
Performance Models for Distributed
Deep Learning Training Jobs on Ray

1st Federica Filippini
IBM Research & Politecnico di Milano

Milano, Italy
federica.filippini@polimi.it

2nd Boris Lublinsky
IBM Research

Dublin, Ireland
blublinsky@ibm.com

3rd Maximilien de Bayser
IBM Research

Rio De Janeiro, Brazil
mbayser@br.ibm.com

4th Danilo Ardagna
Politecnico di Milano

Milano, Italy
danilo.ardagna@polimi.it

Abstract—Deep Learning applications are pervasive today, and
efficient strategies are designed to reduce the computational
time and resource demand of the training process. The Dis-
tributed Deep Learning (DDL) paradigm yields a significant
speed-up by partitioning the training into multiple, parallel
tasks. The Ray framework supports DDL applications exploiting
data parallelism by enhancing the scalability with minimal user
effort. This work aims at evaluating the performance of DDL
training applications, by profiling their execution on a Ray cluster
and developing Machine Learning-based models to predict the
training time when changing the dataset size, the number of
parallel workers and the amount of computational resources.
Such performance-prediction models are crucial to forecast
computational resources usage and costs in Cloud environments.
Experimental results prove that our models achieve average
prediction errors between 3 and 15% for both interpolation
and extrapolation, thus demonstrating their applicability to
unforeseen scenarios.

Index Terms—Distributed training, Performance models, Ray

I. INTRODUCTION

Deep Learning (DL) applications are pervasive today, and
applied to tackle a variety of complex problems in hetero-
geneous fields ranging from, e.g., image classification [1]
to speech recognition [2]. The complexity of the training
process dictates the need to devise efficient strategies to
reduce the computational time and resource demand. The
Distributed Deep Learning (DDL) paradigm [3] moves in
this direction, aiming to speed-up the learning process by
splitting the training procedure in multiple tasks executed
in parallel. DLL is implemented according to two main
approaches: data parallelism [4], where the training process
is partitioned by dividing the input data in non-overlapping
samples, and model parallelism [5], where the neural network
is partitioned by layer while the input dataset is unique. Both
approaches, albeit yielding a significant speed-up when the
input data size or the number of neural network layers are
large, introduce communication overhead due to the need of
synchronizing partial results during the training. Nowadays,
several frameworks are available to support DDL training
applications, particularly data parallelism (e.g., PyTorch Dis-
tributedDataParallel [6], TensorFlow tf.distribute.Strategy API
[7], Horovod [8]). They offer different levels of flexibility and
scalability, but usually require the developer to specify the

correct architecture description for the cluster where the train-
ing runs. This allows to efficiently design the parallelization
schema, but is often a complex task. Ray [9], integrated with
popular Machine Learning (ML) frameworks as PyTorch [10]
and TensorFlow [11], is gaining popularity in supporting the
deployment and scaling of both general-purpose and ML-
based workflows. DDL applications can be easily executed
on Ray-based clusters, exploiting the available modules to
enhance the scaling with minimal user effort.

This works aims at evaluating the performance of DDL
training applications developed and executed on a cloud
Ray cluster. Starting from suitable profiling data, Machine
Learning-based performance models are developed to predict
the execution times of various tasks executed in this environ-
ment, varying the dataset size, the number of parallel workers
and the amount of resources they receive. As discussed in other
literature proposals (see, e.g., [12]), this is crucial to forecast
also the computational resources usage and the corresponding
costs related to the DDL training in cloud environments. To
the best of our knowledge, this is the first attempt to develop
performance models for DL applications based on Ray. Exper-
imental results prove that the average errors obtained for both
interpolation and extrapolation predictions are between 3 and
15%, making the models suitable for practical applications.

The rest of the paper is organized as follows: Section II
relates our work to the literature, Section III introduces the
problem we tackled and the main frameworks we considered,
and Section IV describes the experimental setup. Finally,
the results we obtained are presented in Section V, while
conclusions are drawn in Section VI.

II. RELATED WORK

To the best of our knowledge, this is one of the first attempts
to analyze the performance of Distributed Deep Learning
(DDL) applications based on Ray and to develop Machine
Learning (ML)-based models for execution time predictions.
Thus, we overview some recent works in related technological
fields, such as ML-based performance modelling for Big Data
and Deep Learning applications.

The authors in [13] proposed supervised ML models to
predict the performance of applications executed on Apache
Spark [14], a well-known framework for big data analysis,



achieving very good results with respect to the Ernest ap-
proach, developed by the Spark inventors [15]. Spark applica-
tions were considered also in [16], which proposes a ML-based
prediction platform for SQL queries and ML applications
exploiting stage-related features and a previous knowledge
of the application profile. This platform is implemented as
an additional Spark component, and it is designed to predict
the execution time of both individual and complex operators.
Moreover, [17] couples ML approaches and the queuing theory
to predict the performance of big data applications running on
clouds. Initial analytical models provide a baseline to train the
ML algorithm, which is validated, as in our work, testing both
its interpolation and extrapolation capabilities.

