixel-by-pixel differences of the output
images to the corresponding ground truth, and their brightness is 5 times this of the images. The

horizontal grayscale bar corresponds to all images and different maps.
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Fig. 6. The outcomes of enhancing the different Low Quality (LQ) input images (a) with
DUNet trained with the Synthetic Ground Truth (GTsyn) and the CLF2
(L1+AxLSSIMw?7) for (b, c) A = 0, i.e., a plain L1 loss function, and (d, e) with A = 0.5,
i.e., a composite loss function of L1+0.5xLSSIMw7. The difference maps in (c) and (e)
are pixel-by-pixel differences of the output images to the corresponding ground truth,
and their brightness is 5 times this of the images. The horizontal grayscale bar
corresponds to all images and different maps.
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Fig. 7. Correlation scores (upper triangle matrix) and scatter plots (lower triangle
matrix) for the 9 response variables. The diagonal elements of the matrix exhibit the
distribution plots for the corresponding response variable. Correlation scores € [-1.00,
1.00]; variables with a 1.00 are perfectly correlated, and the interpretation of analysis
on one of the variables will be similar to its other perfectly correlated variable.
Correlation scores are also color coded where red color means a positive correlation
and blue color means a negative correlation.
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Fig. 8. Interaction plots for the mixed-effects model exhibiting how (a) the two factors k and
acquisition protocol (AcqPr), interact with each other for different response variables for the
loss function kxL1+(1-K)*xL1¢,n,, and (b) the three factors, A, SSIM window size (WS), and
acquisition protocol (AcqPr) interact with each other for different response variables when the
loss function was L1+AxLSSIM. For all possible combinations in (a) and (b), the plots report
the predicted value and 95% confidence interval.
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Fig. 9. Comparison of image enhancement with DUNet using different loss functions from the
US-2 AcqPr. Images are enhanced using three different loss functions (a, d) CLF1 (i.e.,
KxL1+(1-K)xL1canny) With k=0.4, (b, e) plain L1 loss function (CLF1, k=1; CLF2, A = 0), and (c,
f) CLF2 (i.e., L1+AxLSSIMw7) with A = 0.5. The arrows and zoomed-in areas highlight
differences in structure when enhancement is done with different loss functions. The lower
rows show zoomed-in regions with error maps relative to the GTacq. The entire image SSIM
value with window size 11 is reported for all cases under the error maps.
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Fig. 10. Comparison of image enhancement with DUNet using different loss functions from
the US-3 AcqPr. Images are enhanced using three different loss functions (a, d) plain L1 loss
function (CLF1, k=1; CLF2, A =0), (b, e) CLF2 (i.e., L1+AxLSSIMw?7) with A = 0.5, and (c, f)
CLF1 (i.e., kxL1+(1-K)*L1¢40ny) With k=0.4. The arrows and zoomed-in areas highlight
differences in structure when enhancement is done with different loss functions. The lower
rows show zoomed-in regions with error maps relative to the GTacqg. The entire image SSIM
value with window size 11 is reported for all cases under the error maps.




Acronyms | Details Cases
Acquisition Protocols (AcqPr) 5
.§ Complete 100% k-space, Nreps=10 per line 1
:% Hat-like 100% k-space, Nreps=9 per line and 10% k-space (central), Nreps=19 per line 1
s US-1 20% central k-space; 20% random k-space; Nreps = 25 per line 1
~ US-2 20% central k-space, Nreps=50 per line 1
US-3 10% central k-space, 10% equidistant lines outside; Nreps=50 perline 1
Loss Functions (LF, CLFys) 24
L1 L1 1
L2 L2 1
,%0 LSSIM SSIM Loss; LSSIM window € [3, 7] 2
5 CLF1 1XL1+H(1-) XL 1 capny K € [0.0 - 0.9; step = 0.1] 10
& CLF2 L1+AXLSSIM; X € [0.0 — 0.5; step = 0.1] and LSSIM window € [3, 7] 10
Ground Truths (GT) 2
GTacq 100% k-space, and Nreps=100 1
GTsyn 100% k-space, Nreps = 1 and empty space signal set to 0 1
§ Metrics Region of Interest (MeROI) 2
§ Entire image Evaluation metrics calculated over the entire image 1
Lesion-focused ROI | Evaluation metrics calculated over the lesion-focused region 1

Table 1. Overview of the five acquisition protocols (AcqPr), the 24 loss functions
(LF), the two ground truths (GT), and the two metrics region of interest (MeROI).
The total cases per group are in bold italics. The evaluation metrics for the 240

(AcqPrxLFxGT) in silico experiments were calculated for the two MeROl,
resulting to 480 cases (AcqPrxLFxGTxMeROI) used in statistical analysis.




Loss Function GTacq GTsyn
Complete Hat-like US-1 Us-2 Us-3 Complete Hat-like US-1 Us-2 USs-3

0.0XL1+1.0XL1canny 0.4653+0.0451 0.0846+0.0311 0.1756+0.0347 0.0849+0.0312 0.4170+0.0450 0.4455+0.0036 0.4471+0.0021 0.4433+0.0455 0.4466+0.0036 0.4472+0.0020

0.1XL1+0.9XL1canny 0.8479+0.0482 0.8508+0.0467 0.8523+0.0445 0.8525+0.0430 0.8249+0.0426 0.9598+0.0095 0.9639+0.0074 0.9641+0.0061 0.9652+0.0048 0.9361+0.0089

0.2XL1+0.8XL1canny 0.8495+0.0475 0.8519+0.0465 0.8534+0.0443 0.8540+0.0425 0.8251+0.0430 0.9603+0.0093 0.9642+0.0075 0.9656+0.0057 0.9656+0.0048 0.9374+0.0090

0.3XL1+0.7XL1canny 0.8486+0.0478 0.8525+0.0462 0.8542+0.0443 0.8530+0.0429 0.8253+0.0427 0.9606+0.0091 0.9638+0.0076 0.9653+0.0058 0.9657+0.0048 0.9353+0.0091

0.4XL1+0.6XL1canny 0.8499+0.0476 0.8523+0.0464 0.8544+0.0441 0.8532+0.0429 0.8261+0.0425 0.9602+0.0091 0.9645+0.0076 0.9644+0.0062 0.9663+0.0048 0.9354+0.0093

0.5XL1+0.5XL1canny 0.8498+0.0475 0.8517+0.0463 0.8529+0.0444 0.8525+0.0429 0.8253+0.0430 0.9599+0.0093 0.9638+0.0076 0.9656+0.0059 0.9665+0.0048 0.9356+0.0089

0.6XL1+0.4XL1canny 0.8496+0.0476 0.8519+0.0466 0.8530+0.0443 0.8535+0.0428 0.8279+0.0427 0.9596+0.0096 0.9635+0.0076 0.9643+0.0059 0.9659+0.0048 0.9364+0.0090

0.7XL1+0.3XL1canny 0.8497+0.0476 0.8528+0.0460 0.8540+0.0441 0.8534+0.0428 0.8257+0.0428 0.9598+0.0094 0.9647+0.0075 0.9655+0.0057 0.9662+0.0047 0.9352+0.0091

0.8XL1+0.2XL1canny 0.8497+0.0476 0.8524+0.0464 0.8542+0.0441 0.8537+0.0427 0.8265+0.0425 0.9602+0.0092 0.9645+0.0075 0.9649+0.0059 0.9663+0.0047 0.9365+0.0091

0.9XL1+0.1XL1canny 0.8499+0.0476 0.85200.0465 0.8531+0.0444 0.8534+0.0429 0.8262+0.0433 0.9603+0.0092 0.9645+0.0074 0.9660+0.0057 0.9663+0.0047 0.9364+0.0088

L1 0.8501+0.0474 0.8516+0.0465 0.8542+0.0442 0.8532+0.0428 0.8244+0.0422 0.9603+0.0093 0.9642+0.0075 0.9657+0.0057 0.9659+0.0048 0.9349+0.0093
L1+0.1XLSSIMw3 0.8508+0.0471 0.8531+0.0459 0.8552+0.0438 0.8547+0.0424 0.8267+0.0423 0.9580+0.0099 0.9633+0.0078 0.9662+0.0057 0.9672+0.0046 0.9323+0.0089
L1+0.2XLSSIMw3 0.8510+0.0472 0.8531+0.0460 0.8549+0.0438 0.8542+0.0425 0.8245+0.0422 0.9609+0.0092 0.9625+0.0080 0.9647+0.0059 0.9665+0.0048 0.9335+0.0089
L1+0.3XLSSIMw3 0.8518+0.0468 0.8538+0.0457 0.8541+0.0438 0.8553+0.0424 0.8269+0.0424 0.9473+0.0126 0.9631+0.0077 0.9548+0.0071 0.9548+0.0056 0.9333+0.0089
L1+0.4XLSSIMw3 0.8510+0.0470 0.8538+0.0458 0.8551+0.0438 0.8538+0.0422 0.8246+0.0424 0.9584+0.0100 0.9627+0.0079 0.9559+0.0071 0.9538+0.0057 0.9340+0.0088
L1+0.5XLSSIMw3 0.8514+0.0468 0.8540+0.0457 0.8551+0.0437 0.8547+0.0422 0.8250+0.0422 0.9484+0.0119 0.9632+0.0077 0.9544+0.0072 0.9546+0.0057 0.9335+0.0089

LSSIMw3 0.8520+0.0465 0.8540+0.0456 0.8553+0.0437 0.8548+0.0422 0.8270+0.0421 0.9579+0.0100 0.9629+0.0078 0.9641+0.0060 0.9642+0.0050 0.9277+0.0092

L1+0.1XLSSIMw7 0.8509+0.0470 0.8537+0.0460 0.8546+0.0440 0.8532+0.0422 0.8279+0.0427 0.9609+0.0092 0.9625+0.0080 0.9667+0.0056 0.9667+0.0047 0.9311=0.0090

L1+0.2XLSSIMw7 0.8508+0.0469 0.8537+0.0458 0.8547+0.0438 0.8537+0.0423 0.8249+0.0425 0.9584+0.0100 0.9624+0.0079 0.9661+0.0058 0.9671+0.0046 0.9324+0.0091

L1+0.3XLSSIMw7 0.8509+0.0470 0.8529+0.0459 0.8546+0.0439 0.8538+0.0424 0.8275+0.0423 0.9579+0.0100 0.9624+0.0081 0.9637+0.0061 0.9642+0.0048 0.9315+0.0089

L1+0.4XLSSIMw7 0.8512+0.0470 0.8543+0.0457 0.8552+0.0437 0.8545+0.0420 0.8258+0.0425 0.9581+0.0098 0.9625+0.0080 0.9638+0.0061 0.9638+0.0051 0.9323+0.0087
L1+0.5XLSSIMw7 0.8515+0.0468 0.8529+0.0459 0.8546+0.0439 0.8542+0.0423 0.8275+0.0424 0.9577+0.0100 0.9629+0.0078 0.9636+0.0061 0.9642+0.0049 0.9327+0.0088
LSSIMw7 0.8515+0.0468 0.8540+0.0455 0.8550+0.0436 0.8545+0.0423 0.8259+0.0423 0.9463+0.0124 0.9625+0.0080 0.9636+0.0060 0.9635+0.0049 0.9317+0.0088

L2 0.8475+0.0473 0.8514+0.0462 0.8526+0.0437 0.8513+0.0415 0.8226+0.0406 0.9576+0.0103 0.9623+0.0080 0.9614+0.0068 0.9627+0.0052 0.9321+0.0089

Table 2. The SSIM window 5 (mean + standard deviation) was calculated over the entire
image for the complete test set (N=516) for all possible combinations of the experiments with
24 loss functions, 5 AcqPr, and 2 GT. Loss functions that belong to the same combination are
color coded together for better visualization: tan rows correspond to kxL1+(1-K)*xL1¢,n, CLF,
blue rows to L1+AxLSSIMw3 CLF, and green rows to L1+AxLSSIMw7 CLF. L1 loss is shared
by all three groups and is reported in the tan rows.



Loss Function GTacq GTsyn

Complete Hat-like Us-1 Us-2 US-3 Complete Hat-like Us-1 Us-2 Us-3

0.0XL1+1.0XL1canny 0.1664+0.0387 0.0014+0.0025 0.0104+0.0150 0.0067+0.0029 0.2774+0.0580 0.0027+0.0088 0.0010+0.0033 0.2158+0.0303 0.0039:+0.0094 0.0009+0.0031

0.1XL1+0.9XL1canny 0.9190+0.0475 0.9182+0.0447 0.9126+0.0484 0.9018+0.0613 0.8490:+0.0846 0.9585+0.0306 0.9588+0.0302 0.9486+0.0390 0.9376+0.0576 0.8797+0.0847

0.2XL1+0.8XL1canny 0.9215+0.0467 0.9175+0.0457 0.9158+0.0473 0.9037+0.0628 0.8463+0.0858 0.9592+0.0314 0.9563+0.0316 0.9537+0.0356 0.9399+0.0561 0.8845+0.0825

0.3XL1+0.7XL1canny 0.9209+0.0459 0.9187+0.0461 0.9169+0.0460 0.9018+0.0610 0.8421+0.0901 0.9590+0.0315 0.9564+0.0319 0.9503+0.0397 0.9362+0.0608 0.8806+0.0844

0.4XL1+0.6XL1canny 0.9225+0.0458 0.9185+0.0464 0.9168+0.0460 0.9026+0.0585 0.8462+0.0878 0.9582+0.0314 0.9589+0.0301 0.9506+0.0370 0.9407+0.0572 0.8797+0.0806

0.5XL1+0.5XL1canny 0.9224+0.0462 0.9178+0.0464 0.9145+0.0471 0.8998+0.0643 0.8437+0.0854 0.9583+0.0311 0.9568+0.0316 0.9544+0.0355 0.9414+0.0572 0.8815+0.0805

0.6XL1+0.4XL1canny 0.9222+0.0463 0.9194+0.0447 0.9147+0.0475 0.9038+0.0592 0.8499+0.0838 0.9581+0.0320 0.9549+0.0337 0.9504+0.0361 0.9399+0.0557 0.8809+0.0828

0.7XL1+0.3XL1canny 0.9220+0.0462 0.9196+0.0462 0.9169+0.0460 0.9041+0.0611 0.8461+0.0846 0.9574+0.0329 0.9577+0.0306 0.9515+0.0368 0.9390+0.0585 0.8789+0.0838

0.8XL1+0.2XL1canny 0.9228+0.0458 0.9199+0.0447 0.9172+0.0465 0.9052+0.0576 0.8457+0.0848 0.9574+0.0326 0.9578+0.0304 0.9515+0.0353 0.9402+0.0569 0.8850+0.0799

0.9XL1+0.1XL1canny 0.9206+0.0475 0.9205+0.0440 0.9149+0.0465 0.9008+0.0614 0.8467+0.0846 0.9595+0.0311 0.9605+0.0270 0.9554+0.0336 0.9416+0.0543 0.8779+0.0839

L1 0.9221+0.0469 0.9187+0.0457 0.9178+0.0446 0.9036+0.0600 0.8395+0.0863 0.9591+0.0313 0.9569+0.0314 0.9527+0.0365 0.9397+0.0560 0.8785+0.0850
L1+0.1XLSSIMw3 0.9223+0.0450 0.9192+0.0457 0.9184+0.0452 0.9031+0.0593 0.8455+0.0843 0.9541+0.0339 0.9530+0.0318 0.9518+0.0364 0.9402+0.0552 0.8552+0.0922
L1+0.2XLSSIMw3 0.9213+0.0466 0.9201+0.0441 0.9166+0.0460 0.9020+0.0626 0.8353+0.0897 0.9433+0.0303 0.9487+0.0345 0.9498+0.0361 0.9399:+0.0562 0.8664+0.0869
L1+0.3XLSSIMw3 0.9225+0.0458 0.9178+0.0457 0.9127+0.0467 0.9043+0.0606 0.8499:+0.0808 0.9393+0.0306 0.9500:£0.0348 0.9284+0.0478 0.9096+0.0774 0.8637+0.0848
L1+0.4XLSSIMw3 0.9213+0.0455 0.9193+0.0438 0.9155+0.0460 0.8999+0.0603 0.8342+0.0872 0.9418+0.0300 0.9514+0.0341 0.9272+0.0487 0.9097+0.0797 0.8728+0.0807
L1+0.5XLSSIMw3 0.9217+0.0459 0.9200:£0.0446 0.9164+0.0454 0.9022+0.0605 0.8421+0.0841 0.9372+0.0306 0.9526+0.0316 0.9274+0.0462 0.9071+0.0809 0.8642+0.0841

LSSIMw3 0.9229+0.0444 0.9182+0.0449 0.9160+0.0461 0.8999+0.0617 0.8506+0.0787 0.9396+0.0306 0.9478+0.0336 0.9459+0.0377 0.9329+0.0590 0.8489+0.0913
L1+0.1XLSSIMw7 0.9220+0.0461 0.9212+0.0447 0.9169+0.0452 0.8992+0.0628 0.8534+0.0822 0.9599+0.0294 0.9511+0.0325 0.9556+0.0333 0.9432+0.0521 0.8604+0.0857
L1+0.2XLSSIMw7 0.9239+0.0444 0.9220+0.0435 0.9173+0.0447 0.8995+0.0606 0.8461+0.0830 0.9555+0.0311 0.9529+0.0314 0.9541+0.0332 0.9421+0.0545 0.8669+0.0889
L1+0.3XLSSIMw7 0.9230+0.0458 0.9181+0.0452 0.9165+0.0458 0.9023+0.0600 0.8486+0.0822 0.9535+0.0321 0.9513+0.0318 0.9463+0.0376 0.9327+0.0593 0.8691+0.0832
L1+0.4XLSSIMw7 0.9220+0.0467 0.9214+0.0434 0.9170+0.0456 0.9031+0.0587 0.8484+0.0819 0.9551+0.0306 0.9523+0.0315 0.9464+0.0375 0.9326+0.0597 0.8685+0.0836
L1+0.5XLSSIMw7 0.9236+0.0438 0.9195+0.0426 0.9165+0.0463 0.9022+0.0602 0.8537+0.0786 0.9511=0.0327 0.9511+0.0330 0.9483+0.0360 0.9322+0.0589 0.8716+0.0821

LSSIMw7 0.9224+0.0456 0.9200£0.0443 0.9177+0.0451 0.9021+0.0583 0.8482+0.0823 0.9426+0.0324 0.9505+0.0316 0.9469+0.0363 0.9313+0.0590 0.8703+0.0832

L2 0.9191+0.0468 0.9199+0.0440 0.9165+0.0460 0.8995+0.0616 0.8463+0.0854 0.9574+0.0299 0.9571+0.0290 0.9471+0.0366 0.9383+0.0550 0.8832+0.0750

Table 3. The SSIM window 5 (mean + standard deviation) was calculated over the lesion
focused ROI for the complete test set (N=516) for all possible combinations of the
experiments with 24 loss functions, 5 AcqPr, and 2 GT. Loss functions that belong to the same
combination are color coded together for better visualization: tan rows correspond to kxL1+(1-
K)*L1canny CLF, blue rows to L1+AxLSSIMw3 CLF, and green rows to L1+AxLSSIMw7 CLF. L1
loss is shared by all three groups and is reported in the tan rows.



