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Abstract

This paper addresses a two-machine re-entrant flow shop scheduling
problem with stochastic processing times where each job is expected to
require a rework phase, flowing twice within the whole system. Due to the
stochastic characteristics of the addressed problem, the proposed approach
aims to devise robust schedules, i.e., schedules that are less sensitive to
the occurrence of uncertain events, specifically, to the variability of the
processing times. Two classes of approaches are proposed: the first is
a branch-and-bound algorithm capable of solving the problem optimally,
although with limitations regarding the size of the scheduling instances;
the second is heuristic algorithms that can be applied to medium/large
instances. For both approaches, the goal is to minimise the value-at-risk
associated with the makespan, to assist decision-makers in balancing ex-
pected performance and mitigating the impact of extreme scenarios. A
Markovian Activity Network (MAN) model is exploited to estimate the
distribution of the makespan and evaluate its value-at-risk. Phase-type
distributions are used to cope with general distributions for the processing
times while exploiting a Markovian approach. A set of computational ex-
periments is conducted to demonstrate the effectiveness and performance
of the proposed approaches.

Key words: Flow shop; Stochastic scheduling; Re-entrant flow shop; Marko-
vian activity networks; Risk measure

1 Introduction
Flow shop scheduling models are well-known and established approaches for
planning a wide range of manufacturing systems where a set of jobs undergo
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a fixed sequence of operations. Furthermore, to cope with the uncertainty af-
fecting the characteristics of real processes and systems, stochastic scheduling
approaches have been proposed supporting the use of random variables to model
uncertain factors, e.g., processing times, routings, etc. This class of approaches
are especially relevant to match the characteristics of re-manufacturing processes
where, due to the unpredictable conditions of used parts to be re-manufactured,
operations could require different processing times and/or reworks. Specifically,
the motivation for the proposed approach stems from the repairing process of
turbines for power generation. In this class of processes, blades are disassem-
bled and re-manufactured by removing the worn parts, adding new material,
and restoring the original shape. Within this process, the two most critical
operations are the addition of the missing material through an additive manu-
facturing process and a subsequent grinding process to obtain the final desired
shape. Furthermore, due to the variable degree of wear, blades quite always
require a further rework by repeating the same sequence of operations, thus
competing for the same resources (Liu and Urgo 2022b).

The described process can be modelled as a two-machine re-entrant stochas-
tic flow shop, where jobs are processed in two stations in sequence and, at the
end of the process, they enter the system again, repeating the same routing.
The deterministic two-machine re-entrant flow shop scheduling problem has re-
ceived considerable attention (Choi and Kim 2007, 2009; Jeong and Kim 2014),
but its stochastic version has been less addressed in the literature. Among the
wide range of possible sources of uncertainty, the processing times of manufac-
turing activities are the most relevant due to their impact on the production
schedules. In stochastic scheduling approaches, Random variables and their
associated probability distributions are used to model the pertinent sources of
uncertainty. Furthermore, most stochastic scheduling approaches aim to opti-
mise a statistic of the objective criteria, e.g., the expected value. Nevertheless,
to devise robust schedules, different optimisation criteria should be used to mit-
igate the impact of extreme events, e.g., indicators able to measure the risk
associated with a given schedule.

In this paper, we consider a two-machine re-entrant flow shop scheduling
problem with stochastic processing times, and the objective is to minimise the
value-at-risk of the makespan. Branch-and-bound and heuristic algorithms are
proposed. At the same time, a Markovian Activity Network model is used to
estimate the distribution of the objective function, under the hypothesis that
processing times follow general phase-type distributions.

The paper is organised as follows: Sect. 2 reviews relevant literature, Sect. 3
describes the addressed scheduling problem and the risk measure used, Sect. 4
presents the proposed branch-and-bound approach. In contrast, heuristic algo-
rithms are presented in Sect. 5, and the results of the experiments are reported
in Sect. 6. Finally, Sect. 7 provides the final considerations and conclusions.