Considering Convolutional Neural Network (CNN) appli-
cations, [12] develops linear regression models to predict
the training times on GPU-as-a-service systems, exploiting
features related both to the CNN properties and the hardware
characteristics of the GPUs where the jobs are deployed. On
the other hand, [18] focuses on linear regression models for
CNN applications executed on edge devices, which are then
exploited in determining the optimal allocation minimizing the
latency between the data-gathering phase and the subsequent
decision-making one. Similarly, linear models are used in the
Schedulix framework [19] to estimate execution latency of
serverless applications in the public cloud, deployed according
to the Function as a Service paradigm.

On different, but related topics, the authors of [20] compare
and assess the good prediction capabilities of popular ML
techniques applied to a workload analysis on HTTP servers.
A framework leveraging ML models as logistic regression and
Support Vector Machine is proposed in [21] to predict failures
of legacy network nodes in the context of hybrid Software-
Defined Networking architectures. Finally, [22] exploit het-
erogeneous ML models together with anomaly detection to
properly configure a cloud-based Internet of Things device
manager, meeting Quality of Service constraints.

III. PROBLEM DESCRIPTION

This section introduces the main components considered in
this work, i.e., the Pytorch module used to implement the
Distributed Deep Learning training applications under study
(Section III-A) and the Ray framework (Section III-B).

A. The DistributedDataParallel Module

The PyTorch DistributedDataParallel (DDP) module [6]
supports data parallelism in Deep Learning model training,
splitting the input across the specified nodes. The model
to be trained is replicated on all processes involved in the
computation, which may be executed on a single or multiple
machines. Each process receives and tackles a portion of
the input data, while the gradients produced at each step
are gathered through collective communications and averaged
across all nodes as shown in Figure 1.

When initializing a DDP object, the problem configuration
and model state are broadcasted from the process with rank
0, so that all the model replicas start from the same initial

Fig. 1: DistributedDataParallel reduction process

point. Each process owns a Reducer, which has the goal
of synchronizing gradients during the backward pass. As
shown in Figure 1, gradients are organized and reduced in
buckets to improve communication efficiency. Starting from
the same initial state and averaging gradients at every iteration
guarantees that all model replicas on the DDP processes stay
synchronized during the training.

B. The Ray Framework

Ray [9] has been developed to easily and transparently
support the deployment and scaling of Machine Learning
(ML)-based and general Python workflows on heterogeneous
clusters. It is a unified framework that includes three main
layers, designed to effectively manage different stages and
aspects of the applications development. These are the Ray
cluster, which includes a set of worker nodes and can possibly
autoscale according to the applications resource requirements,
the Ray Core, which enables to scale generic Python appli-
cations, and the Ray AI Runtime (AIR) Toolkit, which is built
on top of Ray Core and is specifically devoted to ML and
Artificial Intelligence (AI) workflows.

Tasks submitted to a Ray cluster require a specific amount
of computing resources. The requests are managed by a
distributed scheduler, through a component, denoted as raylet,
deployed on each node in the cluster. Each raylet tracks the
resources local to its node and receives information about
the availability in other nodes. When a resource request
arrives, the raylet can grant the resources locally, if available,
scheduling the corresponding task for execution, or it can
provide the address of a remote raylet at which the resource
request should be offloaded [23]. The process is performed
automatically and, if the required resources are not available
in any cluster node, an additional component named autoscaler
may provision additional workers according to the demand.

Ray AIR [24], [25] has been developed to support AI and
ML applications. Its main goal is to enable and simplify ML
workflows scaling, providing a unified ecosystem for data
management, training, hyperparameter tuning and inference.
In particular, the Ray Train module [26] enables scaling ML
training workflows based on the most popular frameworks
(e.g., PyTorch [10] and TensorFlow [11]), and it is integrated
with other Ray libraries for, e.g., hyperparameter tuning and
inference, to help users in developing and managing the
entire workflow. Specific classes of trainers, checkpointers
and predictors are implemented to integrate with the different
Machine Learning and Deep Learning frameworks.



The experiments that will be described in the next sections
are based on the definition of a TorchTrainer, which is
configured by providing, on one hand, test parameters as the
batch size, learning rate and number of epochs, and, on the
other hand, parameters related to the DDL process scaling.
Specifically, a ScalingConfig object is initialized when creating
the trainer, and used to specify the number of required workers
and the number of CPUs or other resource types to be assigned
to each worker. A placement group is created internally for
each worker, so that the training can start only when all the
required resources are available in the cluster. By default, the
strategy used when creating each placement group is PACK,
which means that all resources bundles (i.e., the worker CPUs,
GPUs and any required extra resource) are created, if possible,
on the same worker node.