Response Variable (F-ratio E)—Value]) (F-rati?)c[cpl)l-)\r/alue]) (F -r:;ti)z)l[ifglf;iue])
MSE 0.33[0.965] | 1388.66 [0.000] 0.19 [1.000]
MAE 0.23 [0.990] 723.07 [0.000] 0.12 [1.000]
PSNR 0.31[0.971] 696.97 [0.000] 0.11 [1.000]
(a) SSIMw11 0.36 [0.950] 562.59 [0.000] 0.11 [1.000]
Response A WS AcqPr Ax WS Ax AcqPr WS x AcqPr Ax WS x AcqPr
Variable (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) [(F-ratio [p-value]) |[(F-ratio [p-value])|(F-ratio [p-value])
MSE 1.42[0.213] 0.14 [0.708] 1834.66 [0.000] 0.43 [0.826] 0.59[0.917] 0.48 [0.748] 0.26 [1.000]
MAE 0.91 [0.467] 0.35[0.550] 941.14 [0.000] 0.22 [0.953] 0.26 [1.000] 0.37[0.826] 0.12 [1.000]
PSNR 0.80 [0.544] 0.44 [0.509] 910.21 [0.000] 0.18 [0.969] 0.18 [1.000] 0.32[0.861] 0.10 [1.000]
(b) SSIMw11 1.19[0.307] 0.14 [0.701] 742.79 [0.000] 0.06 [0.997] 0.25 [1.000] 0.39[0.814] 0.07 [1.000]
Response K AcqPr K X AcqPr
Variable (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value])
MSE 8.96 [0.000] [ 37436.45[0.000] 5.33[0.00]
MAE 15.10 [0.000] | 46815.19 [0.000] 7.97 [0.00]
PSNR 9.66 [0.000] | 21505.09 [0.000] 3.52[0.00]
SSIMw11 46.80 [0.000] | 71357.28 [0.000] 14.49 [0.00]
(€)
Response A WS AcqPr Ax WS Ax AcqPr WS x AcqPr Ax WS x AcqPr
Variable (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value]) | (F-ratio [p-value])
MSE 37.05[0.000] 3.65[0.055] 47825.78 [0.000] 11.27 [0.000] 15.58 [0.000] 12.61 [0.000] 7.01 [0.000]
MAE 60.00 [0.000] 23.39[0.000] 61457.02 [0.000] 14.51 [0.000] 17.250.000] 24.55[0.000] 8.20 [0.000]
PSNR 24.21[0.000] 13.40 [0.000] 27284.21 [0.000] 5.49 [0.000] 5.65 [0.000] 9.73 [0.000] 3.26 [0.000]
SSIMw11 155.68 [0.000] 19.19 [0.000] 96428.73 [0.000] 8.01 [0.000] 33.14 [0.000] 50.96 [0.000] 9.55[0.000]

(d)

Table 4. The F-ratios and p-values (in square brackets) from the f-test performed with
classical ANOVA (a, b) and mixed effects model (c, d) aka repeated measures. (a and c)
report results for DUNet trained on the CLF1 = kxL1+(1-k)xL1s,,,, When investigating the
interaction of explanatory variables k (n = 10; k € [0.1 — 1.0]) and acquisition protocol (AcqPr;
n =5). (b and d) report results for DUNet trained on the CLF2 = L1+AxLSSIM when
investigating the interaction of explanatory variables A (n=6; A € [0.0 — 0.5]), LSSIM window
size (WS; n=2), and acquisition protocol (AcgPr; n=5). Higher F-ratios correspond to lower p-
values and are more statistically significant.



Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 1115.54+231.28 22.70£2.61 29.92+0.33 0.4894+0.0480 0.4653+0.0451 0.4461+0.0420 0.4305+0.0392 0.4168+0.0366 0.4039+0.0340
0.1XL1+0.9XL1 canny 25.90+10.31 3.70+0.75 34.83+1.37 0.8238+0.0525 0.8479+0.0482 0.8680+0.0434 0.8836+0.0392 0.8960+0.0356 0.9061+0.0325
0.2XL1+0.8XL1 canny 25.55+10.06 3.68+0.74 34.88+1.36 0.8253+0.0518 0.8495+0.0475 0.8694:0.0427 0.8849+0.0385 0.8971+0.0350 0.9071+0.0319
0.3XL1+0.7XL1 canny 25.78+10.21 3.69+0.75 34.84+1.37 0.8245+0.0521 0.8486+0.0478 0.8686:+0.0430 0.8841+0.0389 0.8964+0.0353 0.9064+0.0322
0.4XL1+0.6XL1 canny 25.50+10.10 3.68+0.74 34.89+1.37 0.8257+0.0519 0.8499+0.0476 0.8698+0.0428 0.8853+0.0386 0.8974+0.0351 0.9074+0.0320
0.5XL1+0.5XL1 canny 25.48+10.12 3.68+0.74 34.89+1.37 0.8257+0.0519 0.8498+0.0475 0.8698+0.0427 0.8852+0.0385 0.8974+0.0350 0.9073+0.0320
0.6XL1+0.4XL1 canny 25.50+10.16 3.67+£0.75 34.88+1.38 0.8254+0.0520 0.8496+0.0476 0.8696:+0.0428 0.8851+0.0386 0.8973+0.0351 0.9073+0.0320
0.7XL1+0.3XL1 canny 25.57£10.15 3.68+0.74 34.88+1.37 0.8254+0.0520 0.8497+0.0476 0.8697+0.0428 0.8852+0.0386 0.8974+0.0351 0.9074+0.0320
0.8XL1+0.2XL 1 canny 25.53+10.13 3.67+£0.74 34.88+1.38 0.8255+0.0520 0.8497+0.0476 0.8696:+0.0428 0.8851+0.0386 0.8973+0.0351 0.9072+0.0321
0.9XL1+0. XL 1 canny 25.55+10.10 3.68+0.74 34.88+1.37 0.8257+0.0519 0.8499+0.0476 0.8698+0.0428 0.8853+0.0386 0.8974+0.0351 0.9074+0.0320

L1 25.46+10.08 3.67+£0.74 34.89+1.37 0.8258+0.0518 0.8501+0.0474 0.8700+0.0426 0.8855+0.0384 0.8976+0.0349 0.9076+0.0319
L1+0.1XLSSIMw3 25.50+10.09 3.68+0.74 34.89+1.37 0.8263+0.0516 0.8508+0.0471 0.8708+0.0422 0.8863+0.0381 0.8984+0.0346 0.9083+0.0316
L1+0.2XLSSIMw3 25.49+10.14 3.68+0.74 34.89+1.37 0.8265+0.0516 0.8510+0.0472 0.8710+0.0423 0.8864+0.0382 0.8985+0.0347 0.9084+0.0316
L1+0.3XLSSIMw3 25.34+9.96 3.67+0.74 34.91+1.36 0.8272+0.0513 0.8518+0.0468 0.8717+0.0419 0.8869+0.0378 0.8990+0.0343 0.9088+0.0314
L1+0.4XLSSIMw3 25.66+10.13 3.69+0.75 34.87+1.36 0.8264+0.0515 0.8510+0.0470 0.8709+0.0422 0.8863+0.0380 0.8984+0.0345 0.9083+0.0315
L1+0.5XLSSIMw3 25.75+10.11 3.69+0.74 34.85+1.35 0.8268+0.0513 0.8514+0.0468 0.8713+0.0420 0.8866+0.0378 0.8987+0.0343 0.9085+0.0313

LSSIMw3 25.98+10.18 3.71+£0.75 34.82+1.34 0.8273+0.0512 0.8520+0.0465 0.8719+0.0417 0.8872+0.0375 0.8992+0.0340 0.9090+0.0311
L1+0.1XLSSIMw7 25.44+10.06 3.68+0.74 34.89+1.37 0.8264+0.0515 0.8509+0.0470 0.8709+0.0422 0.8863+0.0380 0.8984+0.0345 0.9083+0.0315
L1+0.2XLSSIMw7 25.68+10.09 3.69+0.74 34.86+1.35 0.8262+0.0514 0.8508+0.0469 0.8708+0.0421 0.8862+0.0379 0.8983+0.0344 0.9082+0.0314
L1+0.3XLSSIMw7 25.59+10.13 3.69+0.75 34.87+1.36 0.8263+0.0515 0.8509+0.0470 0.8709+0.0421 0.8864+0.0380 0.8985+0.0345 0.9084+0.0315
L1+0.4XLSSIMw7 25.62+10.11 3.69+0.75 34.87+1.36 0.8266+0.0515 0.8512+0.0470 0.8712+0.0421 0.8866+0.0380 0.8987+0.0345 0.9086+0.0315
L1+0.5XLSSIMw7 25.74+10.15 3.70+0.75 34.85+1.36 0.8267+0.0514 0.8515+0.0468 0.8715+0.0420 0.8868+0.0378 0.8989+0.0343 0.9087+0.0314
LSSIMw7 25.92+10.25 3.71+£0.75 34.83+1.35 0.8268+0.0514 0.8515+0.0468 0.8715+0.0420 0.8869+0.0378 0.8989+0.0343 0.9088+0.0313

L2 26.16+10.30 3.74+0.74 34.79+1.34 0.8231+0.0515 0.8475+0.0473 0.8676+0.0426 0.8833+0.0385 0.8957+0.0350 0.9058+0.0320

SuppTable 1. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet

enhanced images and acquired ground truth (GTacq), when enhancement is performed from complete k-space AcqPr images.

DUNet was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 2305.79+486.59 33.98+3.92 29.19+0.40 0.0931+0.0332 0.0846+0.0311 0.0787+0.0291 0.0732+0.0272 0.0677+0.0252 0.0621+0.0231
0.1XL1+0.9XL1 canny 24.76+9.50 3.64+0.72 34.95+1.35 0.8264+0.0513 0.8508+0.0467 0.8708+0.0419 0.8863+0.0377 0.8985+0.0342 0.9085+0.0311
0.2XL1+0.8XL1 canny 24.59+9.43 3.63+0.71 34.97+1.36 0.8274+0.0511 0.8519+0.0465 0.8719+0.0416 0.8873+0.0374 0.8994+0.0339 0.9093+0.0309
0.3XL1+0.7XL1 canny 24.33+9.36 3.61+0.71 35.01+1.37 0.8279+0.0509 0.8525+0.0462 0.8725+0.0413 0.8878+0.0372 0.8999+0.0337 0.9097+0.0307
0.4XL1+0.6XL1 canny 24.39+9.40 3.61+0.71 35.00+1.37 0.8277+0.0510 0.8523+0.0464 0.8723+0.0416 0.8877+0.0374 0.8998+0.0339 0.9097+0.0309
0.5XL1+0.5XL1 canny 24.58+9.43 3.62+0.71 34.97+1.36 0.8272+0.0509 0.8517+0.0463 0.8717+0.0414 0.8871+0.0373 0.8993+0.0338 0.9092+0.0308
0.6XL1+0.4XL1 canny 24.54+9.48 3.62+0.72 34.98+1.36 0.8273+0.0512 0.8519+0.0466 0.8719+0.0417 0.8873+0.0375 0.8994:0.0340 0.9093+0.0310
0.7XL1+0.3XL1 canny 24.25+9.31 3.60+0.71 35.02+1.37 0.8282+0.0507 0.8528+0.0460 0.8727+0.0412 0.8881+0.0370 0.9001+0.0335 0.9100+0.0305
0.8XL1+0.2XL1 canny 24.45+9.42 3.62+0.71 34.99+1.36 0.8278+0.0510 0.8524+0.0464 0.8723+0.0415 0.8877+0.0374 0.8998+0.0339 0.9096:+0.0309
0.9XL1+0.1XL1canny 24.5749.48 3.62+0.72 34.98+1.36 0.8274+0.0511 0.8520+0.0465 0.8720+0.0416 0.8873+0.0375 0.8995+0.0340 0.9094+0.0310

L1 24.55+9.45 3.62+0.72 34.97+1.36 0.8272+0.0511 0.8516+0.0465 0.8715+0.0417 0.8869+0.0375 0.8991+0.0340 0.9090+0.0310
L1+0.1XLSSIMw3 24.3749.32 3.62+0.71 35.00+1.35 0.8285+0.0507 0.8531+0.0459 0.8730+0.0410 0.8883+0.0369 0.9004+0.0334 0.9102+0.0305
L1+0.2XLSSIMw3 24.4249.37 3.62+0.71 34.99+1.36 0.8284+0.0507 0.8531+0.0460 0.8730+0.0411 0.8883+0.0369 0.9003+0.0335 0.9101+0.0305
L1+0.3XLSSIMw3 24.35+9.30 3.62+0.71 35.00+1.35 0.8289+0.0505 0.8538+0.0457 0.8737+0.0409 0.8889+0.0367 0.9009+0.0333 0.9106+0.0303
L1+0.4XLSSIMw3 24.3749.37 3.62+0.72 35.00+1.36 0.8289+0.0506 0.8538+0.0458 0.8737+0.0409 0.8889+0.0368 0.9009+0.0333 0.9107+0.0303
L1+0.5XLSSIMw3 24.51+£9.41 3.63+0.72 34.98+1.36 0.8290+0.0505 0.8540+0.0457 0.8739+0.0408 0.8891+0.0367 0.9010+0.0332 0.9108+0.0303

LSSIMw3 24.53+9.35 3.63+0.71 34.97+1.34 0.8292+0.0505 0.8540+0.0456 0.8739+0.0407 0.8892+0.0366 0.9011+0.0332 0.9109+0.0302
L1+0.1XLSSIMw7 24.3349.39 3.62+0.72 35.01£1.37 0.8287+0.0508 0.8537+0.0460 0.8737+0.0410 0.8890+0.0369 0.9010+0.0334 0.9107+0.0304
L1+0.2XLSSIMw7 24.53+9.42 3.63+0.72 34.98+1.35 0.8287+0.0506 0.8537+0.0458 0.8737+0.0409 0.8890+0.0367 0.9010+0.0332 0.9108+0.0303
L1+0.3XLSSIMw7 24.56+9.41 3.63+0.72 34.98+1.35 0.8280+0.0507 0.8529+0.0459 0.8730+0.0410 0.8884+0.0369 0.9004+0.0334 0.9103+0.0304
L1+0.4XLSSIMw7 24.46+9.37 3.62+0.72 34.99+1.35 0.8292+0.0505 0.8543+0.0457 0.8742+0.0408 0.8894+0.0367 0.9013+0.0332 0.9111+0.0302
L1+0.5XLSSIMw7 24.73+9.42 3.64+0.72 34.95+1.34 0.8280+0.0506 0.8529+0.0459 0.8729+0.0410 0.8882+0.0369 0.9002+0.0334 0.9100+0.0305
LSSIMw7 25.3249.57 3.68+0.72 34.86+1.31 0.8289+0.0503 0.8540+0.0455 0.8740+0.0406 0.8893+0.0364 0.9012+0.0330 0.9109+0.0300