2 Literature Review
Re-entrant flow shops, as a special case of flow shops, have been attracting sig-
nificant attention in the literature (Drobouchevitch and Strusevich 1999), due
to their capability of modelling relevant characteristics of real manufacturing
problems, as well as for their intrinsic solving difficulty. This class of scheduling
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problems is further classified according to the characteristic of the routing. The
simplest case, i.e., the (1,2,1)-re-entrant flow shop where jobs are processed in
the flow shop and then return to the first machine only, is already NP-hard
(Emmons and Vairaktarakis 2012). Re-entrant flow shop scheduling models
have been proposed for application in the semiconductor industry (Graves et al.
1983) together with a simple and effective scheduling algorithm to minimise
the average throughput time. Demirkol and Uzsoy (2000) suggested decomposi-
tion methods to minimise the maximum lateness in a re-entrant flow shop with
sequence-dependent setup times. Pan and Chen (2003) show that the re-entrant
permutation flow shop scheduling problem to minimise the makespan is NP-hard
in the strong sense, even for the two-machine case, and propose a mixed inte-
ger programming formulation and heuristic algorithms. Choi and Kim (2007,
2009); Jeong and Kim (2014); Choi and Kim (2008) addressed the two-machine
re-entrant flow shop scheduling problem to minimise makespan- and tardiness-
related objective functions, also extending them to the m-machine version of
the problem. Yu and Pinedo (2020) studied two special cases of the ordered
re-entrant flow shop, machine-ordered and proportionate flow shops, proposing
a dispatching rule to minimise the makespan.

Stochastic scheduling approaches have been proposed to match the charac-
teristics of real scheduling problems, where the occurrence of uncertain events is
frequent, capable of modelling the uncertainty through random variables and the
associated probability distributions. A review of the works addressing stochas-
tic two-machine flow shop scheduling problems can be found in Gourgand et al.
(2000). Within this corpus of works, a special case is represented by modelling
processing times with exponential distributions. In such cases, the Talwar rule
has been proposed (Talwar 1967) and proved optimal to minimise the expected
makespan (Cunningham and Dutta 1973). Within the class of stochastic two-
machine flow shop scheduling problems, different objective functions can be pur-
sued: minimisation of the expected maximum completion time, the optimisation
of the expectation-variance (De et al. 1992) and minimax regret (Kouvelis et al.
2000). The advantages and limitations linked to the use of these objective func-
tions have been addressed in Tolio and Urgo (2013); Manzini and Urgo (2015);
Bertsimas and Sim (2004); Tetenov (2012); Manzini and Urgo (2018) and Urgo
(2019). Risk measures derived from applications in the financial area have also
been proposed for scheduling problems to pursue robustness. Examples are the
value-at-risk and conditional value-at-risk (Filippi et al. 2020; Dixit and Tiwari
2020). Sarin et al. (2014) proposed a scenario-based mixed-integer program for-
mulation to minimise the conditional value-at-risk of the total weighted tardiness
for both a single and parallel machine scheduling problem. Tolio et al. (2011);
Atakan et al. (2016); Chang et al. (2017); Urgo and Váncza (2019); Kasperski
and Zieliński (2019) presented approaches to optimise the value-at-risk of differ-
ent objective functions within the class of single-machine scheduling problems.
Meloni and Pranzo (2020) addressed the minimisation of the conditional value-
at-risk of the makespan for a resource-constrained project scheduling problem
where the processing time of activities is modelled through an interval in the
integer domain.

Nevertheless, in stochastic scheduling problems where the processing times
of jobs are modelled through general probability distributions, the main dif-
ficulty resides in estimating the distribution of the objective function (Dodin
1985, 1996). Sarin et al. (2010) suggested a method utilising a finite mix-
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ture model to estimate any kind of processing time distribution by employing
a convex combination of normal distributions, yielding highly favourable out-
comes in numerous instances. The mean and variance of the makespan are then
computed accordingly through an approximation based on the Clark equation
(Clark 1961). However, numerous paths are available in the two-machine re-
entrant flow shop scheduling problem, ranging from the first sequenced activity
on the first machine to the last activity on the second machine. These paths
have at least a few activities in common, leading to correlated completion time
distributions. Thus, this approximation may lead to significant errors (Sarin
et al. 2010). Furthermore, Markovian Activity Networks (MAN) model has
been proposed to support the exact estimation of this distribution considering
that the job processing times adhere to an exponential distribution (Kulkarni
and Adlakha 1986). To overcome this limitation, extensions have been pro-
posed to cope with generally distributed processing times by approximating
them through phase-type distributions (Urgo 2014; Angius et al. 2021). Using
this class of models, the distributions of the makespan can be estimated. Based
on this, related risk measures can be calculated to support developing a robust
schedule. A branch-and-bound approach supported by MAN and phase-type
distributions has been proposed for a stochastic two-machine permutation flow
shop scheduling problem, without re-entrant flows Liu and Urgo (2023). In con-
trast, a preliminary version of this approach considering re-entrant flows has
been proposed by Liu and Urgo (2022a).