The trainer is serialized and copied to a remote Ray actor
when the fit() method is called. This starts the execution of
the data preprocessing step and the training loop. The method
returns an object that stores metrics from the training run, as
well as any checkpoints saved during the process.

IV. EXPERIMENTAL SETUP

This section describes the experiments that were executed to
evaluate the performance of Distributed Deep Learning (DDL)
training jobs. Specifically, Section IV-A provides details about
the DDL applications and the datasets considered for the train-
ing, while Section IV-B presents the infrastructure were the
experiments were executed. Finally, the methodology exploited
to collect training data and developing the performance models
is detailed in Section IV-C.

A. Deep Learning Models and Dataset

The training applications considered in the following consist
of two Convolutional Neural Network (CNN) models for
image classification, implemented relying on the PyTorch Dis-
tributedDataParallel (DDP) module [6]. The models are char-
acterized by neural networks of different sizes and structure.
In particular, the first one is a very small and simple network,
denoted in the following as small model, characterized by
around 400k parameters, while the second one is a slightly
larger network, denoted as large model, including almost 3M
parameters. Considering CNNs that are considerably smaller
than some traditional models as, e.g., AlexNet, allowed us
to obtain a lower bound on the scalability properties offered
by the Ray framework. Indeed, the overheads incurred during
the training due to the collective communications needed to
synchronize gradients and buffers are more significant than
what we would obtain with larger models. Moreover, by
considering these networks we could evaluate both the CPU
and GPU scalability, without encountering issues with the
resource memory and too much performance degradation of
the CPU training wrt the GPU. Finally, since in this context
the profiling data are more noisy than for the long training
of larger models for the above mentioned overhead, this is a
challenging scenario for evaluating the accuracy that can be
achieved trough ML-based performance models.

We considered the MNIST data set [27], consisting of 6k,
28 × 28 black and white images of handwritten digits, and a
test set of 10k images. We built four different training sets,
denoted in the following as MNIST, MNISTx2, MNISTx4 and
MNISTx8 and characterized by 6k, 12k, 24k, and 48k images,
respectively, by replicating the base MNIST data. Moreover,
we considered three different batch sizes (of 64, 128, and 256).

B. Infrastructure

The experiments were executed on a Ray cluster hosted on
AWS, including one head node and multiple worker nodes
provisioned on-demand by the Ray autoscaler as described
in Section III-B. The head node is based on a Virtual Ma-
chine (VM) instance of type m5.large, i.e., a general-purpose
instance featuring 3.1 GHz Intel Xeon Scalable processors
(Skylake 8175M or Cascade Lake 8259CL), with 2 virtual
CPUs (vCPUs) and 8 GiB of memory [28]. The worker nodes
are configured as follows:

• cpu 8 resource pool: up to 4 worker nodes, equipped with
a VM instance of type m4.2xlarge, characterized by 2.4
GHz Intel Xeon Scalable Processor (Broadwell E5-2686
v4 or Haswell E5-2676 v3) and offering 8 vCPUs and 32
GiB of memory.

• cpu 16 pool: up to 4 worker nodes, equipped with a VM
instance of type m4.4xlarge, characterized by 2.4 GHz
Intel Xeon Scalable Processor (Broadwell E5-2686 v4 or
Haswell E5-2676 v3) and offering 16 vCPUs and 64 GiB
of memory.

• cpu 72 pool: up to 16 worker nodes, equipped with a
VM instance of type c5n.18xlarge, characterized by 3.0
GHz Intel Xeon Platinum processors (Skylake 8124) and
offering 72 vCPUs and 192 GiB of memory.

• gpu 4 pool: one worker node, equipped with a VM
instance of type p3.8xlarge, characterized by a high
frequency Intel Xeon Scalable Processor (Broadwell E5-
2686 v4), 4 NVIDIA Tesla V100 GPUs (each pairing
5,120 CUDA Cores and 640 Tensor Cores), 32 vCPUs
and 244 GiB of memory, and supporting NVLink for
peer-to-peer GPU communication.

Note that, since raylet needs some resources to run, 2
vCPUs on each worker node are always reserved to it, so that
the maximum number of available CPUs is considered to be 4,
14 and 70 for the three CPU-only resource pools, respectively.

C. Methodology

This section details the methodology followed to collect
data related to the DDL model training and to process these
data in order to build the performance models that will be
described in the following.