L2 24.74+9.45 3.65+0.72 34.94+1.34 0.8266+0.0508 0.8514+0.0462 0.8715+0.0413 0.8869+0.0372 0.8991+0.0337 0.9090+0.0307

SuppTable 2. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet

images and acquired ground truth (GTacq), when enhancement is performed from hat-like k-space AcqPr images. DUNet was

trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 2184.68+459.23 32.5743.77 29.39+0.38 0.1933+0.0365 0.1756+0.0347 0.1619+0.0325 0.1497+0.0303 | 0.1383+0.0280 | 0.1271+0.0257
0.1XL1+0.9XL1 canny 23.97+8.80 3.59+0.68 35.03+1.30 0.8274+0.0495 0.8523+0.0445 0.8728+0.0397 0.8884+0.0357 | 0.9006+0.0324 | 0.9104+0.0295
0.2XL1+0.8XL1 canny 23.62+8.72 3.57+0.68 35.09+1.32 0.8284+0.0493 0.8534+0.0443 0.8738+0.0394 0.8894+0.0354 | 0.9015+0.0321 | 0.9113+0.0292
0.3XL1+0.7XL1 canny 23.50+8.70 3.56+0.68 35.10+1.32 0.8291+0.0493 0.8542+0.0443 0.8745+0.0395 0.8899+0.0355 | 0.9019+0.0322 | 0.9116+0.0293
0.4XL1+0.6XL1 canny 23.50+8.69 3.56+0.68 35.11+1.32 0.8292+0.0492 0.8544+0.0441 0.8747+0.0393 0.8902+0.0353 | 0.9022+0.0320 | 0.9119+0.0291
0.5XL1+0.5XL1 canny 23.75+8.75 3.57+0.68 35.06+1.31 0.8278+0.0494 0.8529+0.0444 0.8733+0.0396 0.8890+0.0356 | 0.9011+0.0322 | 0.9109+0.0293
0.6XL1+0.4XL1 canny 23.74+8.73 3.57+0.68 35.07+1.31 0.8279+0.0493 0.8530+0.0443 0.8734+0.0395 0.8890+0.0355 | 0.9011+0.0322 | 0.9109+0.0293
0.7XL1+0.3XL1 canny 23.53+8.68 3.56+0.68 35.10+1.31 0.8288+0.0492 0.8540+0.0441 0.8743+0.0393 0.8898+0.0354 | 0.9019+0.0320 | 0.9116+0.0292
0.8 XL1+0.2XL1 canny 23.46+8.65 3.56+0.68 35.11+1.32 0.8291+0.0492 0.8542+0.0441 0.8745+0.0393 0.8900+0.0354 | 0.9020+0.0320 | 0.9117+0.0292
0.9XL1+0.1XL1 canny 23.85+8.77 3.58+0.68 35.05+1.31 0.8280+0.0494 0.8531+0.0444 0.8735+0.0396 0.8891+0.0356 | 0.9012+0.0323 | 0.9110+0.0294

L1 23.55+8.69 3.56+0.68 35.10+1.32 0.8290+0.0492 0.8542+0.0442 0.8746+0.0394 0.8901+0.0354 | 0.9021+0.0321 | 0.9118+0.0292
L1+0.1XLSSIMw3 23.45+8.63 3.56+0.68 35.11+1.31 0.8298+0.0490 0.8552+0.0438 0.8755+0.0390 0.8909+0.0350 | 0.9028+0.0317 | 0.9124+0.0289
L1+0.2XLSSIMw3 23.57+8.68 3.57+0.68 35.09+1.31 0.8295+0.0490 0.8549+0.0438 0.8753+0.0390 0.8907+0.0350 | 0.9027+0.0317 | 0.9124+0.0289
L1+0.3XLSSIMw3 23.82+8.71 3.59+0.68 35.06+1.30 0.8288+0.0489 0.8541+0.0438 0.8746+0.0389 0.8902+0.0350 | 0.9022+0.0317 | 0.9120+0.0288
L1+0.4XLSSIMw3 23.7748.70 3.58+0.68 35.06+1.30 0.8295+0.0489 0.8551+0.0438 0.8754+0.0389 0.8908+0.0350 | 0.9028+0.0317 | 0.9124+0.0288
L1+0.5XLSSIMw3 23.76+8.74 3.58+0.68 35.07+1.30 0.8296+0.0489 0.8551+0.0437 0.8755+0.0389 0.8909+0.0349 | 0.9029+0.0316 | 0.9125+0.0288

LSSIMw3 23.82+8.76 3.59+0.68 35.05+1.30 0.8297+0.0488 0.8553+0.0437 0.8756+0.0388 0.8910+0.0348 | 0.9030+0.0315 | 0.9126+0.0287
L1+0.1XLSSIMw7 23.59+8.71 3.57+0.68 35.09+1.31 0.8292+0.0491 0.8546+0.0440 0.8749+0.0392 0.8904+0.0352 [ 0.9024+0.0319 | 0.9121+0.0290
L1+0.2XLSSIMw7 23.7248.72 3.5840.68 35.07+1.31 0.8292+0.0489 0.8547+0.0438 0.8750+0.0389 0.8905+0.0350 | 0.9025+0.0317 | 0.9122+0.0288
L1+0.3XLSSIMw7 23.72+8.70 3.5840.68 35.07+1.30 0.8291+0.0491 0.8546+0.0439 0.8750+0.0390 0.8905+0.0351 | 0.9025+0.0317 | 0.9122+0.0289
L1+0.4XLSSIMw7 23.80+8.74 3.59+0.68 35.06+1.30 0.8296+0.0489 0.8552+0.0437 0.8756+0.0389 0.8910+0.0349 | 0.9029+0.0316 | 0.9126+0.0288
L1+0.5XLSSIMw7 23.83+8.77 3.59+0.68 35.05+1.30 0.8291+0.0491 0.8546+0.0439 0.8750+0.0390 0.8905+0.0351 | 0.9025+0.0317 | 0.9122+0.0289
LSSIMw7 24.42+8.94 3.63£0.69 34.97+1.28 0.8294+0.0489 0.8550+0.0436 0.8754+0.0388 0.8909+0.0348 | 0.9029+0.0315 | 0.9125+0.0287

L2 23.88+8.70 3.60+0.68 35.04+1.29 0.8271+0.0488 0.8526+0.0437 0.8732+0.0390 0.8889+0.0350 | 0.9011+0.0317 | 0.9109+0.0289

SuppTable 3. Evaluation metrics (mean+standard deviation) calculated for entire image on entire test set (N=516) between DUNet

image and acquired ground truth (GTacq), when enhancement is performed from US-1 undersampled AcqPr images. DUNet was

trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMw5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1lcanny | 2256.60+476.77 33.65+3.89 29.1840.40 | 0.0942+0.0334 0.0849+0.0312 | 0.0786+0.0293 | 0.0729+0.0273 0.0675+0.0253 0.0620+0.0233
0.1XL1+0.9XL1 canny 23.71£8.35 3.56+0.66 35.09+1.27 | 0.8270+0.0482 0.8525+0.0430 | 0.873440.0383 | 0.8892+0.0344 0.9013+0.0312 0.9111+0.0284
0.2XL1+0.8XL1canny 23.47+8.25 3.55+0.65 35.13£1.27 | 0.8283+0.0478 0.8540+0.0425 | 0.8748+0.0378 | 0.8905+0.0339 0.9025+0.0307 0.9122+0.0279
0.3XL1+0.7XL1 canny 23.57+8.29 3.55+0.65 35.1141.27 | 0.8275+0.0481 0.8530+0.0429 | 0.8738+0.0382 | 0.8896+0.0343 0.9017+0.0311 0.9115+0.0283
0.4XL1+0.6XL1canny 23.56+8.31 3.55+0.65 35.1241.27 | 0.8276+0.0481 0.8532+0.0429 | 0.8741+0.0381 0.8899+0.0343 0.9020+0.0310 0.9118+0.0282
0.5XL1+0.5XL1 canny 23.85+8.41 3.57+0.66 35.08+1.26 | 0.8269+0.0481 0.8525+0.0429 | 0.873440.0382 | 0.8893+0.0343 0.9015+0.0310 0.9113+0.0282
0.6XL1+0.4XL1canny 23.57+8.32 3.55+0.66 35.1141.27 | 0.8278+0.0481 0.8535+0.0428 | 0.8743+0.0381 0.8901+0.0342 0.9022+0.0310 0.9119+0.0282
0.7XL1+0.3XL1canny 23.54+8.29 3.55+0.66 35.11£1.27 | 0.8279+0.0480 0.8534+0.0428 | 0.8742+0.0380 | 0.8900+0.0342 0.9020+0.0309 0.9118+0.0282
0.8XL1+0.2XL1canny 23.51+8.31 3.55+0.66 35.1241.27 |  0.8280+0.0480 0.8537+0.0427 | 0.8745+0.0380 | 0.8903+0.0341 0.9024+0.0309 0.9121+0.0281
0.9XL1+0.1XL1canny 23.64+8.36 3.56+0.65 35.10+£1.27 | 0.8277+0.0480 0.8534+0.0429 | 0.8743+0.0381 0.8901+0.0342 0.9022+0.0310 0.9119+0.0282

L1 23.58+8.34 3.55+0.66 35.1141.27 | 0.8276+0.0481 0.8532+0.0428 | 0.8741+0.0381 0.8900+0.0342 0.9021+0.0310 0.9119+0.0282
L1+0.1XLSSIMw3 23.37+8.24 3.55+0.66 35.14+1.28 | 0.8288+0.0477 0.8547+0.0424 | 0.8755+0.0376 | 0.8912+0.0337 0.9032+0.0305 0.9129+0.0278
L1+0.2XLSSIMw3 23.52+8.27 3.55+0.65 35.1241.26 |  0.8284+0.0477 0.8542+0.0425 | 0.8750+0.0377 | 0.8907+0.0339 0.9028+0.0307 0.9125+0.0279
L1+0.3XLSSIMw3 23.35+8.29 3.54+0.66 35.15£1.28 | 0.8294+0.0478 0.8553+0.0424 | 0.8761+0.0377 | 0.8917+0.0338 0.9037+0.0306 0.9133+0.0278
L1+0.4XLSSIMw3 23.78+8.28 3.57+0.65 35.08+1.25 | 0.8280+0.0475 0.8538+0.0422 | 0.8747+0.0375 | 0.8905+0.0337 0.9026+0.0305 0.9123+0.0277
L1+0.5XLSSIMw3 23.54+8.24 3.56+0.65 35.1141.26 |  0.8288+0.0475 0.8547+0.0422 | 0.8755+0.0375 | 0.8912+0.0337 0.9032+0.0305 0.9128+0.0277

LSSIMw3 24.03+8.45 3.59+0.66 35.04+1.25 | 0.8288+0.0476 0.8548+0.0422 | 0.8756+0.0375 | 0.8913+0.0336 0.9033+0.0304 0.9130+0.0276
L1+0.1XLSSIMw7 23.75+8.29 3.58+0.65 35.09+£1.25 | 0.8274+0.0475 0.853240.0422 | 0.8742+0.0375 | 0.8901+0.0337 0.9022+0.0305 0.9120+0.0277
L1+0.2XLSSIMw7 23.81+8.30 3.58+0.66 35.08+1.25 | 0.8278+0.0476 0.8537+0.0423 | 0.8747+0.0376 | 0.8905+0.0337 0.9026+0.0305 0.9123+0.0278
L1+0.3XLSSIMw7 23.91+8.39 3.59+0.66 35.06+1.25 | 0.8278+0.0477 0.8538+0.0424 | 0.8748+0.0376 | 0.8906+0.0338 0.9027+0.0306 0.9124+0.0278
L1+0.4XLSSIMw7 23.68+8.30 3.57+0.65 35.09+1.25 [ 0.8284+0.0473 0.8545+0.0420 | 0.8754+0.0373 [ 0.8911+0.0334 0.9031+0.0303 0.9127+0.0275
L1+0.5XLSSIMw7 23.78+8.35 3.58+0.66 35.0841.25 [ 0.8282+0.0476 0.8542+0.0423 | 0.8752+0.0375 | 0.8910+0.0337 0.9030+0.0305 0.9127+0.0277
LSSIMw7 24.15+£8.45 3.60+0.66 35.0241.25 | 0.8285+0.0476 0.8545+0.0423 | 0.8754+0.0375 | 0.8911+0.0336 0.9031+0.0304 0.9128+0.0277

L2 24.06+8.22 3.61+0.64 35.03+1.21 | 0.8254+0.0467 0.8513+£0.0415 | 0.8725+0.0369 | 0.8885+0.0331 0.9008+0.0300 0.9107+0.0273

SuppTable 4. Evaluation metrics (mean+standard deviation) calculated for entire image on entire test set (N=516) between DUNet
images and acquired ground truth (GTacq), when enhancement is performed from US-2 undersampled AcqPr images. DUNet was
trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.



Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 941.48+195.48 21.56+2.50 29.70+0.36 0.4385+0.0483 0.4170+0.0450 0.4075+0.0417 0.4031+0.0387 0.4010+0.0359 0.3999+0.0333
0.1XL1+0.9XL1 canny 35.24+10.57 4.18+0.66 33.99+0.90 0.8064+0.0474 0.8249+0.0426 0.8443+0.0383 0.8613+0.0347 0.8755+0.0316 0.8874+0.0288
0.2XL1+0.8XL1canny 35.48+10.68 4.18+0.67 33.98+0.90 0.8065+0.0478 0.8251+0.0430 0.8445+0.0387 0.8614+0.0350 0.8756+0.0319 0.8875+0.0292
0.3XL1+0.7XL1canny 35.23+10.55 4.18+0.66 34.00+0.90 0.8067+0.0474 0.8253+0.0427 0.8446+0.0383 0.8615+0.0347 0.8757+0.0316 0.8876+0.0289
0.4XL1+0.6XL1canny 35.08+10.43 4.17+0.66 34.00+0.90 0.8073+0.0474 0.8261+0.0425 0.8456+0.0381 0.8625+0.0345 0.8766+0.0315 0.8883+0.0288
0.5XL1+0.5XL1canny 35.19+10.56 4.17+0.66 34.00+0.90 0.8068+0.0478 0.8253+0.0430 0.8446+0.0386 0.8615+0.0350 0.8757+0.0319 0.8875+0.0291
0.6XL1+0.4XL1canny 34.39+10.35 4.13£0.66 34.06+0.91 0.8089+0.0476 0.8279+0.0427 0.8473+0.0383 0.8641+0.0346 0.8781+0.0315 0.8897+0.0288
0.7XL1+0.3XL1canny 35.37+10.65 4.18+0.67 33.99+0.90 0.8070+0.0476 0.8257+0.0428 0.8452+0.0384 0.8621+0.0348 0.8763+0.0317 0.8881+0.0290
0.8XL1+0.2XL1canny 35.01+10.40 4.16+0.66 34.01+0.90 0.8077+0.0474 0.8265+0.0425 0.8460+0.0381 0.8629+0.0345 0.8770+0.0314 0.8887+0.0287
0.9XL1+0.1XL1canny 35.04+10.60 4.16+0.67 34.01+0.92 0.8074+0.0481 0.8262+0.0433 0.8457+0.0389 0.8626+0.0352 0.8768+0.0321 0.8886+0.0293

L1 35.61+10.50 4.21£0.65 33.96+0.88 0.8058+0.0470 0.8244+0.0422 0.8438+0.0378 0.8608+0.0342 0.8750+0.0312 0.8869+0.0285
L1+0.1XLSSIMw3 35.08+10.44 4.17+0.66 34.00+0.89 0.8079+0.0473 0.8267+0.0423 0.8461+0.0379 0.8630+0.0343 0.8770+0.0312 0.8888+0.0286
L1+0.2XLSSIMw3 36.21+10.68 4.23+0.66 33.92+0.86 0.8060+0.0472 0.8245+0.0422 0.8438+0.0379 0.8607+0.0343 0.8750+0.0312 0.8868+0.0286
L1+0.3XLSSIMw3 35.04+10.47 4.18+0.66 34.00+0.89 0.8081+0.0473 0.8269+0.0424 0.8462+0.0380 0.8630+0.0344 0.8771+0.0313 0.8888+0.0286
L1+0.4XLSSIMw3 36.49+10.80 4.24+0.67 33.92+0.87 0.8062+0.0474 0.8246+0.0424 0.8439+0.0381 0.8608+0.0345 0.8750+0.0315 0.8869+0.0288
L1+0.5XLSSIMw3 36.57+10.80 4.25+0.67 33.90+0.86 0.8063+0.0472 0.8250+0.0422 0.8445+0.0379 0.8615+0.0343 0.8756+0.0312 0.8874+0.0286

LSSIMw3 35.88+10.70 4.22+0.67 33.95+0.88 0.8079+0.0471 0.8270+0.0421 0.8464+0.0377 0.8632+0.0341 0.8773+0.0311 0.8890+0.0284
L1+0.1XLSSIMw7 34.89+10.60 4.17+0.67 34.03+0.91 0.8086+0.0476 0.8279+0.0427 0.8473+0.0383 0.8641+0.0347 0.8781+0.0316 0.8898+0.0289
L1+0.2XLSSIMw7 36.53+10.81 4.2440.67 33.91+0.87 0.8064+0.0474 0.8249+0.0425 0.8443+0.0381 0.8613+0.0345 0.8755+0.0314 0.8874+0.0288
L1+0.3XLSSIMw7 35.46+10.54 4.20+0.67 33.97+0.89 0.8081+0.0473 0.8275+0.0423 0.8471+0.0378 0.8640+0.0342 0.8781+0.0311 0.8898+0.0284
L1+0.4XLSSIMw7 35.91+10.70 4.2140.67 33.94+0.88 0.8070+0.0475 0.8258+0.0425 0.8451+0.0381 0.8621+0.0345 0.8763+0.0314 0.8881+0.0287
L1+0.5XLSSIMw7 35.23+10.55 4.1840.67 33.99+0.89 0.8083+0.0474 0.8275+0.0424 0.8470+0.0380 0.8638+0.0344 0.8779+0.0313 0.8896+0.0286
LSSIMw7 37.45+11.16 4.31£0.68 33.81+0.86 0.8069+0.0472 0.8259+0.0423 0.8454+0.0379 0.8623+0.0343 0.8764+0.0312 0.8882+0.0285