As mentioned, the stochastic version of the re-entrant flow shop scheduling
problems has been scarcely addressed in the literature. Dugardin et al. (2010)
addressed a stochastic multi-objective re-entrant hybrid flow shop scheduling
problem using an approach based on discrete event simulation. Lee et al. (2011)
presented a genetic algorithm to solve a stochastic re-entrant flow shop schedul-
ing problem to minimise the weighted tardiness and the makespan.

Various heuristic approaches have been proposed to tackle both the deter-
ministic and stochastic versions of the scheduling problems (Juan et al. 2023).
The Iterated Local Search (ILS) framework (Lourenço et al. 2019) has suc-
cessfully solved the deterministic flow shop scheduling problem. Specifically,
the NEH constructive heuristic (Nawaz et al. 1983), along with the iterated
greedy(IG) algorithm (Ruiz and Stützle 2007), is regarded as the most effective
method (Benavides and Vera 2022). Baker and Altheimer (2012) introduced
three heuristics, namely CDS/Johnson, CDS/Talwar and NEH, to address the
stochastic m-machine flow shop scheduling problem. These heuristics were com-
pared in terms of efficiency, revealing no clear dominance among them. Addi-
tionally, Wang et al. (2005a,b) proposed genetic algorithms to minimise the
expected makespan when processing times follow a uniform distribution. By
adapting the iterated greedy and NEH algorithms to suit the characteristics of
the two-machine re-entrant flow shop scheduling problem with stochastic pro-
cessing times, they can be coupled with the estimation of the distribution of the
objective function using Markovian Activity Networks (MAN).

3 Problem formulation
In a re-entrant two-machine permutation flow shop, jobs are processed on the
two machines (Ma,Mb) in series, and after their processing, a rework is required
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on both Ma and Mb. Following the formalisation introduced in Choi and Kim
(2007), jobs are classified into two sets N and N ′. Jobs in N visit the machines
for the first time and are called first-pass jobs. In contrast, the jobs in N ′ are the
ones visiting the machines for the second time and are called second-pass jobs.
Therefore, given n jobs to be processed in the flow shop, 2n jobs must be consid-
ered, i.e., n first-pass jobs and n second-pass jobs. A precedence relation has to
be defined between a first-pass job and its corresponding second-pass job, i.e., a
second-pass job can only be processed on Ma after the corresponding first-pass
job has been completed on Mb. A job is considered completed when its second-
pass job is completed on Mb. A permutation flow shop problem is considered;
thus, the sequence of jobs on Ma and Mb is the same. The described scheduling
problem matches a subset of real re-manufacturing processes, often entailing
additional steps before (e.g., cleaning, inspection, etc.) and after (inspection,
assembling, etc.) the considered two. Additional precedence constraints are
imposed to match the constraints derived by process steps not included in the
current formalisation. A rework is usually decided after an inspection, trigger-
ing the definition of process parameters for the rework itself. As inspecting the
part reasonably requires time, the following assumption is defined:

• a second-pass job can be processed at least two jobs after the corresponding
first-pass one unless no other jobs to be processed are available.

The processing time of a job j ∈ N ∪N ′ on machine Mi, i = a, b, denoted as
pij , is modelled as an independent random variable following a general phase-
type distribution. No limitations or constraints are imposed on the number of
phases and structure, which allows for its use in approximating any positively
valued distribution (Bladt and Yslas 2022). Due to the uncertainty affecting
processing times, the makespan is also a random variable depending on pij ,
as well as on scheduling decisions. The proposed scheduling approach aims
to mitigate the impact of longer processing times on the makespan. Thus, the
minimisation of the value-at-risk (VaR) of the makespan is used as the objective
function.

Definition 3.1. The value-at-risk α (V aRα) of a performance indicator z as-
sociated with decisions x can be defined as:

ζα(x) = min{ζ|Fz(x, ζ) ≥ 1− α} (1)

where F is the cumulative distribution function of z and α the risk level.