1) Data Collection: The DDL training tasks exploiting the
models and dataset described in Section IV-A were executed
multiple times varying the dimension of the training data and
the batch size, the number of parallel workers, and the the
resources assigned to each worker. In the first set of tests, we
focused on the cpu 72 resource pool, varying the number of
parallel workers and CPUs per worker. In the second set, we



investigated the impact of different CPU types by varying the
chosen resource pool, fixing to 2 or 4 the number of parallel
workers and assigning to each worker all CPUs available in
a node. Finally, a third set of tests was performed by running
experiments on the GPU-accelerated node, exploiting 2, 3 or
4 parallel workers with one dedicated GPU each. The grid
of all configuration parameters is reported in Table I. The
experiments on the cpu 72 resource pool, which were later
used to build our performance models, were repeated twice
in order to enlarge the set of collected data and obtain robust
results with respect to possible variations due to unpredictable
overheads in the cluster.

TABLE I: Configuration Parameters
CPU-only experiments on the cpu 72 resource pool
Model #Images Batch Size #Workers #CPUs
small 6k,12k,24k 64,128,256 2,4,8,16,32,64 1
small 48k 64,128,256 2,4,8,16 1
small 6k,12k,24k, 48k 64,128,256 2,4,8,16,32 2
small 6k,12k,24k, 48k 64,128,256 2,4,8,16 4
large 6k,12k,24k,48k 64,128,256 2,4,8,16,32,64 2
large 6k,12k,24k,48k 64,128,256 2,4,8,16,32 4
large 6k,12k,24k,48k 64,128,256 2,4,8,16 8
CPU-only experiments varying resource pool
Model #Images Batch Size #Workers pool
large 6k,24k 64,128,256 2,4 cpu 8
large 6k,24k 64,128,256 2,4 cpu 16
large 6k,24k 64,128,256 2,4 cpu 72
GPU-accelerated experiments
Model #Images Batch Size #Workers #GPUs
large 6k,12k,24k,48k 64,128,256 2,3,4 1

The reported numbers of CPUs and GPUs in Table I are
intended per-worker. For each experiment, we collected the
execution times of different stages, as shown in Figure 2:

• train epoch and validate epoch: the time required by
each worker to run the training and validation, respec-
tively, of a single epoch. If, e.g., 3 epochs are run on 8
workers, this results in 24 data points for training and 24
for validation.

• training loop: the time required by each worker to run the
complete training loop, including training and validation
for all the specified epochs.

• fit: the time required to run the trainer.fit method, in-
cluding the dataset loading on each worker, the data and
model preparation, and the training loop. Note that this
includes also the time required to create the placement
groups for all workers, and thus the time the Ray Au-
toscaler needs to provision new nodes if needed.

• train: the time required to run the external training
function, including the initialization of the trainer with
the proper configuration and scaling parameters and the
trainer.fit method.

Fig. 2: Training stages

2) Performance Models Building: Machine Learning (ML)-
based performance models were built through the aMLLibrary,
an open-source tool for the automatic generation of regression
models proposed in [29]. Specifically, the set of considered
ML methods and corresponding hyperparameters is reported
in Table II.

The models were trained and validated considering the
execution times collected on the cpu 72 resource pool, since
this set of tests is the one that incorporates the highest
variability.

TABLE II: Machine Learning Models and Parameters
Model Name Hyperparameter Name Values
XGBoost min child weight 1, 3

gamma 0, 1
n estimators 50, 150
learning rate 0.01, 0.05, 0.1
max depth 1, 5, 10

Ridge Regression alpha 0.01, 0.1, 1
Decision Tree criterion mse, friedman mse, mae

max depth 3, 5, 10, 20
max features auto, sqrt, log2
min samples split 0.01, 0.1, 0.2, 0.5
min samples leaf 0.01, 0.05, 0.1, 0.2, 0.3

Random Forest n estimators 10, 50, 200
criterion mae
max depth 3, 10
max features auto
min samples split 0.1, 0.5
min samples leaf 1, 4

The best set of hyperparameters was selected in all scenarios
considering K-Fold validation technique, with number of folds
equal to 5. The list of basic features considered when building
the models is reported in Table III, and chosen as in other lit-
erature proposals [13], [15]. This was extended, exploiting the
feature augmentation technique implemented by aMLLibrary,
by considering the inverse and logarithm of n, j, num CPUs
and num images, and, when interpolating and extrapolating on
the number of images in the dataset, by computing products
up to the second degree. In particular, the logarithm of the
number of used resources is particularly significant in parallel
applications, since it effectively captures the behavior of the
weighted average computation, usually based on reduce-like
operations [13] (see Section III-A).