L2 35.54+10.44 4.24+0.64 33.93+0.86 0.8038+0.0454 0.8226+0.0406 0.8422+0.0363 0.8593+0.0328 0.8737+0.0299 0.8857+0.0273

SuppTable 5. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet
images and Acquired ground truth (GTacq), when enhancement is performed from US-3 undersampled AcqPr images. DUNet was
trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMw5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 2268.27+477.17 31.19+3.56 30.35+0.13 0.4686+0.0038 0.4455+0.0036 0.4202+0.0037 0.3932+0.0040 0.3649+0.0044 0.3350+0.0049
0.1XL1+0.9XL1 canny 10.78+3.61 1.73+0.28 38.41+1.21 0.9570+0.0091 0.9598+0.0095 0.9656+0.0087 0.9704+0.0079 0.9740+0.0071 0.9767+0.0066
0.2XL1+0.8XL1canny 10.68+3.55 1.72+0.28 38.45+1.20 0.9575+0.0089 0.9603+0.0093 0.9660+0.0086 0.9707+0.0077 0.9743+0.0071 0.9770+0.0065
0.3XL1+0.7XL1 canny 10.58+3.50 1.71+0.28 38.48+1.19 0.9579+0.0088 0.9606+0.0091 0.9662+0.0084 0.9710+0.0076 0.9745+0.0069 0.9771+0.0064
0.4XL1+0.6XL1canny 10.70+3.54 1.72+0.28 38.44+1.19 0.9573+0.0088 0.9602+0.0091 0.9659+0.0084 0.9707+0.0076 0.9743+0.0069 0.9769+0.0064
0.5XL1+0.5XL1 canny 10.72+3.57 1.72+0.28 38.45+1.19 0.9572+0.0089 0.9599+0.0093 0.9657+0.0085 0.9705+0.0077 0.9741+0.0070 0.9767+0.0065
0.6XL1+0.4XL1canny 10.83+3.67 1.73+0.29 38.40+1.21 0.9568+0.0092 0.9596+0.0096 0.9654+0.0088 0.9703+0.0080 0.9739+0.0072 0.9766+0.0067
0.7XL1+0.3XL1canny 10.77+£3.64 1.73+0.29 38.42+1.21 0.9571+0.0090 0.9598+0.0094 0.9656+0.0087 0.9704+0.0078 0.9740+0.0071 0.9767+0.0066
0.8XL1+0.2XL1canny 10.72+3.55 1.72+0.28 38.43+1.19 0.9573+0.0089 0.9602+0.0092 0.9659+0.0085 0.9707+0.0077 0.9743+0.0070 0.9770+0.0064
0.9XL1+0.1XL1canny 10.66+3.55 1.72+0.28 38.46+1.20 0.9576+0.0088 0.9603+0.0092 0.9660+0.0084 0.9708+0.0076 0.9743+0.0069 0.9770+0.0064

L1 10.67+3.59 1.72+0.28 38.45+1.21 0.9575+0.0090 0.9603+0.0093 0.9661+0.0085 0.9708+0.0077 0.9744+0.0070 0.9771+0.0064
L1+0.1XLSSIMw3 11.29+3.76 1.78+0.29 38.21+1.21 0.9551+0.0094 0.9580+0.0099 0.9640+0.0091 0.9690+0.0083 0.9728+0.0075 0.9756+0.0069
L1+0.2XLSSIMw3 10.54+3.51 1.71+0.28 38.48+1.21 0.9580+0.0089 0.9609+0.0092 0.9666+0.0085 0.9713+0.0076 0.9748+0.0070 0.9774+0.0064
L1+0.3XLSSIMw3 14.08+4.71 2.02+0.34 37.35+1.18 0.9445+0.0117 0.9473+0.0126 0.9545+0.0118 0.9608+0.0106 0.9656+0.0096 0.9691+0.0088
L1+0.4XLSSIMw3 11.17+£3.76 1.77+0.30 38.24+1.22 0.9553+0.0096 0.9584+0.0100 0.9645+0.0092 0.9695+0.0083 0.9733+0.0075 0.9760+0.0069
L1+0.5XLSSIMw3 14.00+4.54 2.02+0.33 37.35+1.16 0.9458+0.0111 0.9484+0.0119 0.9554+0.0111 0.9615+0.0101 0.9662+0.0091 0.9696+0.0084

LSSIMw3 11.34+3.78 1.7940.30 38.18+1.22 0.9548+0.0096 0.9579+0.0100 0.9640+0.0092 0.9691+0.0083 0.9729+0.0075 0.9757+0.0069
L1+0.1XLSSIMw7 10.5443.51 1.7140.28 38.48+1.21 0.9580+0.0089 0.9609+0.0092 0.9666+0.0085 0.9713+0.0076 0.9748+0.0070 0.9774+0.0064
L1+0.2XLSSIMw7 11.1743.76 1.77+0.30 38.24+1.22 0.9553+0.0096 0.9584+0.0100 0.9645+0.0092 0.9695+0.0083 0.9733+0.0075 0.9760+0.0069
L1+0.3XLSSIMw7 11.34+3.78 1.79+0.30 38.18+1.22 0.9548+0.0096 0.9579+0.0100 0.9640+0.0092 0.9691+0.0083 0.9729+0.0075 0.9757+0.0069
L1+0.4XLSSIMw7 11.2943.76 1.7840.29 38.20+1.21 0.9551+0.0094 0.9581+0.0098 0.9642+0.0091 0.9692+0.0082 0.9730+0.0074 0.9758+0.0068
L1+0.5XLSSIMw7 11.40+3.81 1.80+0.30 38.15+1.22 0.9545+0.0096 0.9577+0.0100 0.9639+0.0092 0.9690+0.0083 0.9728+0.0075 0.9756+0.0069
LSSIMw7 14.77+4.67 2.09+0.33 37.10£1.12 0.9437+0.0114 0.9463+0.0124 0.9535+£0.0116 0.9599+0.0105 0.9648+0.0095 0.9684+0.0087

L2 11.36+3.85 1.80+0.30 38.15+1.21 0.9547+0.0099 0.9576+0.0103 0.9636+0.0094 0.9687+0.0085 0.9725+0.0077 0.9754+0.0071

SuppTable 6. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet
images and synthetic ground truth (GTsyn), when enhancement is performed from complete k-space AcqPrimages. DUNet was
trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.



Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 2269.81+477.30 31.18+3.55 30.36+0.13 0.4718+0.0018 0.4471+0.0021 0.4210+0.0026 0.3937+0.0032 0.3649+0.0037 0.3348+0.0043
0.1XL14+0.9XL 1 canny 9.40+2.77 1.62+0.24 38.85+1.11 0.9609+0.0074 0.9639+0.0074 0.9694:0.0067 0.9739+0.0059 0.9772+0.0053 0.9797+0.0049
0.2XL1+0.8XL 1 canny 9.30+2.77 1.61+0.24 38.89+1.12 0.9612+0.0075 0.9642+0.0075 0.9696+0.0068 0.9741+0.0060 0.9775+0.0054 0.9799+0.0050
0.3XL1+0.7XL1 canny 9.42+2 81 1.62+0.24 38.85+1.12 0.9607+0.0076 0.9638+0.0076 0.9693+0.0069 0.9739+0.0061 0.9772+0.0055 0.9797+0.0050
0.4XL1+0.6XL1 canny 9.25+2.77 1.61+0.24 38.92+1.12 0.9614+0.0076 0.9645+0.0076 0.9699+0.0068 0.9744+0.0060 0.9777+0.0054 0.9802+0.0049
0.5XL1+0.5XL1 canny 9.46+2.85 1.63+0.24 38.83+1.12 0.9607+0.0077 0.9638+0.0076 0.9693+0.0069 0.9739+0.0061 0.9772+0.0055 0.9797+0.0050
0.6XL1+0.4XL1 canny 9.49+2.83 1.63+0.24 38.82+1.12 0.9606+0.0075 0.9635+0.0076 0.9690+0.0068 0.9735+0.0061 0.9769+0.0055 0.9795+0.0050
0.7XL1+0.3XL1 canny 9.2242.77 1.61+0.24 38.93+1.13 0.9617+0.0074 0.9647+0.0075 0.9701+0.0067 0.9745+0.0060 0.9778+0.0054 0.9802+0.0049
0.8XL1+0.2XL1 canny 9.30+2.81 1.61+0.24 38.90+1.12 0.9614+0.0075 0.9645+0.0075 0.9699+0.0067 0.9744+0.0060 0.9777+0.0054 0.9801+0.0049
0.9XL1+0.1XL1 canny 9.23+2.76 1.61+0.24 38.92+1.12 0.9615+0.0074 0.9645+0.0074 0.9700+0.0067 0.9744+0.0059 0.9777+0.0053 0.9802+0.0049

L1 9.31£2.77 1.61+0.24 38.89+1.12 0.9612+0.0074 0.9642+0.0075 0.9696+0.0067 0.9741+0.0060 0.9775+0.0054 0.9799+0.0049
L1+0.1XLSSIMw3 9.62+2.86 1.65+0.24 38.76+1.13 0.9601+0.0078 0.9633+0.0078 0.9689+0.0070 0.9735+0.0062 0.9769+0.0056 0.9794+0.0051
L1+0.2XLSSIMw3 9.83+£2.93 1.67+0.25 38.67+1.13 0.9593+0.0080 0.9625+0.0080 0.9682+0.0072 0.9729+0.0064 0.9764+0.0057 0.9789+0.0052
L1+0.3XLSSIMw3 9.71£2.89 1.66+0.25 38.72+1.13 0.9600+0.0077 0.9631+0.0077 0.9687+0.0069 0.9733+0.0062 0.9768+0.0055 0.9793+0.0051
L1+0.4XLSSIMw3 9.77+£2.91 1.66+0.25 38.69+1.13 0.9595+0.0079 0.9627+0.0079 0.9684+0.0071 0.9731+0.0063 0.9765+0.0057 0.9791+0.0052
L1+0.5XLSSIMw3 9.68+2.86 1.65+0.24 38.73+1.12 0.9600+0.0077 0.9632+0.0077 0.9689+0.0069 0.9735+0.0062 0.9769+0.0055 0.9795+0.0050

LSSIMw3 9.81+2.89 1.67+0.25 38.67+1.12 0.9598+0.0078 0.9629+0.0078 0.9685+0.0070 0.9732+0.0062 0.9766+0.0056 0.9791+0.0051
L1+0.1XLSSIMw7 9.81+£2.93 1.67+0.25 38.68+1.13 0.9594+0.0079 0.9625+0.0080 0.9682+0.0072 0.9729+0.0064 0.9764+0.0057 0.9790+0.0052
L1+0.2XLSSIMw7 9.84+2.93 1.67+0.25 38.66+1.13 0.9594+0.0079 0.9624+0.0079 0.9681+0.0072 0.9728+0.0064 0.9763+0.0057 0.9789+0.0052
L1+0.3XLSSIMw7 9.86+2.94 1.67+0.25 38.66+1.13 0.9592+0.0080 0.9624+0.0081 0.9682+0.0073 0.9729+0.0064 0.9764+0.0058 0.9790+0.0053
L1+0.4XLSSIMw7 9.88+2.94 1.68+0.25 38.64+1.13 0.9593+0.0079 0.9625+0.0080 0.9682+0.0072 0.9730+0.0064 0.9765+0.0057 0.9790+0.0052
L1+0.5XLSSIMw7 9.75+2.89 1.66+0.25 38.70+1.12 0.9597+0.0078 0.9629+0.0078 0.9686+0.0071 0.9733+0.0063 0.9767+0.0056 0.9793+0.0051
LSSIMw7 9.90+2.95 1.68+0.25 38.62+1.13 0.9592+0.0080 0.9625+0.0080 0.9683+0.0072 0.9730+0.0064 0.9765+0.0057 0.9790+0.0052

L2 9.84+2.96 1.68+0.25 38.63+1.13 0.9592+0.0079 0.9623+0.0080 0.9680+0.0072 0.9727+0.0064 0.9762+0.0058 0.9788+0.0053

SuppTable 7. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet

images and Synthetic ground truth (GTsyn), when enhancement is performed from hat-like kspace AcqPr images. DUNet was

trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny | 1254.74+263.88 23.87+2.74 30.33+0.13 0.4631+0.0463 0.4433+0.0455 0.4315+0.0434 0.4219+0.0409 0.4122+0.0381 0.4024+0.0352
0.1XL1+0.9XL1 canny 8.98+2.41 1.57+0.21 39.06+0.98 0.9606+0.0065 0.9641+0.0061 0.9701+0.0053 0.9750+0.0046 0.9784+0.0041 0.9808+0.0038
0.2XL1+0.8XL1canny 8.59+2.25 1.5440.20 39.22+40.97 0.9621+0.0061 0.9656+0.0057 0.9715+0.0050 0.9761+0.0044 0.9794+0.0039 0.9817+0.0036
0.3XL1+0.7XL1 canny 8.67+2.30 1.55+0.20 39.18+0.98 0.9617+0.0062 0.9653+0.0058 0.9712+0.0050 0.9759+0.0044 0.9792+0.0040 0.9815+0.0036
0.4XL1+0.6XL1canny 8.90+2.42 1.57+0.21 39.09+1.00 0.9609+0.0066 0.9644:+0.0062 0.9704+0.0054 0.9752+0.0047 0.9786+0.0042 0.9810+0.0038
0.5XL1+0.5XL1canny 8.56+2.28 1.5440.20 39.24+0.99 0.9621+0.0062 0.9656+0.0059 0.9715+0.0051 0.9761+0.0044 0.9794+0.0040 0.9817+0.0036
0.6XL1+0.4XL1canny 8.97+2.35 1.58+0.20 39.04+0.97 0.9606+0.0063 0.9643+0.0059 0.9704+0.0051 0.9753+0.0045 0.9787+0.0040 0.9811+0.0037
0.7XL1+0.3XL1 canny 8.60+2.27 1.5440.20 39.23+0.98 0.9620+0.0061 0.9655+0.0057 0.9714+0.0050 0.9760+0.0044 0.9794+0.0039 0.9817+0.0036
0.8XL1+0.2XL1canny 8.80+2.32 1.56+0.20 39.13+0.97 0.9614+0.0062 0.9649+0.0059 0.9708+0.0051 0.9756+0.0045 0.9789+0.0040 0.9813+0.0037
0.9XL1+0.1XL1canny 8.48+2.26 1.53+0.20 39.27+0.99 0.9624+0.0061 0.9660+0.0057 0.9718+0.0050 0.9764+0.0044 0.9797+0.0039 0.9819+0.0036

L1 8.56+2.25 1.53+0.20 39.24+0.97 0.9622+0.0060 0.9657+0.0057 0.9716+0.0050 0.9762+0.0044 0.9794+0.0039 0.9818+0.0036
L1+0.1XLSSIMw3 8.49+2.23 1.53+0.20 39.27+0.98 0.9626+0.0060 0.9662+0.0057 0.9720+0.0049 0.9766+0.0043 0.9798+0.0038 0.9821+0.0035
L1+0.2XLSSIMw3 8.86+2.35 1.57+0.21 39.08+0.98 0.9612+0.0062 0.9647+0.0059 0.9707+0.0052 0.9755+0.0045 0.9789+0.0041 0.9813+0.0037
L1+0.3XLSSIMw3 11.53+£2.97 1.81+0.23 38.05+0.94 0.9511+0.0075 0.9548+0.0071 0.9623+0.0061 0.9685+0.0053 0.9728+0.0047 0.9759+0.0043
L1+0.4XLSSIMw3 11.274£2.94 1.78+0.23 38.15+0.95 0.9520+0.0075 0.9559+0.0071 0.9632+0.0061 0.9693+0.0053 0.9735+0.0047 0.9765+0.0043
L1+0.5XLSSIMw3 11.68+3.02 1.83+0.24 37.99+0.94 0.9508+0.0076 0.9544+0.0072 0.9620+0.0063 0.9681+0.0054 0.9725+0.0048 0.9756+0.0044

LSSIMw3 9.09+2.39 1.59+0.21 38.99+0.98 0.9604:0.0064 0.9641+0.0060 0.9702+0.0052 0.9751+0.0045 0.9785+0.0040 0.9809+0.0037
L1+0.1XLSSIMw7 8.36+2.20 1.5240.20 39.3240.99 0.9631+0.0060 0.9667+0.0056 0.9724+0.0049 0.9769+0.0043 0.9801+0.0038 0.9823+0.0035
L1+0.2XLSSIMw7 8.51+£2.27 1.5440.20 39.2440.99 0.9625+0.0062 0.9661+0.0058 0.9719+0.0050 0.9765+0.0044 0.9797+0.0039 0.9820+0.0036
L1+0.3XLSSIMw7 9.18+2.44 1.60+0.21 38.96+0.99 0.9598+0.0066 0.9637+0.0061 0.9699+0.0053 0.9748+0.0046 0.9783+0.0041 0.9808+0.0038
L1+0.4XLSSIMw7 9.11+2.41 1.60+0.21 38.98+0.99 0.9600+0.0065 0.9638+0.0061 0.9700+0.0053 0.9749+0.0046 0.9784+0.0041 0.9808+0.0038
L1+0.5XLSSIMw7 9.17+£2.43 1.60+0.21 38.95+0.99 0.9598+0.0065 0.9636+0.0061 0.9698+0.0053 0.9748+0.0046 0.9783+0.0041 0.9807+0.0038
LSSIMw7 9.26+2.42 1.61+0.21 38.90+0.97 0.9599+0.0064 0.9636:+0.0060 0.9699+0.0052 0.9748+0.0046 0.9783+0.0041 0.9807+0.0037