In the two-machine re-entrant flow shop scheduling problem under investi-
gation, the decision vector x defines the sequencing of the jobs, while a vector
of random variables p = {pa,1, ..., pb,2n} models the processing times associated
to the jobs. These random variables are governed by a probability measure P
and are independent of sequencing decisions in x. If the considered performance
indicator is the makespan, z = Cmax, for a given schedule x, the cumulative
density function (cdf) for the makespan is defined as:

FCmax
(x, ζ) = P (Cmax(x) ≤ ζ|x) (2)

Then, the V aRα of Cmax, associated with a schedule defined by x, is defined
according to the following equation:

ζα(x) = min{ζ|FCmax
(x, ζ) ≥ 1− α} (3)
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The described problem can be defined as F2/re − entrant/pij/V aRCmax

(Emmons and Vairaktarakis 2012). Furthermore, since the sequencing deci-
sion vector x is independent of the values of stochastic variables in p, and the
makespan Cmax is a regular scheduling objective function (Pinedo 2016), the
value of Cmax(x) is non-decreasing with respect to the scheduling of a new job
or the introduction of additional precedence constraints. As a result, the ob-
jective function value (VaR) for a partial schedule serves as a lower bound for
the objective function value of schedules that include extra jobs (Ma and Wong
2010). Table 1 summarises the decision variables and parameters modelled to
address the considered scheduling problem.

Table 1 Parameters and decision variables.

Notations

x decision vector

α risk level

ζα(x) V aRα value associated with decision x

pij processing time of job j on machine i, j = 1, ..., 2n, i = a, b

p vector of processing time variables, p = {pa,1, ..., pb,2n}

Cmax(x) makespan associated to sequence decisions x

FCmax(x, ζ) cumulative density function (cdf) of the makespan

Based on these assumptions, a branch-and-bound algorithm is proposed to
search for a schedule that minimises the value-at-risk of the makespan.

4 Branch-and-bound algorithm
The optimisation of the value-at-risk associated with the makespan is accom-
plished by employing a branch-and-bound algorithm that relies on the following
fundamental components:

1. Initial bound : Leveraging available heuristic approaches, an initial upper
bound is determined.

2. Branching scheme and search strategy : A branching scheme is established
to generate the nodes in the branching tree, while the depth-first strategy
is employed to facilitate the search for the optimal solution.

3. Evaluation of the nodes: A Markovian Activity Network is constructed
for each node in the tree to estimate the distribution of the makespan. A
lower bound is derived for nodes representing partial solutions (schedules).

The proposed branch-and-bound approach is derived from the one presented
in Liu and Urgo (2023), designed for a similar scheduling problem considering
single processing of the jobs in the flow shop. Moving to a re-entrant stochas-
tic flow shop problem entails adapting the branch-and-bound approach to the
specific characteristics of this problem.
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The approach proposed in Liu and Urgo (2023) takes advantage of a domi-
nance rule among schedules (either partial or complete) to speed up the pruning
of branches. When considering a re-entrant flow shop scheduling problem, this
dominance rule cannot be used anymore. It relies on the hypothesis that the
first machine in the shop is never idle. This cannot be guaranteed with re-
entrant jobs. In fact, as a second-pass job is scheduled on the first machine,
its processing can start only if it has completed the first pass in the shop (i.e.
if the corresponding first-pass job has been completed), thus, forcing the first
machine to wait and remain idle.

Secondly, the generation scheme of the Markovian Activity Network has
to match the characteristics of the re-entrant flow shop problem considering
additional precedence relations between first- and second-pass jobs.

4.1 Initial upper bound
Following Sect. 2, the rule introduced in Talwar (1967) offers an optimal sched-
ule for a stochastic two-machine flow shop scheduling problem which involves
exponentially distributed processing times and aims to minimise the expected
makespan. The rule mentioned above serves as a heuristic approach, applica-
ble even when processing times are generally distributed (Baker and Trietsch
2010). Consequently, this rule is utilised to establish an initial value for the
objective function in the two-machine re-entrant flow shop scheduling problem,
and it serves as the initial incumbent solution for the branch-and-bound algo-
rithm, thus providing a foundation for subsequent optimisation (Emmons and
Vairaktarakis 2012).