TABLE III: Basic Features of the Machine Learning Models
Feature Name Description
num images Number of images in the training dataset
n Number of parallel workers
j Number of CPUs per worker
num CPUs Total number of used CPUs (i.e., n · j)
b Batch size
e Number of epochs
l Learning rate

The choice of the best model was performed considering
all the three validation techniques offered by aMLLibrary, i.e.,
HoldOut, Interpolation and Extrapolation. In particular, Hold-
Out randomly extracts a given percentage of observations to be
used as validation set, while Interpolation and Extrapolation
are specifically tailored to build models able to predict values
in areas of the feature space that were not sufficiently explored.
It is relevant to note that, while the interpolation capabilities
of ML models are widely known from the literature [30], good
extrapolation results are generally harder to achieve. However,
ML models that can accurately generalize to unforeseen sce-



narios have significant practical applications, e.g., the capacity
planning of the cluster. In our tests:

• The leave-out ratio considered for HoldOut is 0.2.
• Interpolation was performed on the total number of used

CPUs and the dataset size. Specifically, when considering
the total number of CPUs, the training set included data
with num CPUs ∈ {4, 8, 32, 128}, while the validation
and test sets included those with num CPUs ∈ {16, 64}.
Finally, for the dataset size, observations with a number
of images equal to 6k, 24k and 48k constituted the
training set, while the validation and tests set were built
considering observations with dataset size equal to 12k.

• Extrapolation tests involved the total number of used
CPUs and the dataset size. The validation and tests sets
were built considering the last parameter values included
in Table I (i.e., num CPUs > 32 and num images > 24k,
respectively).

V. EXPERIMENTAL RESULTS

This section reports the results obtained with all experi-
ments described in Section IV. In particular, Section V-A is
focused on the analysis of all data collected as reported in
Section IV-C1, while Section V-B discusses the accuracy of
the performance models built as explained in Section IV-C2.

A. Execution Times Analysis

The main goal of the analysis reported in this section is to
discuss the impact on the model training times due to varying
configuration parameters. The most significant impact on the
execution times is due to increasing/decreasing the number
of workers. This is, however, considerably different when
training the small or large neural network model described
in Section IV-A. Indeed, very simple networks as the small
model benefit only from increasing the number of parallel
workers up to 8, as exemplified in Figure 3, since then the
communication overheads become too large.

Figure 4 shows the distribution of the average execution
times of the train, fit, training loop, train epoch and vali-
date epoch events considering the large model, varying the
configuration parameters. Note that the results are grouped,
using different colours, by the dataset size. Specifically, the
values on the colormap correspond to the total number of im-
ages, divided by the default size of the MNIST training dataset
(i.e., 6k). From the first row in Figure 4, we can observe that
the execution times always drop significantly when increasing
the number of workers n up to 16. Instead (see the third row),
they increase with the number of images (i.e., the dataset size)
in all scenarios except the validate epoch (since the validation
dataset has fixed size). Moreover, changing the batch size (last
row) does not significantly affect the execution times of the
training epochs or the training loop, but it affects the overall
execution time of the experiment (see Figures 4a and 4b), since
it is related to the data loading part. Since the total number
of CPUs and the number of images are the parameters that
mostly affect the execution times, these were considered for
extrapolation and interpolation when building the performance

models, as described in Section IV-C2, obtaining the results
shown in the next section.

Figure 5 reports the execution times of train, fit, train-
ing loop, train epoch and validate epoch on different re-
source pools. A significant reduction is observed when consid-
ering the cpu 72 pool, which exploits the most powerful VM
instances, while the difference between cpu 8 and cpu 16 is
almost negligible.

Finally, Figure 6 reports the execution times when exploit-
ing GPUs. Due to the limited size of the GPU-accelerated
node, only instances with 2, 3 and 4 parallel workers could be
considered. However, it can be noticed that the execution times
are always significantly lower than in the CPU-only scenario.
Specifically, a speed-up close to 10× can be observed with
respect to the results in Figure 4 (i.e., those obtained on the
cpu 72 resource pool).
B. Performance Models

This section reports the prediction results obtained by
the different performance models built as described in Sec-
tion IV-C2.

In particular, the HoldOut validation technique provides a
lower bound for the models accuracy, since data are randomly
split in training and test set. The prediction results are reported
in Figure 7. In particular, Figure 7a compares the real and
predicted values in the test set, while Figure 7b reports the
average errors and the MAPE on the test set. We can notice
that the MAPE is very low (below 2%) for the training loop
and train epoch events, while larger but still below 7% for the
train and fit events. This is expected, since train and fit include
the overheads due to the data loading, trainer initialization and
resource provisioning.

As already mentioned (see Section IV-C2), interpolation
and extrapolation results are more relevant in practice, since
they investigate the generalization capabilities of the obtained
models. The prediction results obtained when interpolating on
the total number of CPUs are reported in Figure 8. As in
the previous case, the MAPE is below 11% for all events,
and the percentage error is always below 35%. This makes
the models suitable for predictions in real-life scenarios, since
MAPEs around 30% are usually considered as acceptable from
the literature [31]. The predictions results for extrapolation on
the total number of CPUs and dataset size are reported in
Figures 9 and 10, respectively. When considering the total
number of CPUs, the MAPE is slightly larger than in the
previous cases, which is reasonable since extrapolation is a
significantly more complex task, but still lower than 16%.
For the extrapolation on the dataset size, augmenting the
features by considering the products up to the second degree,
as mentioned in Section IV-A, allows to obtain a MAPE below
4% both for the training loop and train epoch events.