L2 9.58+2.59 1.65+0.22 38.76+1.00 0.9576+0.0073 0.9614+0.0068 0.9680+0.0059 0.9732+0.0052 0.9769+0.0046 0.9795+0.0042

SuppTable 8. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet

images and synthetic ground truth (GTsyn), when enhancement is performed from US-1 undersampled AcqPr images. DUNet was

trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMw5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 2259.69+475.56 31.14+3.56 30.36+0.13 0.4698+0.0037 0.4466+0.0036 0.4216+0.0037 0.3949+0.0040 0.3667+0.0044 0.3370+0.0048
0.1XL1+0.9XL1 canny 8.56+2.13 1.50+0.18 39.37+0.89 0.9612+0.0055 0.9652+0.0048 0.9716+0.0040 0.9765+0.0034 0.9798+0.0030 0.9821+0.0027
0.2XL1+0.8XL1canny 8.47+2.09 1.50+0.18 39.38+0.89 0.9616+0.0054 0.9656+0.0048 0.9720+0.0039 0.9768+0.0034 0.9801+0.0030 0.9823+0.0027
0.3XL1+0.7XL1 canny 8.48+2.13 1.50+0.18 39.40+0.90 0.9617+0.0054 0.9657+0.0048 0.9720+0.0039 0.9768+0.0034 0.9801+0.0030 0.9824+0.0027
0.4XL1+0.6XL1canny 8.29+2.07 1.48+0.18 39.48+0.90 0.9623+0.0055 0.9663+0.0048 0.9725+0.0039 0.9773+0.0034 0.9805+0.0030 0.9827+0.0027
0.5XL1+0.5XL1 canny 8.28+2.06 1.48+0.18 39.50+0.90 0.9624+0.0054 0.9665+0.0048 0.9727+0.0040 0.9774+0.0034 0.9806+0.0030 0.9828+0.0027
0.6XL1+0.4XL1canny 8.41+2.09 1.49+0.18 39.42+0.90 0.9618+0.0055 0.9659+0.0048 0.9722+0.0040 0.9770+0.0034 0.9803+0.0030 0.9825+0.0027
0.7XL1+0.3XL1 canny 8.32+2.06 1.48+0.18 39.46+0.90 0.9621+0.0055 0.9662+0.0047 0.9725+0.0039 0.9772+0.0033 0.9805+0.0030 0.9827+0.0027
0.8XL1+0.2XL1canny 8.28+2.05 1.48+0.18 39.48+0.90 0.9623+0.0054 0.9663+0.0047 0.9725+0.0039 0.9772+0.0033 0.9805+0.0029 0.9827+0.0027
0.9XL1+0.1XL1canny 8.32+2.08 1.48+0.18 39.46+0.90 0.9622+0.0054 0.9663+0.0047 0.9725+0.0039 0.9773+0.0034 0.9805+0.0030 0.9827+0.0027

L1 8.40+2.10 1.49+0.18 39.42+0.90 0.9618+0.0055 0.9659+0.0048 0.9722+0.0039 0.9770+0.0033 0.9803+0.0029 0.9826+0.0027
L1+0.1XLSSIMw3 8.12+2.01 1.47+0.18 39.55+0.90 0.9631+0.0053 0.9672+0.0046 0.9733+0.0038 0.9779+0.0033 0.9811+0.0029 0.9832+0.0027
L1+0.2XLSSIMw3 8.30+2.11 1.49+0.19 39.45+0.92 0.9626+0.0055 0.9665+0.0048 0.9727+0.0039 0.9774+0.0033 0.9807+0.0030 0.9829+0.0027
L1+0.3XLSSIMw3 11.60+2.80 1.77+0.21 38.17+0.83 0.9508+0.0065 0.9548+0.0056 0.9628+0.0045 0.9692+0.0038 0.9735+0.0033 0.9765+0.0031
L1+0.4XLSSIMw3 11.82+2.88 1.79+0.21 38.10+0.84 0.9499+0.0067 0.9538+0.0057 0.9620+0.0046 0.9685+0.0038 0.9729+0.0034 0.9759+0.0031
L1+0.5XLSSIMw3 11.73+£2.84 1.79+0.21 38.13+0.84 0.9505+0.0066 0.9546+0.0057 0.9626+0.0046 0.9690+0.0038 0.9733+0.0033 0.9763+0.0031

LSSIMw3 8.97+2.25 1.55+0.19 39.17+0.90 0.9599+0.0057 0.9642+0.0050 0.9708+0.0041 0.9759+0.0035 0.9793+0.0031 0.9817+0.0028
L14+0.1XLSSIMw7 8.32+2.04 1.49+0.18 39.44+0.89 0.9625+0.0054 0.9667+0.0047 0.9729+0.0039 0.9776+0.0034 0.9808+0.0030 0.9830+0.0027
L1+0.2XLSSIMw7 8.10+2.02 1.47+0.18 39.55+0.90 0.9630+0.0053 0.9671+0.0046 0.9732+0.0038 0.9778+0.0033 0.9810+0.0029 0.9832+0.0027
L14+0.3XLSSIMw7 8.92+2.19 1.54+0.19 39.19+0.88 0.9600+0.0056 0.9642+0.0048 0.9708+0.0040 0.9759+0.0034 0.9793+0.0030 0.9817+0.0028
L14+0.4XLSSIMw7 9.05+2.26 1.55+0.19 39.14+0.90 0.9595+0.0058 0.9638+0.0051 0.9705+0.0042 0.9756+0.0035 0.9791+0.0031 0.9815+0.0029
L14+0.5XLSSIMw7 8.95+2.20 1.54+0.19 39.18+0.88 0.9599+0.0056 0.9642+0.0049 0.9709+0.0041 0.9759+0.0035 0.9794+0.0031 0.9817+0.0028
LSSIMw7 9.18+2.25 1.57+0.19 39.06+0.89 0.9592+0.0057 0.9635+0.0049 0.9703+0.0040 0.9755+0.0034 0.9790+0.0031 0.9814+0.0028

L2 9.16+2.28 1.58+0.19 39.05+0.90 0.9585+0.0060 0.9627+0.0052 0.9696+0.0042 0.9749+0.0036 0.9785+0.0031 0.9809+0.0029

SuppTable 9. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet

images and synthetic ground truth (GTsyn), when enhancement is performed from US-2 undersampled AcqPr images. DUNet was

trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 2269.89+477.30 31.17+3.55 30.36+0.13 0.4721+0.0016 0.4472+0.0020 0.4210+0.0026 0.3936+0.0031 0.3649+0.0037 0.3348+0.0042
0.1XL1+0.9XL1 canny 19.85+5.58 2.30+0.32 36.40+0.78 0.9382+0.0090 0.9361+0.0089 0.9417+0.0082 0.9483+0.0073 0.9541+0.0067 0.9587+0.0061
0.2XL1+0.8XL1 canny 19.46+5.62 2.27+0.32 36.49+0.79 0.9393+0.0090 0.9374+0.0090 0.9431+0.0082 0.9496+0.0074 0.9552+0.0067 0.9598+0.0062
0.3XL1+0.7XL1 canny 20.04+5.75 2.31£0.33 36.37+0.79 0.9378+0.0091 0.9353+0.0091 0.9408+0.0083 0.9474+0.0075 0.9532+0.0068 0.9579+0.0062
0.4XL1+0.6XL1 canny 20.17+£5.76 2.33£0.33 36.33+0.80 0.9376+0.0093 0.9354+0.0093 0.9410+0.0085 0.9476+0.0076 0.9534+0.0069 0.9581+0.0063
0.5XL1+0.5XL1 canny 20.16+5.62 2.31£0.32 36.36+0.76 0.9377+0.0090 0.9356+0.0089 0.9414+0.0081 0.9481+0.0073 0.9538+0.0066 0.9585+0.0060
0.6XL1+0.4XL1canny 19.78+5.59 2.29+0.32 36.42+0.79 0.9385+0.0090 0.93640.0090 0.9420+0.0081 0.9485+0.0073 0.9543+0.0066 0.9589+0.0060
0.7XL1+0.3XL1 canny 20.21+5.69 2.31£0.32 36.35+0.77 0.9374+0.0091 0.9352+0.0091 0.9409+0.0083 0.9475+0.0075 0.9534+0.0068 0.9581+0.0063
0.8XL1+0.2XL1 canny 19.93+5.73 2.29+0.32 36.42+0.78 0.9384+0.0091 0.9365+0.0091 0.9422+0.0083 0.9489+0.0075 0.9546+0.0068 0.9592+0.0062
0.9XL1+0.1XL1canny 19.76+5.55 2.29+0.32 36.42+0.77 0.9385+0.0089 0.9364+0.0088 0.9420+0.0080 0.9486+0.0072 0.9544+0.0066 0.9590+0.0061

L1 20.49+5.85 2.33£0.33 36.32+0.78 0.9371+0.0093 0.9349+0.0093 0.9407+0.0084 0.9474+0.0076 0.9532+0.0068 0.9579+0.0063
L1+0.1XLSSIMw3 21.56+5.90 2.40+0.32 36.14+0.74 0.9348+0.0090 0.9323+0.0089 0.9381+0.0081 0.9449+0.0073 0.9510+0.0067 0.9558+0.0061
L1+0.2XLSSIMw3 21.05+5.79 2.37+0.32 36.20+0.76 0.9359+0.0090 0.9335+0.0089 0.9393+0.0080 0.9461+0.0072 0.9521+0.0065 0.9569+0.0060
L1+0.3XLSSIMw3 21.30+£5.91 2.39+0.32 36.16+0.75 0.9357+0.0090 0.9333+0.0089 0.9391+0.0081 0.9460+0.0073 0.9519+0.0066 0.9567+0.0061
L1+0.4XLSSIMw3 20.79+5.71 2.37+0.32 36.22+0.76 0.9362+0.0089 0.9340+0.0088 0.9399+0.0080 0.9466+0.0072 0.9526+0.0065 0.9573+0.0060
L1+0.5XLSSIMw3 21.21+5.89 2.38+0.33 36.19+0.76 0.9359+0.0090 0.9335+0.0089 0.9394:0.0081 0.9462+0.0073 0.9522+0.0066 0.9569+0.0061

LSSIMw3 23.45+6.47 2.534+0.34 35.83+0.73 0.9312+0.0093 0.9277+0.0092 0.9334+0.0084 0.9405+0.0076 0.9469+0.0069 0.9521+0.0064
L14+0.1XLSSIMw7 21.94+6.04 2.43£0.33 36.06+0.74 0.9337+0.0092 0.9311+0.0090 0.9371+0.0082 0.9441+0.0074 0.9503+0.0067 0.9552+0.0062
L1+0.2XLSSIMw7 21.3945.95 2.41£0.33 36.12+0.77 0.9349+0.0092 0.9324+0.0091 0.9382+0.0083 0.9451+0.0074 0.9512+0.0067 0.9561+0.0062
L1+0.3XLSSIMw7 21.7445.90 2.4240.33 36.07+0.74 0.9341+0.0090 0.9315+0.0089 0.9374+0.0080 0.9444+0.0072 0.9506+0.0066 0.9555+0.0060
L14+0.4XLSSIMw7 21.7145.85 2.4240.32 36.07+0.72 0.9345+0.0089 0.9323+0.0087 0.9384+0.0079 0.9454+0.0071 0.9514+0.0065 0.9563+0.0060
L14+0.5XLSSIMw7 21.46+5.86 2.41£0.32 36.11+0.74 0.9351+0.0090 0.9327+0.0088 0.9386+0.0080 0.9455+0.0072 0.9516+0.0065 0.9564:0.0060
LSSIMw7 22.01+£5.91 2.47+0.32 35.97+0.73 0.9343+0.0090 0.9317+0.0088 0.9375+0.0080 0.9444+0.0072 0.9505+0.0065 0.9554+0.0060

L2 21.074£5.75 2.42+0.33 36.08+0.76 0.9347+0.0091 0.9321+0.0089 0.9379+0.0081 0.9448+0.0073 0.9509+0.0066 0.9558+0.0061

SuppTable 10. Evaluation metrics (meantstandard deviation) calculated for entire image on entire test set (N=516) between DUNet
images and Synthetic ground truth (GTsyn), when enhancement is performed from US-3 undersampled AcqPr images. DUNet was
trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMw5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 7160.09+3198.60 74.71£19.66 27.89+0.47 0.1866+0.0453 0.1664+0.0387 0.1589+0.0351 0.1581+0.0320 0.1610+0.0297 0.1657+0.0280
0.1XL1+0.9XL1 canny 61.84+35.21 5.93£1.57 32.08+1.55 0.8713+0.0569 0.9190+0.0475 0.9451+0.0385 0.9593+0.0316 0.9671+0.0271 0.9715+0.0242
0.2XL1+0.8XL1canny 59.83+34.49 5.84+1.60 32.18+1.60 0.8738+0.0563 0.9215+0.0467 0.9472+0.0377 0.9610+0.0310 0.9686+0.0264 0.9728+0.0234
0.3XL1+0.7XL1 canny 59.34+32.79 5.82+1.53 32.18+1.62 0.8730+0.0557 0.9209+0.0459 0.9467+0.0371 0.9606:0.0306 0.9683+0.0263 0.9724+0.0235
0.4XL1+0.6XL1canny 58.68+34.21 5.77x1.57 32.3243.37 0.8748+0.0556 0.9225+0.0458 0.9480+0.0367 0.9617+0.0300 0.9692+0.0255 0.9732+0.0227
0.5XL1+0.5XL1 canny 58.59+34.93 5.77+1.59 32.34+3.36 0.8752+0.0561 0.9224+0.0462 0.9479+0.0371 0.9616+0.0304 0.9690+0.0260 0.9731+0.0232
0.6XL1+0.4XL1canny 59.03+35.07 5.80+1.61 32.21+1.74 0.8746+0.0562 0.9222+0.0463 0.9477+0.0372 0.9615+0.0304 0.9690+0.0259 0.9731+0.0231
0.7XL1+0.3XL1canny 58.85+33.80 5.80+1.57 32.17£1.51 0.8743+0.0561 0.9220+0.0462 0.9477+0.0370 0.9615+0.0302 0.9689+0.0258 0.9730+0.0230
0.8XL1+0.2XL1canny 58.21+32.80 5.75+1.52 32.25+1.59 0.8754+0.0556 0.9228+0.0458 0.9482+0.0368 0.9618+0.0302 0.9693+0.0257 0.9733+0.0228
0.9XL1+0.1XL1canny 60.07+34.90 5.85+1.58 32.14+1.49 0.8731£0.0567 0.9206+0.0475 0.9464+0.0385 0.9604+0.0315 0.9681+0.0269 0.9724+0.0238

L1 58.56+33.78 5.78+1.56 32.3243.35 0.8747+0.0564 0.9221+0.0469 0.9476+0.0379 0.9614+0.0310 0.9689+0.0264 0.9730+0.0234
L1+0.1XLSSIMw3 58.52+32.69 5.78+1.53 32.29+3.33 0.8746+0.0550 0.9223+0.0450 0.9479+0.0360 0.9616+0.0294 0.9691+0.0250 0.9732+0.0223
L1+0.2XLSSIMw3 59.27+33.82 5.81£1.56 32.19+1.62 0.8738+0.0562 0.9213+0.0466 0.9471+0.0375 0.9610+0.0305 0.9686+0.0260 0.9728+0.0230
L1+0.3XLSSIMw3 58.56+33.09 5.80+1.53 32.18+1.53 0.8754+0.0553 0.9225+0.0458 0.9478+0.0370 0.9616+0.0303 0.9691+0.0257 0.9732+0.0228
L1+0.4XLSSIMw3 59.78+34.02 5.83+1.54 32.16+1.61 0.8734+0.0554 0.9213+0.0455 0.9471+0.0366 0.9610+0.0300 0.9686+0.0256 0.9728+0.0228
L1+0.5XLSSIMw3 59.29+35.19 5.81£1.59 32.2743.41 0.8742+0.0556 0.9217+0.0459 0.9475+0.0367 0.9613+0.0300 0.9688+0.0255 0.9730+0.0227

LSSIMw3 60.87+32.54 5.93+£1.48 32.01+£1.49 0.8753+0.0544 0.9229+0.0444 0.9484+0.0355 0.9621+0.0289 0.9695+0.0246 0.9735+0.0219
L1+0.1XLSSIMw7 58.97+35.14 5.78+1.58 32.24+1.66 0.8743+0.0563 0.9220+0.0461 0.9477+0.0369 0.9615+0.0302 0.9690+0.0258 0.9731+0.0230
L1+0.2XLSSIMw7 58.06+32.75 5.76+1.52 32.21+1.47 0.8762+0.0548 0.9239+0.0444 0.9491+0.0352 0.9626+0.0285 0.9699+0.0243 0.9738+0.0217
L1+0.3XLSSIMw7 57.83+32.54 5.75+1.54 32.3443.41 0.8754+0.0557 0.9230+0.0458 0.9484+0.0367 0.9620+0.0299 0.9694+0.0254 0.9734+0.0226
L1+0.4XLSSIMw7 58.82+33.47 5.79+1.57 32.3243.39 0.8744+0.0564 0.9220+0.0467 0.9476+0.0375 0.9614+0.0306 0.9689+0.0260 0.9731+0.0230
L1+0.5XLSSIMw7 57.95+32.11 5.75+1.49 32.3343.35 0.8758+0.0542 0.9236+0.0438 0.9490+0.0347 0.9625+0.0282 0.9698+0.0240 0.9738+0.0213
LSSIMw7 61.51+34.82 5.94+1.56 32.26+4.47 0.8746+0.0556 0.9224+0.0456 0.9480+0.0366 0.9617+0.0298 0.9692+0.0254 0.9732+0.0225

L2 61.23+35.68 5.92+1.62 32.18+3.35 0.8713+0.0565 0.9191+0.0468 0.9453+0.0377 0.9595+0.0309 0.9674+0.0265 0.9717+0.0236

SuppTable 11. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between
DUNet images and acquired ground truth (GTacq), when enhancement is performed from complete k-space AcqPr images. DUNet
was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.



Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 13388.97+5886.04 105.39+26.36 27.93+0.76 0.0029+0.0041 0.0014+0.0025 0.0008+0.0016 0.0006:£0.0010 0.00040.0006 0.0003+0.0231
0.1XL1+0.9XL1 canny 61.99+33.85 5.95+1.52 32.04+1.55 0.8700+0.0551 0.9182+0.0447 0.9449+0.0355 0.9594+0.0289 0.9674+0.0246 0.9718+0.0311
0.2XL1+0.8XL1canny 63.15+33.76 5.99+1.53 32.02+1.51 0.8694+0.0559 0.9175+0.0457 0.9442+0.0364 0.9588+0.0297 0.9669+0.0253 0.9715+0.0309
0.3XL1+0.7XL1 canny 61.46+36.02 5.92+1.59 32.06+1.53 0.8707+0.0562 0.9187+0.0461 0.9453+0.0366 0.9598+0.0297 0.9678+0.0252 0.9722+0.0307
0.4XL1+0.6XL1 canny 61.05+34.79 5.91+£1.57 32.20+3.30 0.8702+0.0566 0.9185+0.0464 0.9452+0.0368 0.9598+0.0299 0.9678+0.0253 0.9723+0.0309
0.5XL1+0.5XL1 canny 61.85+33.18 5.96+1.55 32.02+1.52 0.8699+0.0561 0.9178+0.0464 0.9445+0.0371 0.9592+0.0302 0.9673+0.0257 0.9718+0.0308
0.6XL1+0.4XL1 canny 60.56+32.41 5.87+1.48 32.09+1.53 0.8712+0.0549 0.9194+0.0447 0.9459+0.0353 0.9603+0.0286 0.9681+0.0243 0.9725+0.0310
0.7XL1+0.3XL1 canny 59.92+33.75 5.84+1.55 32.13+1.57 0.8719+0.0565 0.9196+0.0462 0.9461+0.0364 0.9605+0.0293 0.9684+0.0247 0.9727+0.0305
0.8XL1+0.2XL1canny 60.15+32.13 5.85+1.49 32.22+3.32 0.8718+0.0553 0.9199+0.0447 0.9463+0.0352 0.9606+0.0285 0.9684+0.0242 0.9727+0.0309
0.9XL1+0.1XL1 canny 59.37+31.09 5.82+1.44 32.13+1.40 0.8725+0.0547 0.9205+0.0440 0.9468+0.0347 0.9610+0.0280 0.9687+0.0237 0.9730+0.0310

L1 61.06+33.00 5.91+£1.53 32.17+3.31 0.8705+0.0557 0.9187+0.0457 0.9452+0.0364 0.9597+0.0296 0.9677+0.0251 0.9722+0.0310
L1+0.1XLSSIMw3 60.23+31.91 5.89+1.48 32.17+3.28 0.8717+0.0556 0.9192+0.0457 0.9456+0.0364 0.9600+0.0296 0.9680+0.0251 0.9724+0.0305
L1+0.2XLSSIMw3 60.36+30.71 5.89+1.47 32.16+3.32 0.8723+0.0544 0.9201+0.0441 0.9463+0.0348 0.9606:£0.0282 0.9683+0.0240 0.9727+0.0305
L1+0.3XLSSIMw3 61.75+£31.98 5.96+1.50 32.10+3.30 0.8702+0.0553 0.9178+0.0457 0.9444+0.0367 0.9590+0.0300 0.9672+0.0254 0.9717+0.0303
L1+0.4XLSSIMw3 60.75+31.78 5.91+1.46 32.06+1.48 0.8712+0.0544 0.9193+0.0438 0.9458+0.0347 0.9602+0.0283 0.9681+0.0242 0.9725+0.0303
L1+0.5XLSSIMw3 60.03+29.89 5.88+1.40 32.13+3.29 0.8722+0.0550 0.9200+0.0446 0.9463+0.0356 0.9605+0.0291 0.9683+0.0247 0.9727+0.0303

LSSIMw3 61.89+32.13 5.98+1.46 31.95+1.35 0.8703+0.0550 0.9182+0.0449 0.9449+0.0359 0.9595+0.0293 0.9676+0.0249 0.9721+0.0302
L1+0.1XLSSIMw7 58.90+31.25 5.82+1.47 32.13+1.53 0.8732+0.0550 0.9212+0.0447 0.9473+0.0352 0.9614+0.0285 0.9690+0.0241 0.9732+0.0304
L1+0.2XLSSIMw7 59.82429.92 5.88+1.44 32.06+1.49 0.8742+0.0544 0.9220+0.0435 0.9479+0.0340 0.9619+0.0273 0.9695+0.0230 0.9736+0.0303
L1+0.3XLSSIMw7 61.03£31.60 5.92+1.48 32.02+1.40 0.8700+0.0556 0.9181+0.0452 0.9448+0.0359 0.9594+0.0292 0.9674+0.0248 0.9720+0.0304
L1+0.4XLSSIMw7 60.10+£31.62 5.89+1.44 32.05+1.50 0.8733+0.0546 0.9214+0.0434 0.9477+0.0337 0.9618+0.0270 0.9694+0.0228 0.9736+0.0302
L1+0.5XLSSIMw7 60.89+30.33 5.93+1.41 32.00+1.46 0.8712+0.0535 0.9195+0.0426 0.9461+0.0335 0.9604+0.0272 0.9682+0.0232 0.9725+0.0305
LSSIMw7 63.42+30.94 6.09+1.39 31.82+1.22 0.8719+0.0552 0.9200+0.0443 0.9464+0.0349 0.9606+0.0283 0.9684:0.0240 0.9727+0.0300

L2 60.06+30.44 5.89+1.47 32.17+3.31 0.8717+0.0544 0.9199+0.0440 0.9463+0.0348 0.9605+0.0284 0.9682+0.0243 0.9725+0.0307

SuppTable 12. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and acquired ground truth (GTacq), when enhancement is performed from hat-like k-space AcqPr images. DUNet

was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 12934.80+5710.40 102.79+£26.15 27.94+0.76 0.0220+0.0223 0.0104+0.0150 0.0049+0.0101 0.0023+0.0066 0.0011+0.0043 0.0006+0.0257
0.1XL1+0.9XL1 canny 69.65+52.86 6.15£1.95 32.05+1.62 0.8623+0.0599 0.9126+0.0484 0.9413+0.0380 0.9569+0.0308 0.9655+0.0262 0.9703+0.0295
0.2XL1+0.8XL1 canny 65.63+47.47 6.00+1.85 32.2243.34 0.8661+0.0582 0.9158+0.0473 0.9437+0.0371 0.9588+0.0299 0.9671+0.0252 0.9716+0.0292
0.3XL1+0.7XL1 canny 65.85+44.93 6.00+1.81 32.14+1.48 0.8670+0.0575 0.9169+0.0460 0.9448+0.0356 0.9597+0.0282 0.9678+0.0236 0.9723+0.0293
0.4XL1+0.6XL1 canny 64.62+43.83 5.95+1.77 32.14+1.45 0.8670+0.0573 0.9168+0.0460 0.9446+0.0358 0.9596+0.0286 0.9677+0.0241 0.9722+0.0291
0.5XL1+0.5XL1 canny 67.90+50.80 6.07+1.91 32.24+3.42 0.8642+0.0586 0.9145+0.0471 0.9428+0.0368 0.9582+0.0295 0.9666+0.0249 0.9712+0.0293
0.6XL1+0.4XL1 canny 67.01+48.45 6.03+1.88 32.12+1.62 0.8648+0.0586 0.9147+0.0475 0.9430+0.0370 0.9583+0.0296 0.9667+0.0250 0.9713+0.0293
0.7XL1+0.3XL1 canny 64.37+44.25 5.96+1.81 32.15+1.61 0.8672+0.0572 0.9169+0.0460 0.9448+0.0357 0.9598+0.0284 0.9679+0.0239 0.9723+0.0292
0.8XL1+0.2XL1 canny 64.31+46.94 5.94+1.81 32.29+3.33 0.8674+0.0586 0.9172+0.0465 0.9450+0.0358 0.9600+0.0284 0.9681+0.0238 0.9725+0.0292
0.9XL1+0. XL 1 canny 67.93+50.10 6.09+1.87 32.19+3.36 0.8649+0.0580 0.9149+0.0465 0.9431+0.0363 0.9584+0.0291 0.9667+0.0245 0.9714+0.0294

L1 64.33+43.80 5.93+1.75 32.33+£3.45 0.8679+0.0560 0.9178+0.0446 0.9455+0.0345 0.9603+0.0274 0.9683+0.0230 0.9726+0.0292
L1+0.1XLSSIMw3 63.09+41.31 5.92+1.71 32.15+1.47 0.8689+0.0566 0.9184+0.0452 0.9460+0.0349 0.9607+0.0277 0.9686+0.0232 0.9730+0.0289
L1+0.2XLSSIMw3 65.52+46.20 6.01£1.83 32.11+£1.46 0.8664+0.0579 0.9166+0.0460 0.9446+0.0357 0.9597+0.0285 0.9678+0.0239 0.9722+0.0289
L1+0.3XLSSIMw3 68.73+48.21 6.14+1.90 32.01+£1.59 0.8623+0.0580 0.9127+0.0467 0.9416+0.0365 0.9574+0.0292 0.9660+0.0245 0.9708+0.0288
L1+0.4XLSSIMw3 66.58+46.47 6.05+1.83 32.05+1.63 0.8654+0.0575 0.9155+0.0460 0.9436+0.0359 0.9587+0.0288 0.9670+0.0242 0.9716+0.0288
L1+0.5XLSSIMw3 65.06+42.77 6.01£1.69 32.06+1.51 0.8664+0.0564 0.9164+0.0454 0.9444+0.0354 0.9595+0.0282 0.9677+0.0237 0.9721+0.0288

LSSIMw3 66.74+44.75 6.08+1.75 32.00+1.54 0.8662+0.0575 0.9160+0.0461 0.9441+0.0359 0.9593+0.0286 0.9675+0.0240 0.9720+0.0287
L1+0.1XLSSIMw7 64.85+45.13 5.97+1.77 32.13+1.61 0.8669+0.0567 0.9169+0.0452 0.9448+0.0350 0.9598+0.0278 0.9679+0.0234 0.9723+0.0290
L1+0.2XLSSIMw7 64.03+41.11 5.95+1.68 32.2243.34 0.8672+0.0565 0.9173+0.0447 0.9453+0.0343 0.9603+0.0271 0.9683+0.0228 0.9726+0.0288
L1+0.3XLSSIMw7 65.09+43.35 5.97+1.71 32.27+3.37 0.8666+0.0572 0.9165+0.0458 0.9445+0.0353 0.9596+0.0280 0.9677+0.0235 0.9722+0.0289
L1+0.4XLSSIMw7 65.37+45.31 6.00£1.80 32.2043.33 0.8668+0.0569 0.9170+0.0456 0.9450+0.0353 0.9599+0.0281 0.9680+0.0236 0.9724+0.0288
L1+0.5XLSSIMw7 65.31+£44.24 6.01£1.74 32.05+1.43 0.8663+0.0578 0.9165+0.0463 0.9446+0.0359 0.9597+0.0285 0.9679+0.0238 0.9723+0.0289
LSSIMw7 67.99+42 .81 6.19£1.70 31.84+1.45 0.8678+0.0568 0.9177+0.0451 0.9455+0.0348 0.9604+0.0275 0.9683+0.0230 0.9726+0.0287

L2 64.82+43.46 5.98+1.81 32.244+3.33 0.8661+0.0576 0.9165+0.0460 0.9446+0.0355 0.9598+0.0280 0.9679+0.0233 0.9723+0.0289

SuppTable 13. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between
DUNet image and acquired ground truth (GTacq), when enhancement is performed from US-1 undersampled AcqPr images.
DUNet was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 12994.42+5694.01 103.83+25.93 27.93+0.74 0.0108+0.0042 0.0067+0.0029 0.0047+0.0020 0.0038+0.0015 0.0033+0.0012 0.0030+0.0233
0.1XL1+0.9XL1 canny 89.11+98.97 6.57+2.86 31.97+1.75 0.8488+0.0733 0.9018+0.0613 0.9332+0.0495 0.9505+0.0415 0.9600+0.0362 0.9654+0.0284
0.2XL1+0.8XL1 canny 86.36+95.38 6.48+2.86 32.26+4.55 0.8507+0.0760 0.9037+0.0628 0.9348+0.0501 0.9517+0.0418 0.9609+0.0365 0.9662+0.0279
0.3XL1+0.7XL1 canny 87.48+92.11 6.54+2.76 31.99+1.74 0.8487+0.0730 0.9018+0.0610 0.9333+0.0491 0.9506+0.0410 0.9601+0.0358 0.9656+0.0283
0.4XL1+0.6XL1 canny 87.49+89.29 6.54+2.68 31.97+1.72 0.8495+0.0708 0.9026+0.0585 0.9341+0.0466 0.9513+0.0389 0.9607+0.0339 0.9661+0.0282
0.5XL1+0.5XL1 canny 91.54+101.84 6.64+2.89 31.91+1.64 0.8468+0.0757 0.8998+0.0643 0.9317+0.0521 0.9492+0.0438 0.9590+0.0384 0.9646+0.0282
0.6XL1+0.4XL1canny 86.05+88.20 6.50+2.70 32.09+3.42 0.8508+0.0719 0.9038+0.0592 0.9350+0.0469 0.9519+0.0389 0.9612+0.0337 0.9665+0.0282
0.7XL1+0.3XL1 canny 86.14+94.73 6.47+2.81 32.14+3.42 0.8512+0.0739 0.9041+0.0611 0.9351+0.0487 0.9520+0.0404 0.9612+0.0352 0.9664+0.0282
0.8XL1+0.2XL1 canny 83.92+85.93 6.42+2.64 32.19+3.45 0.8526+0.0697 0.9052+0.0576 0.9359+0.0461 0.9526+0.0384 0.9618+0.0334 0.9670+0.0281
0.9XL1+0.1XL1canny 90.59+99.18 6.61+2.87 32.02+3.42 0.8474+0.0737 0.9008+0.0614 0.9326+0.0495 0.9501+0.0414 0.9597+0.0362 0.9651+0.0282

L1 84.98+86.50 6.46+2.69 32.01+1.86 0.8512+0.0718 0.9036+0.0600 0.9347+0.0479 0.9517+0.0398 0.9611+0.0346 0.9664+0.0282
L1+0.1XLSSIMw3 86.09+88.82 6.50+2.74 32.11+3.53 0.8501+0.0720 0.9031+0.0593 0.9344+0.0473 0.9515+0.0393 0.9610+0.0342 0.9663+0.0278
L1+0.2XLSSIMw3 87.28+90.42 6.56+2.73 32.02+3.38 0.8487+0.0764 0.9020+0.0626 0.9336+0.0496 0.9509+0.0412 0.9604+0.0357 0.9659+0.0279
L1+0.3XLSSIMw3 84.23+85.24 6.46+2.63 32.00+1.70 0.8517+0.0731 0.9043+0.0606 0.9354+0.0483 0.9523+0.0401 0.9615+0.0349 0.9668+0.0278
L1+0.4XLSSIMw3 90.21+95.86 6.66+2.77 31.81+1.54 0.8466+0.0722 0.8999+0.0603 0.9321+0.0483 0.9499+0.0402 0.9597+0.0351 0.9652+0.0277
L1+0.5XLSSIMw3 87.56+93.17 6.54+2.76 32.10+3.49 0.8494+0.0723 0.9022+0.0605 0.9335+0.0487 0.9508+0.0407 0.9604+0.0354 0.9659+0.0277

LSSIMw3 91.66+96.89 6.73+£2.75 31.75+1.69 0.8465+0.0740 0.8999+0.0617 0.9319+0.0496 0.9497+0.0416 0.9595+0.0364 0.9651+0.0276
L1+0.1XLSSIMw7 91.38+104.01 6.66+2.93 31.88+1.72 0.8463+0.0745 0.8992+0.0628 0.9312+0.0511 0.9489+0.0427 0.9588+0.0371 0.9645+0.0277
L1+0.2XLSSIMw7 89.85+92.71 6.66+2.75 31.81+1.60 0.8461+0.0727 0.8995+0.0606 0.9318+0.0487 0.9496+0.0408 0.9594+0.0356 0.9650+0.0278
L1+0.3XLSSIMw7 87.76+93.19 6.58+2.74 32.07+3.45 0.8489+0.0719 0.9023+0.0600 0.9339+0.0483 0.9512+0.0404 0.9607+0.0354 0.9660+0.0278
L1+0.4XLSSIMw7 86.15+88.75 6.53+2.67 31.93+1.60 0.8496+0.0712 0.9031+0.0587 0.9346+0.0466 0.9518+0.0384 0.9612+0.0332 0.9665+0.0275
L1+0.5XLSSIMw7 87.95+91.84 6.5842.72 32.03+3.46 0.8492+0.0724 0.9022+0.0602 0.9338+0.0482 0.9511+0.0400 0.9606+0.0348 0.9660+0.0277
LSSIMw7 89.16+89.29 6.68+2.62 31.79+1.46 0.8487+0.0713 0.9021+0.0583 0.9339+0.0458 0.9512+0.0377 0.9607+0.0325 0.9661+0.0277

L2 89.03+90.40 6.63+2.71 31.87+1.79 0.8462+0.0731 0.8995+0.0616 0.9316+0.0498 0.9493+0.0419 0.9591+0.0369 0.9647+0.0273

SuppTable 14. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and acquired ground truth (GTacq), when enhancement is performed from US-2 undersampled AcqPr images.