According to Talwar (1967), for each job j ∈ N∪N ′, The respective expected
values of the processing times on the two machines (Ma and Mb) are denoted
as E(ja) and E(jb). The initial solution can be defined by arranging the jobs in
decreasing order of the difference between the multiplicative inverses of E(ja)
and E(jb):

S∗ =↘ (
1

E(ja)
− 1

E(jb)
) (4)

Note that if the resulting schedule conflicts with the constraints for sequencing
second-pass jobs, they are shifted towards the right until all conflicts are solved.

4.2 Branching scheme and search strategy
As described in Sect. 3, a solution for the scheduling problem is defined by
x. Specifically, xk represents the index assigned to the job located in the k-
th position of the sequence. A branching scheme is defined to support the
proposed branch-and-bound algorithm, considering the sequencing of both first-
pass and second-pass jobs. A forward branching scheme is exploited in this
study, sequencing the jobs starting from the first job in the schedule, starting
from the root node (level 0). From this node, 2n branches depart, one for each
job in the list that can be the next in the sequence. Considering a node at the
k−1 level of the branching tree, the partial schedule provides the sequence of the
first k− 1 jobs while 2n−k+ 1 branches are connected to nodes at level k. Due
to the need to respect the constraints for sequencing second-pass jobs, nodes in
the branching tree representing partial schedules violating these constraints are
pruned.
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Concerning the search strategy for the branching tree, it must be noticed
that the proposed lower bound might not be so tight for incomplete schedules
with a small number of scheduled jobs. Furthermore, since no upper bound has
been defined, apart from the initial upper bound described in Sect. 4.1, it is
crucial to drive the branch-and-bound towards a new solution to the problem as
soon as possible. To this aim, the depth-first strategy is exploited, which aims
to swiftly reach a leaf node while efficiently pruning non-leaf nodes to enhance
the exploration of the branch tree.

4.3 Evaluation of leaf nodes
Within the branching tree, the leaf nodes correspond to complete schedules en-
compassing all 2n jobs. The duration of the makespan is contingent upon the
critical path’s length within the activity network. However, when stochastic pro-
cessing times are taken into account, there exist multiple potential paths that
could be critical (Dodin 1985), thereby making the calculation of the makespan’s
distribution estimation inherently challenging (Dodin 1996). A Markovian Ac-
tivity Network model is employed to tackle this issue, wherein the processing
times are represented by phase-type distributions, facilitating the estimation
process.

The two-machine re-entrant flow shop scheduling problem is abstractly de-
picted as an acyclic-directed graph denoted as G = (V,A). The set of arcs A
symbolise activities, while the set of nodes V represent states that illustrate the
progression in activity execution. Within this framework, as outlined by the
model proposed by Kulkarni and Adlakha (1986), activities at a given time t
can assume one of the following states:

• Active: The activity is presently being executed and can be represented
as (j);

• Dormant: The activity has been completed, yet an incomplete activity is
connected to the same destination node. This condition can be expressed
as (j∗);

• Idle: The activity is neither active nor dormant.

Figure 1 AoA activity network for a complete schedule.

The AoA network modelling a two-machine re-entrant flow shop scheduling
problem is shown in Fig. 1, with u and v being arbitrary first-pass jobs. Drawing
upon this network, the set of states that model the execution of activities can be
derived. Commencing from the state denoting the processing of the first job on
machine a as (1a), a transition occurs once activity 1a concludes. This transi-
tion leads to a state where two activities are simultaneously underway: the first
job on machine b and the second job on machine a, indicated as (1b, 2a). As the
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execution of these activities progresses, a subsequent transition becomes possi-
ble, leading to one of two independent states. The first state, (1∗b , 2a), signifies
the completion of the first job on machine b while the second job on machine
a is still being processed. The second state, (1b, 3a), denotes the completion
of the second job and the initiation of processing the third job in the sequence
on machine a, while the first job is still being processed on machine b. This
pattern persists until the system reaches an absorbing state, representing the
comprehensive processing of all jobs on the two machines.

Figure 2 States generation scheme.