VI. CONCLUSIONS

This work presents one of the first attempts to investi-
gate the performance of Distributed Deep Learning training
applications developed exploiting the Ray framework. The
results of an extensive experimental campaign collecting the



2.0 4.0 8.0 16.0 32.0 64.0
num_workers (n)

0

100

200

300

400

500
El

ap
se

dT
im

e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2 4 8 16 32 64
num_workers (n)

0
50

100
150
200
250
300
350
400

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2.0 4.0 8.0 16.0 32.0 64.0
num_workers (n)

0
100
200
300
400
500
600
700

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2.0 4.0 8.0 16.0 32.0 64.0
num_workers (n)

0

50

100

150

200

250

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

Fig. 3: Average train, fit, training loop and train epoch times for the small model on the cpu 72 resource pool

2 4 8 16 32 64
num_workers (n)

0
500

1000
1500
2000
2500
3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

4 8 16 32 64 128
num_CPUs

0
500

1000
1500
2000
2500
3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

1.0 2.0 4.0 8.0
num_images

0
500

1000
1500
2000
2500
3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

6.0 12.0 24.0
batch_size (b)

0
500

1000
1500
2000
2500
3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

(a) train

2 4 8 16 32 64
num_workers (n)

0

500

1000

1500

2000

2500

3000

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

4 8 16 32 64 128
num_CPUs

0

500

1000

1500

2000

2500

3000

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

1.0 2.0 4.0 8.0
num_images

0

500

1000

1500

2000

2500

3000

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

6.0 12.0 24.0
batch_size (b)

0

500

1000

1500

2000

2500

3000

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

(b) fit

2 4 8 16 32 64
num_workers (n)

0

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

4 8 16 32 64 128
num_CPUs

0

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

1.0 2.0 4.0 8.0
num_images

0

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

6.0 12.0 24.0
batch_size (b)

0

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

(c) training loop

2 4 8 16 32 64
num_workers (n)

0

200

400

600

800

1000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

4 8 16 32 64 128
num_CPUs

0

200

400

600

800

1000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

1.0 2.0 4.0 8.0
num_images

0

200

400

600

800

1000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es
6.0 12.0 24.0

batch_size (b)

0

200

400

600

800

1000

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

(d) train epoch

2 4 8 16 32 64
num_workers (n)

0

2

4

6

8

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

4 8 16 32 64 128
num_CPUs

0

2

4

6

8

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

1.0 2.0 4.0 8.0
num_images

0

2

4

6

8

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

6.0 12.0 24.0
batch_size (b)

0

2

4

6

8

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

(e) validate epoch

Fig. 4: Average execution times for the large model on the cpu 72 resource pool

execution times of different training tasks were used to develop
Machine Learning-based models for performance predictions,
achieving Mean Absolute Percentage Errors below 15% in all
the considered scenarios. Future developments may include
the extension of the ML-based performance models to analyze
the impact of exploiting GPUs for the training, and to better
investigate the performance variations due to concurrent tasks
execution on the same worker nodes.

REFERENCES

[1] G. Huang, Z. Liu, L. Van Der Maaten et al., “Densely connected
convolutional networks,” in IEEE CVPR, 2017, pp. 2261–2269.

[2] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
Classifier Systems. Springer Berlin Heidelberg, 2000, pp. 1–15.

[3] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput. Surv.,
vol. 52, no. 4, 2019.

[4] C. Shallue, J. Lee, J. Antognini et al., “Measuring the effects of data
parallelism on neural network training,” JMLR, 2018.

[5] B. M. Forrest, D. Roweth, N. Stroud et al., “Implementing neural
network models on parallel computers,” Comput. J., vol. 30, no. 5, p.
413–419, 1987.

[6] Pytorch distributeddataparallel module. [Online]. Available: https:
//pytorch.org/docs/stable/notes/ddp.html

[7] Tensorflow distributed training. [Online]. Available: https://www.
tensorflow.org/guide/distributed training

[8] Horovod. [Online]. Available: https://horovod.readthedocs.io/en/stable/
[9] Ray. [Online]. Available: https://docs.ray.io/en/releases-2.0.0/index.html

[10] Pytorch. [Online]. Available: https://pytorch.org
[11] Tensorflow. [Online]. Available: https://www.tensorflow.org
[12] M. Lattuada, E. Gianniti, D. Ardagna et al., “Performance prediction of

deep learning applications training in GPU as a service systems,” Clust.
Comput., vol. 25, no. 2, pp. 1279–1302, 2022.