DUNet was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 5753.99+2361.93 67.54+16.28 27.86+0.51 0.2900+0.0532 0.2774+0.0580 0.2788+0.0597 0.2868+0.0592 0.2971+0.0573 0.3081+0.0333
0.1XL1+0.9XL1 canny 160.78+115.44 9.42+3.11 30.23+1.39 0.8057+0.0825 0.8490+0.0846 0.8827+0.0792 0.9066+0.0712 0.9230+0.0630 0.9339+0.0288
0.2XL1+0.8XL1 canny 165.77+113.45 9.58+3.09 30.18+1.54 0.8038+0.0832 0.8463+0.0858 0.8796+0.0806 0.9034+0.0728 0.9199+0.0647 0.9311+0.0292
0.3XL1+0.7XL1 canny 168.75+119.58 9.71£3.17 30.09+1.14 0.8002+0.0865 0.8421+0.0901 0.8758+0.0852 0.9002+0.0770 0.9174+0.0683 0.9292+0.0289
0.4XL1+0.6XL1 canny 163.88+117.00 9.54+3.17 30.21£1.36 0.8035+0.0859 0.8462+0.0878 0.8798+0.0821 0.9038+0.0738 0.9206+0.0652 0.9319+0.0288
0.5XL1+0.5XL1 canny 166.17+117.33 9.64+3.22 30.24+3.33 0.8013+0.0833 0.8437+0.0854 0.8775+0.0800 0.9018+0.0721 0.9188+0.0639 0.9304+0.0291
0.6XL1+0.4XL1 canny 158.75+118.63 9.41+3.12 30.22+1.24 0.8070+0.0826 0.8499+0.0838 0.8834+0.0777 0.9071+0.0693 0.9234+0.0608 0.9344+0.0288
0.7XL1+0.3XL1 canny 162.09+112.97 9.51+3.11 30.16+1.08 0.8031+0.0820 0.8461+0.0846 0.8798+0.0797 0.9038+0.0724 0.9203+0.0646 0.9315+0.0290
0.8 XL1+0.2XL1 canny 165.23+117.10 9.60+3.13 30.25+3.28 0.8028+0.0831 0.8457+0.0848 0.8794+0.0795 0.9033+0.0719 0.9199+0.0640 0.9311+0.0287
0.9XL1+0.1XL1 canny 163.28+112.84 9.54+3.09 30.17£1.09 0.8036:+0.0829 0.8467+0.0846 0.8804+0.0788 0.9043+0.0708 0.9208+0.0629 0.9320+0.0293

L1 173.55+123.38 9.81+£3.24 30.09+1.14 0.7971+0.0839 0.8395+0.0863 0.8736+0.0814 0.8982+0.0740 0.9154+0.0663 0.9273+0.0285
L1+0.1XLSSIMw3 164.61+117.88 9.60+3.12 30.13+1.34 0.8028+0.0816 0.8455+0.0843 0.8790+0.0797 0.9029+0.0725 0.9196+0.0647 0.9309+0.0286
L1+0.2XLSSIMw3 178.72+124.43 10.01+3.24 30.04+1.40 0.7938+0.0854 0.8353+0.0897 0.8694:0.0857 0.8944+0.0782 0.9121£0.0699 0.9244+0.0286
L1+0.3XLSSIMw3 160.04+112.28 9.45+3.05 30.17£1.08 0.8071+0.0792 0.8499+0.0808 0.8829+0.0755 0.9062+0.0683 0.9223+0.0607 0.9332+0.0286
L1+0.4XLSSIMw3 181.98+123.49 10.11£3.19 30.12+3.32 0.7933+0.0835 0.8342+0.0872 0.8679+0.0836 0.8928+0.0768 0.9106+0.0690 0.9230+0.0288
L1+0.5XLSSIMw3 168.62+106.37 9.79+2.87 30.01+0.99 0.7994+0.0812 0.8421+0.0841 0.8761+0.0795 0.9005+0.0722 0.9176+0.0644 0.9292+0.0286

LSSIMw3 162.49+102.52 9.61+2.91 30.11+1.37 0.8068+0.0781 0.8506+0.0787 0.8845+0.0724 0.9082+0.0641 0.9242+0.0562 0.9349+0.0284
L1+0.1XLSSIMw7 154.69+112.10 9.30+3.05 30.24+1.11 0.8103+0.0809 0.8534+0.0822 0.8863+0.0769 0.9094+0.0694 0.9252+0.0616 0.9357+0.0289
L1+0.2XLSSIMw7 162.62+108.60 9.55+2.91 30.2243.27 0.8031+0.0813 0.8461+0.0830 0.8797+0.0782 0.9035+0.0713 0.9199+0.0638 0.9311+0.0288
L1+0.3XLSSIMw7 160.14+111.90 9.4843.02 30.12+1.08 0.8050+0.0817 0.8486+0.0822 0.8824+0.0766 0.9061+0.0692 0.9224+0.0616 0.9333+0.0284
L1+0.4XLSSIMw7 160.85+111.16 9.5143.06 30.15£1.20 0.8052+0.0810 0.8484+0.0819 0.8819+0.0764 0.9056+0.0688 0.9218+0.0612 0.9327+0.0287
L1+0.5XLSSIMw7 152.31+£95.41 9.32+2.75 30.31£3.35 0.8095+0.0785 0.8537+0.0786 0.8871+0.0727 0.9104+0.0649 0.9262+0.0573 0.9367+0.0286
LSSIMw7 168.54+108.82 9.81+£2.89 30.00+1.30 0.8043+0.0817 0.8482+0.0823 0.8819+0.0766 0.9057+0.0690 0.9219+0.0614 0.9327+0.0285

L2 159.52+108.34 9.49+2.97 30.14+1.17 0.8040+0.0823 0.8463+0.0854 0.8795+0.0807 0.9034+0.0729 0.9201+0.0644 0.9316+0.0273

SuppTable 15. Evaluation metrics (mean+standard deviation) calculated for lesion-focused ROI on entire test set set (N=516)
between DUNet images and acquired ground truth (GTacq), when enhancement is performed from US-3 undersampled AcqPr
images. DUNet was trained with loss functions shown in the table and the GTacq was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 13387.23+5920.33 105.30£26.59 28.09+3.25 0.0055+0.0131 0.0027+0.0088 0.0013+0.0057 0.0007+0.0032 0.0003+0.0015 0.0002+0.0010
0.1XL1+0.9XL1 canny 38.93+30.11 4.49£1.53 34.03+£2.03 0.9423+0.0358 0.9585+0.0306 0.9705+0.0252 0.9776+0.0207 0.9819+0.0173 0.9844+0.0148
0.2XL1+0.8XL1 canny 38.14+28.77 4.44+1.51 34.1242.15 0.9430+0.0355 0.9592+0.0314 0.9710+0.0265 0.9780+0.0219 0.9822+0.0184 0.9847+0.0157
0.3XL1+0.7XL1 canny 38.55+28.43 4.46+1.51 34.07+£2.13 0.9432+0.0360 0.9590+0.0315 0.9707+0.0264 0.9777+0.0219 0.9820+0.0185 0.9845+0.0159
0.4XL1+0.6XL1canny 38.85+27.89 4.49+1.48 34.01£2.03 0.9422+0.0352 0.9582+0.0314 0.9701+0.0264 0.9773+0.0218 0.9817+0.0182 0.9843+0.0156
0.5XL1+0.5XL1 canny 39.27427.76 4.52+1.49 33.98+2.11 0.9421+0.0358 0.9583+0.0311 0.9702+0.0259 0.9775+0.0214 0.9818+0.0179 0.9843+0.0154
0.6XL1+0.4XL1 canny 38.60+28.18 4.48+1.49 34.01£2.09 0.9421+0.0363 0.9581+0.0320 0.9701+0.0268 0.9774+0.0222 0.9817+0.0186 0.9843+0.0160
0.7XL1+0.3XL1 canny 39.65+29.28 4.53£1.54 34.01£2.15 0.9410+0.0368 0.9574+0.0329 0.9695+0.0277 0.9769+0.0229 0.9813+0.0192 0.9840+0.0164
0.8 XL1+0.2XL1 canny 39.80+28.69 4.54+1.50 33.97+2.04 0.9410+0.0370 0.9574+0.0326 0.9696+0.0272 0.9769+0.0223 0.9813+0.0187 0.9840+0.0160
0.9XL1+0.1XL1canny 37.43+£27.98 4.40+1.47 34.15+2.06 0.9436+0.0355 0.9595+0.0311 0.9713+0.0259 0.9783+0.0213 0.9824+0.0179 0.9848+0.0154

L1 38.14+28.52 4.46+1.48 34.05+1.98 0.9433+0.0358 0.9591+0.0313 0.9709+0.0260 0.9780+0.0213 0.9822+0.0178 0.9847+0.0153
L1+0.1XLSSIMw3 43.91+32.71 4.74+1.61 33.71£1.99 0.9372+0.0379 0.9541+0.0339 0.9669+0.0287 0.9748+0.0238 0.9796+0.0201 0.9825+0.0173
L1+0.2XLSSIMw3 60.79+40.68 5.59+1.65 32.75+3.40 0.9216+0.0388 0.9433+0.0303 0.9589+0.0250 0.9682+0.0211 0.9739+0.0181 0.9775+0.0160
L1+0.3XLSSIMw3 68.66+38.76 6.06+1.54 32.05+1.34 0.9190+0.0380 0.9393+0.0306 0.9550+0.0257 0.9649+0.0216 0.9712+0.0186 0.9752+0.0164
L1+0.4XLSSIMw3 64.22+38.18 5.82+1.53 32.30+1.43 0.9211+0.0376 0.9418+0.0300 0.9572+0.0250 0.9667+0.0212 0.9727+0.0182 0.9765+0.0160
L1+0.5XLSSIMw3 69.88+39.03 6.11£1.57 32.12+3.29 0.9162+0.0373 0.9372+0.0306 0.9536+0.0260 0.9639+0.0221 0.9704+0.0190 0.9747+0.0167

LSSIMw3 64.35+38.39 5.79+1.56 32.37+1.54 0.9185+0.0380 0.9396+0.0306 0.9557+0.0257 0.9657+0.0218 0.9719+0.0187 0.9759+0.0164
L1+0.1XLSSIMw7 37.91428.14 4.43£1.49 34.1142.04 0.9439+0.0343 0.9599+0.0294 0.9715+0.0243 0.9785+0.0200 0.9825+0.0168 0.9850+0.0144
L1+0.2XLSSIMw7 41.80+29.75 4.65+1.51 33.79+1.94 0.9384+0.0355 0.9555+0.0311 0.9682+0.0262 0.9758+0.0217 0.9804+0.0183 0.9832+0.0158
L1+0.3XLSSIMw7 44.18+30.59 4.77£1.52 33.64+1.95 0.9360+0.0365 0.9535+0.0321 0.9664+0.0273 0.9743+0.0228 0.9791+0.0192 0.9821+0.0166
L1+0.4XLSSIMw7 42.13430.35 4.67£1.52 33.76+1.93 0.9378+0.0348 0.9551+0.0306 0.9678+0.0258 0.9755+0.0214 0.9801+0.0180 0.9829+0.0156
L1+0.5XLSSIMw7 46.48+32.86 4.90+1.59 33.45+£1.93 0.9337+0.0364 0.9511+0.0327 0.9645+0.0281 0.9727+0.0235 0.9779+0.0199 0.9811+0.0172
LSSIMw7 60.21+37.83 5.61x1.59 32.58+1.55 0.9202+0.0423 0.9426+0.0324 0.9585+0.0262 0.9680+0.0216 0.9738+0.0182 0.9774+0.0159

L2 39.72426.73 4.60+1.43 33.81£1.90 0.9407+0.0335 0.9574+0.0299 0.9696+0.0254 0.9769+0.0212 0.9812+0.0180 0.9838+0.0156

SuppTable 16. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and synthetic ground truth (GTsyn), when enhancement is performed from complete k-space AcqPr images. DUNet

was trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 13393.99+5920.49 105.43+26.54 28.07£3.25 0.0021+0.0056 0.0010+0.0033 0.0005+0.0019 0.0003+0.0010 0.0002+0.0005 0.0001+0.0043
0.1XL140.9XL1canny 39.65+32.60 4.53+1.58 33.97+1.96 0.9422+0.0377 0.9588+0.0302 0.9709+0.0237 0.9780+0.0189 0.9823+0.0156 0.9848+0.0049
0.2XL1+0.8XL1canny 40.17+£29.56 4.58+1.57 34.04+3.60 0.9397+0.0375 0.9563+0.0316 0.9689+0.0258 0.9765+0.0212 0.9811+0.0175 0.9840+0.0050
0.3XL1+0.7XL1 canny 41.10+£31.49 4.61+£1.59 33.86+2.00 0.9395+0.0383 0.9564+0.0319 0.9690+0.0256 0.9766+0.0209 0.9811+0.0174 0.9839+0.0050
0.4XL140.6XL1canny 37.81+26.72 4.44+1.46 34.07+2.04 0.9426+0.0362 0.9589+0.0301 0.9710+0.0241 0.9782+0.0196 0.9824+0.0162 0.9850+0.0049
0.5XL140.5XL1canny 39.62+28.56 4.54+1.50 33.92+1.92 0.9399+0.0378 0.9568+0.0316 0.9694+0.0255 0.9769+0.0207 0.9815+0.0171 0.9842+0.0050
0.6XL1+0.4XL1canny 41.09+29.32 4.62+1.52 33.81+1.93 0.9386+0.0391 0.9549+0.0337 0.9675+0.0274 0.9754+0.0224 0.9803+0.0185 0.9833+0.0050
0.7XL140.3XL1canny 39.43+27.51 4.55+1.48 33.90+1.97 0.9415+0.0364 0.9577+0.0306 0.9699+0.0248 0.9772+0.0203 0.9817+0.0169 0.9844+0.0049
0.8XL1+0.2XL1 canny 39.19+28.51 4.53+1.52 33.98+2.05 0.9411+0.0368 0.9578+0.0304 0.9701+0.0246 0.9775+0.0200 0.9819+0.0165 0.9846+0.0049
0.9XL1+0.1XL1canny 36.11+23.85 4.36+1.36 34.16+1.94 0.9442+0.0332 0.9605+0.0270 0.9722+0.0216 0.9792+0.0176 0.9832+0.0146 0.9856+0.0049

L1 40.42+29.35 4.57+£1.52 33.89+1.95 0.9402+0.0379 0.9569+0.0314 0.9693+0.0253 0.9768+0.0207 0.9813+0.0172 0.9841+0.0049
L1+0.1XLSSIMw3 45.03+32.68 4.78+1.59 33.64+1.95 0.9356+0.0384 0.9530+0.0318 0.9662+0.0258 0.9744+0.0213 0.9793+0.0178 0.9824+0.0051
L1+0.2XLSSIMw3 50.21+38.53 5.05+1.73 33.30+1.88 0.9311+0.0405 0.9487+0.0345 0.9625+0.0287 0.9713+0.0238 0.9769+0.0198 0.9804+0.0052
L1+0.3XLSSIMw3 48.44+36.72 4.97+£1.72 33.41+1.94 0.9329+0.0408 0.9500+0.0348 0.9637+0.0289 0.9723+0.0240 0.9777+0.0201 0.9812+0.0051
L1+0.4XLSSIMw3 47.48+36.67 4.91£1.69 33.49+1.92 0.9339+0.0404 0.9514+0.0341 0.9648+0.0280 0.9732+0.0232 0.9783+0.0194 0.9816+0.0052
L1+0.5XLSSIMw3 45.75+33.88 4.83£1.61 33.55+1.92 0.9349+0.0383 0.9526+0.0316 0.9661+0.0257 0.9743+0.0212 0.9793+0.0176 0.9824+0.0050

LSSIMw3 52.00+38.39 5.20£1.72 33.08+1.92 0.9299+0.0394 0.9478+0.0336 0.9620+0.0280 0.9709+0.0233 0.9765+0.0196 0.9801+0.0051
L1+0.1XLSSIMw7 48.02435.58 4.93+1.68 33.48+1.94 0.9332+0.0393 0.9511+0.0325 0.9647+0.0265 0.9730+0.0219 0.9782+0.0183 0.9814+0.0052
L1+0.2XLSSIMw7 45.41431.73 4.84+1.56 33.53+1.86 0.9356+0.0371 0.9529+0.0314 0.9660+0.0259 0.9742+0.0214 0.9792+0.0179 0.9823+0.0052
L1+0.3XLSSIMw7 46.82+34.47 4.90+1.63 33.48+1.97 0.9335+0.0382 0.9513+0.0318 0.9650+0.0261 0.973440.0216 0.9785+0.0181 0.9817+0.0053
L1+0.4XLSSIMw7 45.98+32.61 4.88+1.58 33.46+1.94 0.9350+0.0374 0.9523+0.0315 0.9656+0.0260 0.9738+0.0216 0.9788+0.0182 0.9819+0.0052
L1+0.5XLSSIMw7 46.23+33.46 4.90+1.63 33.46+1.92 0.9337+0.0391 0.9511+0.0330 0.9646+0.0271 0.973140.0223 0.9784+0.0186 0.9817+0.0051
LSSIMw7 47.54+32.81 4.97+1.56 33.31+1.79 0.9329+0.0371 0.9505+0.0316 0.9641+0.0264 0.9726+0.0221 0.9779+0.0187 0.9812+0.0052