Based on the assumption of exponentially distributed processing times, the
aforementioned approach gives rise to a continuous-time Markov chain (CTMC)
which can be characterised by an initial probability vector and an infinitesimal
generator matrix (Kulkarni and Adlakha 1986). As exemplified in Fig. 2, the
CTMC defines a general structure of the state-space associated with the consid-
ered scheduling problem, which can be subsequently utilised in all the leaf nodes
to consider the specific schedule to be evaluated. The makespan of this sched-
ule, i.e., the time spanning from when the first job begins being processed on
machine a to the completion of the last job on machine b, is the time to absorp-
tion of the CTMC. Furthermore, to expand upon the approach introduced in
Kulkarni and Adlakha (1986), which solely applies to exponentially distributed
processing times, the infinitesimal generator of the CTMC incorporating phase-
type distributions for the processing times of the jobs, can be derived through a
Kronecker algebra technique (Angius et al. 2021). As a result, the distribution
of the associated makespan can be computed as follows:

FCmax(t) = 1− βeTt1 (5)

Here, the symbol β represents the initial probability vector, T refers to the
infinitesimal generator matrix excluding the absorbing state, and 1 represents
a vector consisting of all ones(Ross et al. 1996; Urgo 2014). The exponential of
the matrix operator can be calculated using the Krylov subspace method (Sidje
and Stewart 1999).

The quantile of this distribution corresponding to the V aRα is obtained
through a root finding method, specifically the bracket and solve method (Boost
2020), to find the root of:

1− α = 1− βeζ∗T1 (6)
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where β, T and 1 are the same as in Eq. (5), α is the considered risk level, and
ζ is the V aRα value to be estimated.

Under the hypothesis that the processing times of the jobs is phase-type
distributed, the described approach provides an exact calculation of the value-
at-risk of the makespan. The only possible source of approximation arises from
using phase-type distributions to approximate general distributions. However,
it is worth noting that the set of phase-type distributions is dense in the field of
all positive-valued distributions (Bladt and Yslas 2022), and by increasing the
number of phases, the accuracy of the fitting can be enhanced, providing the
possibility to improve the approximation as needed.

4.4 Evaluation of nodes representing partial schedules
To obtain bounds for the objective function under consideration, it is necessary
to evaluate nodes that represent partial schedules, i.e., schedules with only a
subset of the jobs sequenced.

According to the branching scheme described in Sect. 4.2, in a non-leaf node
of the tree, k jobs have already been sequenced, while the sequencing of the
remaining 2n − k jobs has not been decided yet. For the k assigned jobs, a
similar approach as described in Sect. 4.3 is employed to determine the initial
and final segments of the corresponding activity network. On the contrary,
for the jobs yet to be sequenced, their processing times on the two machines
are represented by two dummy activities (ra and rb). These dummy activities
have processing times equivalent to the sum of processing times of unscheduled
jobs’ activities on the respective machines. Thus, possible precedence relations
between these activities are omitted. Fig. 3 illustrates the resulting AoA activity
network. To establish the initial state space, analyse the CTMC incorporating
phase-type distributed processing times, and estimate the VaR, the identical
approach as described in Sect. 4.3 is applied.

Figure 3 AoA activity network for a partial schedule.

As addressed in Sect. 3, the VaR of the makespan is a regular objective
function. Thus, when a new job is scheduled, its VaR value cannot decrease.
Consequently, the calculated VaR serves as a lower bound of the VaRs of all
the nodes in the branches originating from the examined node (Ma and Wong
2010). If the lower bound associated with a partial schedule exceeds or equals
the incumbent solution, the corresponding node in the tree is pruned.

5 Heuristic algorithm
The branch-and-bound algorithm described in Sect. 4 is designed to solve the
addressed problem optimally. Still, it is expected to be inefficient in solving
medium-/large-scale instances. Thus, heuristic algorithms, i.e., iterated greedy
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heuristic (IG) (Ruiz and Stützle 2007) and NEH heuristic (Nawaz et al. 1983),
are proposed to solve larger instances.

5.1 Iterated greedy heuristic algorithm
Starting from the same initial solution used for the branch-and-bound approach
(see Sect. 4.1), the IG algorithm is used to generate a sequence of solutions
through the iteration of a greedy insertion heuristics with two main phases:
removal and insertion. The removal procedure is applied to a permutation x of
2n jobs, and it randomly chooses a first-pass job, and its corresponding second-
pass job, these two jobs are then removed from x, obtaining a sub-sequence xs.
The insertion phase starts from xs and inserts the two removed jobs into all the
possible positions. The best sequence x′ is the one that yields the smallest value
of the V aRCmax . The evaluation of the feasibility of the sequence is operated in a
way similar to the evaluation of the leaf nodes described in Sect. 4.3 by exploiting
the Markovian Activity Network (MAN) approach. This process is iterated until
the termination criterion, i.e., the number of iterations or improvement of the
objective function, is reached. The outline of the proposed insertion algorithm
is provided in Algorithm 1.