[13] A. Maros, F. Murai, A. P. C. da Silva et al., “Machine learning for
performance prediction of spark cloud applications,” in IEEE CLOUD,
E. Bertino, C. K. Chang, P. Chen et al., Eds., 2019, pp. 99–106.

[14] Apache spark. [Online]. Available: https://spark.apache.org
[15] S. Venkataraman, Z. Yang, M. Franklin et al., “Ernest: Efficient perfor-

mance prediction for Large-Scale advanced analytics,” in USENIX NSDI
16, 2016, pp. 363–378.



cpu_16 cpu_72 cpu_8
resource-pool

500

1000

1500

2000

2500

3000
El

ap
se

dT
im

e

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

_im
ag

es

cpu_16 cpu_72 cpu_8
resource-pool

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

_im
ag

es

cpu_16 cpu_72 cpu_8
resource-pool

500

1000

1500

2000

2500

3000

El
ap

se
dT

im
e

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

_im
ag

es

cpu_16 cpu_72 cpu_8
resource-pool

200

400

600

800

El
ap

se
dT

im
e

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

_im
ag

es

cpu_16 cpu_72 cpu_8
resource-pool

4

6

8

10

12

14

El
ap

se
dT

im
e

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

_im
ag

es

Fig. 5: Average train, fit, training loop, train epoch, and validate epoch times for the large model on different resource pools

2 3 4
num_workers (n)

50

100

150

200

250

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2 3 4
num_workers (n)

25
50
75

100
125
150
175
200

tim
e_

to
ta

l_s

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2 3 4
num_workers (n)

25
50
75

100
125
150
175

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2 3 4
num_workers (n)

0
10
20
30
40
50
60

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

2 3 4
num_workers (n)

0.4
0.5
0.6
0.7
0.8
0.9

El
ap

se
dT

im
e

1

2

3

4

5

6

7

8

nu
m

_im
ag

es

Fig. 6: Average train, fit, training loop, train epoch, and validate epoch times for the large model exploiting GPUs

0 500 1000 1500 2000 2500 3000
True Values

0

500

1000

1500

2000

2500

3000

Pr
ed

ict
io

ns

0 500 1000 1500 2000 2500 3000
True Values

0

500

1000

1500

2000

2500

3000

Pr
ed

ict
io

ns

0 500 1000 1500 2000 2500
True Values

0

500

1000

1500

2000

2500

Pr
ed

ict
io

ns

0 100 200 300 400 500
True Values

0

100

200

300

400

500

Pr
ed

ict
io

ns

(a) Real vs. Predicted values for train, fit, training loop and train epoch events

0 10 20 30 40 50
Test index

0

5

10

15

20

Er
ro

r (
%

)

average_percentage_error
MAPE (6.41%)

0 10 20 30 40 50
Test index

0

5

10

15

20

25

30

35

Er
ro

r (
%

)

average_percentage_error
MAPE (6.71%)

0 20 40 60 80 100 120 140 160
Test index

0

5

10

15

20

25

Er
ro

r (
%

)

average_percentage_error
MAPE (1.07%)

0 20 40 60 80 100
Test index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r (
%

)

average_percentage_error
MAPE (1.89%)

(b) Prediction errors for train, fit, training loop and train epoch events

Fig. 7: Predictions and average percentage error for the holdout models

[16] S. Mustafa, I. Elghandour, and M. A. Ismail, “A machine learning
approach for predicting execution time of spark jobs,” Alexandria
Engineering J., vol. 57, no. 4, pp. 3767–3778, 2018.

[17] E. Ataie, A. Evangelinou, E. Gianniti et al., “A hybrid machine learning
approach for performance modeling of cloud-based big data applica-
tions,” Comput. J., vol. 65, no. 12, pp. 3123–3140, 2022.

[18] S. Disabato, M. Roveri, and C. Alippi, “Distributed deep convolutional
neural networks for the internet-of-things,” IEEE Trans. on Computers,
vol. 70, no. 08, pp. 1239–1252, 2021.

[19] A. Das, A. Leaf, C. A. Varela et al., “Skedulix: Hybrid cloud scheduling
for cost-efficient execution of serverless applications,” in IEEE CLOUD,
2020, pp. 609–618.

[20] D. F. Kirchoff, M. Xavier, J. Mastella et al., “A preliminary study of ma-
chine learning workload prediction techniques for cloud applications,”
in EMPDP, 2019, pp. 222–227.

[21] M. Ibrar, L. Wang, G.-M. Muntean et al., “Prepass-flow: A machine
learning based technique to minimize acl policy violation due to links
failure in hybrid sdn,” Computer Networks, vol. 184, p. 107706, 2021.

[22] P. Nawrocki and P. Osypanka, “Cloud resource demand prediction using
machine learning in the context of qos parameters,” Grid Computing J.,
vol. 19, 2021.