L2 38.53+24.68 4.56+1.35 33.80+1.83 0.9406+0.0338 0.9571+0.0290 0.9694+0.0238 0.9768+0.0195 0.9813+0.0164 0.9840+0.0053

SuppTable 17. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and synthetic ground truth (GTsyn), when enhancement is performed from hat-like k-space AcqPr images. DUNet

was trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1canny 7320.44+3159.92 77.12+19.30 27.79+0.46 0.2231+0.0342 0.2158+0.0303 0.2182+0.0273 0.2222+0.0240 0.2261+0.0209 0.2295+0.0352
0.1XL1+0.9XL1 canny 51.20+54.34 4.86+2.18 33.99+3.79 0.9291+0.0489 0.9486+0.0390 0.9639+0.0303 0.9731+0.0241 0.9785+0.0199 0.9817+0.0038
0.2XL1+0.8XL1canny 45.06+45.06 4.63£1.96 34.2143.72 0.9351+0.0454 0.9537+0.0356 0.9679+0.0271 0.9762+0.0211 0.9810+0.0171 0.9838+0.0036
0.3XL1+0.7XL1 canny 48.30+50.68 4.75£2.08 34.10+£3.73 0.9314+0.0494 0.9503+0.0397 0.9650+0.0311 0.9740+0.0247 0.9792+0.0203 0.9823+0.0036
0.4XL1+0.6XL1canny 48.87+48.00 4.79£2.02 33.91+£2.43 0.9311+0.0472 0.9506+0.0370 0.9654+0.0286 0.9743+0.0226 0.9794+0.0186 0.9824+0.0038
0.5XL1+0.5XL1 canny 43.69+43.63 4.53+1.91 34.28+2.48 0.9359+0.0449 0.9544+0.0355 0.9684+0.0272 0.9766+0.0213 0.9813+0.0173 0.9841+0.0036
0.6XL1+0.4XL1 canny 48.91+48.99 4.77£2.05 34.07+£3.72 0.9309+0.0458 0.9504+0.0361 0.9653+0.0281 0.9742+0.0223 0.9793+0.0184 0.9823+0.0037
0.7XL1+0.3XL1 canny 47.29+47.23 4.67+2.01 34.14+2.42 0.9325+0.0467 0.9515+0.0368 0.9661+0.0283 0.9748+0.0223 0.9799+0.0183 0.9829+0.0036
0.8XL1+0.2XL1canny 47.29+48.23 4.69+2.01 34.05+2.46 0.9326+0.0444 0.9515+0.0353 0.9660+0.0274 0.9747+0.0217 0.9798+0.0179 0.9828+0.0037
0.9XL1+0.1XL1canny 42.98+40.49 4.53£1.89 34.34+3.79 0.9368+0.0426 0.9554+0.0336 0.9692+0.0258 0.9773+0.0202 0.9819+0.0164 0.9845+0.0036

L1 45.95+46.11 4.64+1.98 34.13+£2.40 0.9341+0.0459 0.9527+0.0365 0.9670+0.0283 0.9756+0.0223 0.9805+0.0183 0.9834+0.0036
L1+0.1XLSSIMw3 47.84+47.01 4.72+1.98 34.04+2.36 0.9329+0.0455 0.9518+0.0364 0.9663+0.0281 0.9750+0.0219 0.9801+0.0177 0.9831+0.0035
L1+0.2XLSSIMw3 49.20+50.28 4.79£2.00 33.9242.28 0.9306:£0.0452 0.9498+0.0361 0.9649+0.0281 0.9739+0.0222 0.9791+0.0183 0.9822+0.0037
L1+0.3XLSSIMw3 78.24+85.25 6.00+2.70 32.63+1.96 0.9055+0.0598 0.9284+0.0478 0.9483+0.0388 0.9607+0.0326 0.9682+0.0286 0.9728+0.0043
L1+0.4XLSSIMw3 79.97+88.74 6.05+£2.76 32.58+1.84 0.9042+0.0615 0.9272+0.0487 0.9473+0.0393 0.9599+0.0331 0.9675+0.0291 0.9722+0.0043
L1+0.5XLSSIMw3 81.77+84.18 6.21+2.62 32.34+1.73 0.9048+0.0583 0.9274+0.0462 0.9472+0.0372 0.9597+0.0312 0.9673+0.0274 0.9721+0.0044

LSSIMw3 55.41+55.73 5.09+2.12 33.53+2.25 0.9261+0.0474 0.9459+0.0377 0.9618+0.0294 0.9714+0.0236 0.9771+0.0197 0.9805+0.0037
L1+0.1XLSSIMw7 42.83+40.79 4.53£1.85 34.38+3.75 0.9374+0.0421 0.9556+0.0333 0.9693+0.0255 0.9773+0.0197 0.9820+0.0159 0.9846+0.0035
L1+0.2XLSSIMw7 44.79+41.05 4.62+1.83 34.09+2.27 0.9354+0.0421 0.9541+0.0332 0.9682+0.0254 0.9765+0.0196 0.9813+0.0158 0.9841+0.0036
L14+0.3XLSSIMw7 54.49+53.92 4.9842.16 33.85+3.72 0.9265+0.0471 0.9463+0.0376 0.9620+0.0296 0.9715+0.0238 0.9772+0.0199 0.9806+0.0038
L14+0.4XLSSIMw7 53.57+52.60 4.96+2.11 33.77£2.39 0.9264+0.0474 0.9464+0.0375 0.9623+0.0292 0.9719+0.0234 0.9775+0.0195 0.9808+0.0038
L14+0.5XLSSIMw7 51.30+49.79 4.90+1.98 33.75+2.21 0.9285+0.0455 0.9483+0.0360 0.9638+0.0278 0.9730+0.0220 0.9784+0.0182 0.9816+0.0038
LSSIMw7 52.51+49.93 4.95£1.99 33.69+2.28 0.9271+0.0458 0.9469+0.0363 0.9625+0.0283 0.9720+0.0226 0.9776+0.0187 0.9810+0.0037

L2 51.12+50.25 4.93£2.03 33.85+3.64 0.9269+0.0470 0.9471+0.0366 0.9630+0.0282 0.9725+0.0225 0.9780+0.0189 0.9812+0.0042

SuppTable 18. Evaluation metrics (mean+standard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and synthetic ground truth (GTsyn), when enhancement is performed from US-1 undersampled AcqPr images.

DUNet was trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 canny 13315.58+5878.46 105.01+26.46 28.07£3.25 0.0077+0.0136 0.0039+0.0094 0.0021+0.0059 0.0011+0.0031 0.0007+0.0014 0.0005+0.0048
0.1XL1+0.9XL1 canny 69.92+95.20 5.26+3.08 33.93+2.64 0.9150+0.0719 0.9376+0.0576 0.9558+0.0454 0.9666+0.0376 0.9729+0.0326 0.9768+0.0027
0.2XL1+0.8XL1canny 66.58+90.54 5.13+£2.98 34.06+2.61 0.9177+0.0700 0.9399+0.0561 0.9576+0.0439 0.9680+0.0361 0.9741+0.0311 0.9778+0.0027
0.3XL1+0.7XL1canny 72.41+99.79 5.374£3.16 33.89+3.95 0.9136+0.0758 0.9362+0.0608 0.9546+0.0478 0.9657+0.0395 0.9722+0.0342 0.9762+0.0027
0.4XL1+0.6XL1canny 65.46+93.34 5.07+£3.03 34.15+2.75 0.9187+0.0707 0.9407+0.0572 0.9581+0.0449 0.9685+0.0369 0.9745+0.0317 0.9782+0.0027
0.5XL1+0.5XL1 canny 65.37+£92.77 5.04+3.01 34.20+2.81 0.9192+0.0718 0.9414+0.0572 0.9586+0.0448 0.9687+0.0371 0.9746+0.0323 0.9781+0.0027
0.6XL1+0.4XL1 canny 66.53+88.92 5.16+£2.96 34.12+3.96 0.9175+0.0688 0.9399+0.0557 0.9577+0.0438 0.9682+0.0362 0.9743+0.0312 0.9780+0.0027
0.7XL1+0.3XL1 canny 67.64+92.75 5.16+3.03 34.07+2.76 0.9168+0.0725 0.9390+0.0585 0.9568+0.0458 0.9674+0.0377 0.9736+0.0323 0.9774+0.0027
0.8 XL1+0.2XL1 canny 66.17+89.55 5.10£3.00 34.37+4.94 0.9179+0.0706 0.9402+0.0569 0.9578+0.0447 0.9682+0.0369 0.9743+0.0319 0.9780+0.0027
0.9XL1+0.1XL1 canny 64.30+87.28 5.06+2.92 34.14+2.79 0.9194+0.0678 0.9416+0.0543 0.9589+0.0425 0.9692+0.0347 0.9751+0.0297 0.9786+0.0027

L1 65.77+90.72 5.13+£2.95 33.99+2.60 0.9171+0.0700 0.9397+0.0560 0.9576+0.0438 0.9681+0.0359 0.9743+0.0308 0.9780+0.0027
L1+0.1XLSSIMw3 65.98+88.78 5.1242.95 34.17+4.03 0.9180+0.0693 0.9402+0.0552 0.9580+0.0433 0.9684:0.0360 0.9745+0.0313 0.9781+0.0027
L1+0.2XLSSIMw3 66.97+95.73 5.14+3.04 34.03+2.68 0.9174+0.0710 0.9399+0.0562 0.9577+0.0439 0.9683+0.0361 0.9744+0.0310 0.9780+0.0027
L1+0.3XLSSIMw3 103.90+135.69 6.68+3.63 32.37+2.11 0.8840+0.0911 0.9096+0.0774 0.9342+0.0635 0.9501+0.0537 0.9595+0.0475 0.9652+0.0031
L1+0.4XLSSIMw3 106.26+141.44 6.71£3.69 32.35+1.99 0.8841+0.0945 0.9097+0.0797 0.9337+0.0656 0.9494+0.0556 0.9588+0.0492 0.9645+0.0031
L1+0.5XLSSIMw3 108.51+141.34 6.86+3.68 32.20+1.91 0.8817+0.0947 0.9071+0.0809 0.9317+0.0667 0.9478+0.0566 0.9576+0.0500 0.9636+0.0031

LSSIMw3 74.40+94.91 5.53+3.03 33.66+3.85 0.9095+0.0725 0.9329+0.0590 0.9524+0.0469 0.9642+0.0391 0.9711+0.0341 0.9753+0.0028
L1+0.1XLSSIMw7 63.26+82.83 5.04+2.84 34.2143.98 0.9210+0.0659 0.9432+0.0521 0.9603+0.0400 0.9702+0.0323 0.9759+0.0275 0.9793+0.0027
L1+0.2XLSSIMw7 63.98+87.03 5.04+2.88 34.25+3.94 0.9202+0.0672 0.9421+0.0545 0.9591+0.0435 0.9692+0.0363 0.9750+0.0316 0.9786+0.0027
L1+0.3XLSSIMw7 74.91+95.82 5.52+43.06 33.5542.63 0.9094+0.0733 0.9327+0.0593 0.9520+0.0471 0.9638+0.0392 0.9708+0.0341 0.9750+0.0028
L1+0.4XLSSIMw7 75.64+101.44 5.51£3.15 33.7243.91 0.9096+0.0726 0.9326+0.0597 0.9520+0.0476 0.9638+0.0397 0.9707+0.0347 0.9749+0.0029
L1+0.5XLSSIMw7 76.41+99.53 5.58+3.11 33.47+2.55 0.9088+0.0720 0.9322+0.0589 0.9517+0.0474 0.9634+0.0398 0.9704+0.0348 0.9746+0.0028
LSSIMw7 75.88+97.70 5.61£3.06 33.44+2.49 0.9077+0.0725 0.9313+0.0590 0.9513+0.0470 0.9634+0.0393 0.9705+0.0344 0.9747+0.0028

L2 67.75+91.55 5.2742.93 33.76+2.51 0.9158+0.0682 0.9383+0.0550 0.9564+0.0433 0.9672+0.0358 0.9734+0.0310 0.9772+0.0029

SuppTable 19. Evaluation metrics (mean+standard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and synthetic ground truth (GTsyn), when enhancement is performed from US-2 undersampled AcqPr images.

DUNet was trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.




Loss Function MSE MAE PSNR SSIMw3 SSIMwS5 SSIMw7 SSIMw9 SSIMw11 SSIMw13
0.0XL1+1.0XL1 cgnny 13394.51+5920.39 105.44+26.54 28.07£3.25 0.0018+0.0052 0.0009+0.0031 0.0005+0.0017 0.0002+0.0009 0.0002+0.0005 0.0001+0.0042
0.1XL1+0.9XL1 canny 147.19+119.52 8.79+3.41 30.72+1.61 0.8664+0.0823 0.8797+0.0847 0.9010+0.0790 0.9193+0.0704 0.9331+0.0614 0.9430+0.0061
0.2XL1+0.8XL1 canny 141.25+119.94 8.57+3.33 30.94+3.52 0.8705+0.0810 0.8845+0.0825 0.9052+0.0770 0.9227+0.0690 0.9358+0.0606 0.9453+0.0062
0.3XL1+0.7XL1 canny 141.44+112.81 8.65+3.28 30.72+1.57 0.8667+0.0828 0.8806£0.0844 0.9019+0.0783 0.9201+0.0695 0.9339+0.0605 0.9439+0.0062
0.4XL1+0.6XL1 canny 150.04+121.01 8.93+3.38 30.58+1.53 0.8662+0.0793 0.8797+0.0806 0.9010+0.0751 0.9192+0.0671 0.9329+0.0590 0.9427+0.0063
0.5XL1+0.5XL1 canny 143.87+115.18 8.77+3.22 30.59+1.46 0.8678+0.0786 0.8815+0.0805 0.9026+0.0752 0.9205+0.0673 0.9339+0.0589 0.9436+0.0060
0.6XL1+0.4XL1 cgnny 143.52+114.79 8.74+3.29 30.65+1.54 0.8677+0.0808 0.8809+0.0828 0.9018+0.0772 0.9196+0.0692 0.9332+0.0609 0.9430+0.0060
0.7XL1+0.3XL1 canny 145.60+120.91 8.78+3.38 30.65+1.49 0.8648+0.0823 0.8789+0.0838 0.9008+0.0778 0.9192+0.0693 0.9330+0.0606 0.9429+0.0063
0.8XL1+0.2XL1canny 135.72+111.51 8.43+3.18 30.81+1.70 0.8708+0.0797 0.8850+0.0799 0.9062+0.0740 0.9239+0.0661 0.9371+0.0581 0.9463+0.0062
0.9XL1+0.1XL1canny 148.67+125.02 8.83+3.39 30.64+1.60 0.8649+0.0824 0.8779+0.0839 0.8992+0.0782 0.9177+0.0698 0.9317+0.0611 0.9418+0.0061

L1 148.34+121.25 8.84+3.37 30.63+1.70 0.8641+0.0834 0.8785+0.0850 0.9003+0.0798 0.9186+0.0719 0.9323+0.0633 0.9421+0.0063
L1+0.1XLSSIMw3 184.09+155.25 9.82+3.78 30.26+1.38 0.8442+0.0889 0.8552+0.0922 0.8779+0.0879 0.8986:0.0802 0.9151+0.0716 0.9274+0.0061
L1+0.2XLSSIMw3 168.58+139.55 9.40+3.57 30.51+3.42 0.8537+0.0848 0.8664:0.0869 0.8887+0.0821 0.9084+0.0741 0.9237+0.0653 0.9348+0.0060
L1+0.3XLSSIMw3 175.46+144.86 9.64+3.60 30.29+1.44 0.8513+0.0825 0.8637+0.0848 0.8860+0.0808 0.9059+0.0733 0.9214+0.0650 0.9328+0.0061
L1+0.4XLSSIMw3 160.75+127.89 9.26+3.39 30.43+1.47 0.8587+0.0788 0.8728+0.0807 0.8951+0.0762 0.9142+0.0687 0.9287+0.0606 0.9391+0.0060
L1+0.5XLSSIMw3 174.94+145.52 9.55+3.67 30.37+1.53 0.8510+0.0838 0.8642+0.0841 0.8868+0.0791 0.9066+0.0719 0.9220+0.0643 0.9332+0.0061

LSSIMw3 203.50+175.39 10.33+4.02 30.23+3.50 0.8377+0.0889 0.8489+0.0913 0.8720+0.0873 0.8933+0.0802 0.9101+0.0723 0.9227+0.0064
L1+0.1XLSSIMw7 180.21+148.48 9.7243.71 30.30+1.50 0.8475+0.0837 0.8604+0.0857 0.8833+0.0811 0.9036+0.0738 0.9195+0.0657 0.931140.0062
L1+0.2XLSSIMw7 168.76+141.51 9.35+3.69 30.50+1.75 0.8544+0.0865 0.8669+0.0889 0.8891+0.0837 0.9086+0.0756 0.9237+0.0669 0.9348+0.0062
L1+0.3XLSSIMw7 162.99+132.99 9.29+3.51 30.44+1.77 0.8560+0.0816 0.8691+0.0832 0.8914+0.0781 0.9109+0.0704 0.9259+0.0621 0.9367+0.0060
L1+0.4XLSSIMw7 168.16+136.03 9.44+3.49 30.45+3.42 0.8553+0.0816 0.8685+0.0836 0.8906+0.0788 0.9099+0.0714 0.9247+0.0633 0.9354+0.0060
L1+0.5XLSSIMw7 159.68+128.72 9.1843.41 30.50+1.54 0.8582+0.0807 0.8716+0.0821 0.8937+0.0768 0.9129+0.0687 0.9277+0.0602 0.9383+0.0060
LSSIMw7 168.81+137.90 9.46+3.53 30.37+1.63 0.8571+0.0811 0.8703+0.0832 0.8921+0.0783 0.9112+0.0708 0.9258+0.0628 0.9364+0.0060

L2 139.30+107.33 8.67+3.13 30.65+1.57 0.8679+0.0740 0.8832+0.0750 0.9047+0.0702 0.9224+0.0632 0.9355+0.0558 0.9448+0.0061

SuppTable 20. Evaluation metrics (meantstandard deviation) calculated for lesion-focused ROI on entire test set (N=516) between

DUNet images and synthetic ground truth (GTsyn), when enhancement is performed from US-3 underssampled AcqPr images.

DUNet was trained with loss functions shown in the table and the GTsyn was used as the ground truth to train the network.
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