[23] Ray v2 architecture whitepaper. [Online]. Available: https:

//docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q
TjyJgJL jN2fI/preview

[24] Ray AI runtime toolkit. [Online]. Available: https://docs.ray.io/en/
releases-2.0.0/ray-air/getting-started.html

[25] Ray AIR technical whitepaper. [On-
line]. Available: https://docs.google.com/document/d/
1bYL-638GN6EeJ45dPuLiPImA8msojEDDKiBx3YzB4 s/preview#
heading=h.ru1taexewu7i

[26] Ray train. [Online]. Available: https://docs.ray.io/en/releases-2.0.0/train/
train.html

[27] Mnist handwritten digits database. [Online]. Available: http://yann.
lecun.com/exdb/mnist/

[28] Amazon EC2 instance types. [Online]. Available: https://aws.amazon.
com/ec2/instance-types

[29] B. Guindani, M. Lattuada, and D. Ardagna, “aMLLibrary: An automl
approach for performance prediction,” in ECMS 2023 Proceedings - to
appear, 2023.

[30] D. Didona and P. Romano, “On bootstrapping machine learning perfor-
mance predictors via analytical models,” 2014.

[31] E. D. Lazowska, J. Zahorjan, G. S. Graham et al., Quantitative system
performance: computer system analysis using queueing network models.
Prentice-Hall, 1984.



0 250 500 750 1000 1250 1500 1750
True Values

0

250

500

750

1000

1250

1500

1750

Pr
ed

ict
io

ns

0 200 400 600 800 1000 1200 1400 1600
True Values

0

200

400

600

800

1000

1200

1400

1600

Pr
ed

ict
io

ns

0 200 400 600 800 1000 1200 1400
True Values

0

200

400

600

800

1000

1200

1400

Pr
ed

ict
io

ns

0 200 400 600 800 1000
True Values

0

200

400

600

800

1000

Pr
ed

ict
io

ns

(a) Real vs. Predicted values for train, fit, training loop and train epoch events

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Test index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r (
%

)

average_percentage_error
MAPE (5.44%)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Test index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r (
%

)
average_percentage_error
MAPE (6.89%)

0 20 40 60 80 100 120
Test index

0

5

10

15

20

25

30

35

Er
ro

r (
%

)

average_percentage_error
MAPE (9.68%)

0 25 50 75 100 125 150 175 200
Test index

0

5

10

15

20

25

Er
ro

r (
%

)

average_percentage_error
MAPE (10.73%)

(b) Prediction errors for train, fit, training loop and train epoch events

Fig. 8: Predictions and average percentage error for interpolation on the total number of CPUs (num CPUs ∈ {16, 64})

0 100 200 300 400 500 600 700 800
True Values

0

100

200

300

400

500

600

700

800

Pr
ed

ict
io

ns

0 100 200 300 400 500 600 700 800
True Values

0

100

200

300

400

500

600

700

800

Pr
ed

ict
io

ns

0 200 400 600 800 1000
True Values

0

200

400

600

800

1000

Pr
ed

ict
io

ns

0 50 100 150 200 250 300 350
True Values

0

50

100

150

200

250

300

350

Pr
ed

ict
io

ns

(a) Real vs. Predicted values for train, fit, training loop and train epoch events

0 2 4 6 8 10 12 14 16
Test index

0

5

10

15

20

25

30

Er
ro

r (
%

)

average_percentage_error
MAPE (14.54%)

0 2 4 6 8 10 12 14 16
Test index

0

5

10

15

20

25

30

Er
ro

r (
%

)

average_percentage_error
MAPE (15.92%)

0 20 40 60 80 100
Test index

0

10

20

30

40

Er
ro

r (
%

)

average_percentage_error
MAPE (12.79%)

0 20 40 60 80 100 120
Test index

0

5

10

15

20

25

30

35
Er

ro
r (

%
)

average_percentage_error
MAPE (13.47%)

(b) Prediction errors for train, fit, training loop and train epoch events

Fig. 9: Predictions and average percentage error for extrapolation on the total number of CPUs (num CPUs > 32)

0 500 1000 1500 2000 2500
True Values

0

500

1000

1500

2000

2500

Pr
ed

ict
io

ns

0 200 400 600 800 1000
True Values

0

200

400

600

800

1000

Pr
ed

ict
io

ns

(a) Real vs. Predicted values for training loop and train epoch events

0 10 20 30 40 50 60
Test index

0

2

4

6

8

Er
ro

r (
%

)

average_percentage_error
MAPE (3.85%)

0 20 40 60 80 100
Test index

0

2

4

6

8

10

Er
ro

r (
%

)

average_percentage_error
MAPE (3.76%)

(b) Prediction errors for training loop and train epoch events

Fig. 10: Predictions and average percentage error for extrapolation on the dataset size (num images > 24k)