Algorithm 1: Iterated greedy (IG) heuristic algorithm
input: iter := 0, initial schedule x, improve := true, number of iterations

T
while iter ≤ T OR improve=true do

improve:=false
Randomly remove a first-pass job k and the corresponding
second-pass job (k + n) from x (no repetition)
x′ :=best permutation obtained by inserting k and (k + n) in any
possible positions in x
if V aRCmax(x′) < V aRCmax(x) then

x := x′

improve :=true
end
iter := iter+1

end

The IG heuristic is closely related to the Iterated Local Search framework
(Lourenço et al. 2019) but, rather than iterating over a local search operation,
e.g., shifting and swapping, it iterates over removal and insertion operations
only (Ruiz and Stützle 2007). Due to the complexity of estimating the value-
at-risk associated with a solution, the IG heuristic algorithm is preferred to an
Iterated Local Search approach since it is expected to perform better.

5.2 NEH heuristic algorithm
Together with the iterated greedy (IG) algorithm, the NEH constructive heuris-
tic is considered among the best heuristic methods proposed for the permutation
flow shop scheduling problem to minimise the makespan (Benavides and Vera
2022). The NEH constructive heuristic was proposed by Nawaz et al. (1983)
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and consists of two main steps. The first one takes an initial schedule of jobs
as input and takes the first two sequenced jobs. The best way of sequencing
these two jobs is selected, grounding on the considered objective function, and
constitutes the initial partial solution. The second step takes the first job in
the initial schedule that has not been included in the partial solution. Then it
evaluates the impact of inserting it in all the possible positions in the partial
schedule, selecting the one that leads to the best partial solution. This step
is iterated until a complete schedule is obtained. The application of the NEH
constructive heuristic to the considered stochastic two-machine re-entrant flow
shop scheduling problem is described in Algorithm 2.

Algorithm 2: NEH constructive heuristic algorithm
Input: initial full schedule xini, initial global VaR value V aRg = +∞,

initial updated schedule x̂=null
Step 1: The first two jobs x1 and x2 are taken, and the two possible
partial schedules starting from them, [x1,x2,...] and [x2,x1,...], are
evaluated. If the VaR value of the partial schedule is smaller than the
global VaR value V aRg, V aRg is updated and x̂ is updated to the
associated partial schedule. The first two jobs from xini are removed to
update the schedule of the unassigned jobs x.
while size of x̂ < size of xini do

Choose the first job from x and insert it into each of the possible
positions in x̂ to get new partial schedule solutions. Check that these
solutions do not conflict with the relations between first-pass and
second-pass jobs, then select the best one in terms of their VaR.
Update V aRg, x̂ and x.

end
Output: Final full schedule x̂ and the associated VaR value V aRg.

6 Computational results
The branch-and-bound algorithm and heuristic algorithms were implemented
using the C++ programming language, effectively utilising the Eigen library
(Guennebaud et al. 2010) for evaluating the absorption time of the Markov
activity network. Additionally, the branch-and-bound algorithm made use of
the BoB++ library (Djerrah et al. 2006). A comprehensive set of experiments
and comparisons was designed and conducted to assess the performance and
effectiveness of these algorithms. All experiments were executed on a Windows
7 workstation equipped with a 2.6 GHz Intel Xeon processor and 64 GB of
RAM. A CPU time limit of 7200 seconds was set for the experiments.

6.1 Generation of the test instances
Small- and medium-sized test instances have been considered to support the as-
sessment of the performance of the branch-and-bound and heuristic approaches.
Small-sized instances contain 5, 6 or 8 jobs, corresponding to 10, 12 and 16 jobs,
respectively, when including first-pass and second-pass jobs. Medium-sized in-
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stances comprise 10, 15, 20 or 25 jobs, resulting in a total number of 20, 30, 40
or 50 jobs.

The processing times of the jobs are modelled with phase-type distributions,
randomly generated using the BuTools library (Horvath and Telek 2017)starting
from the desired mean value and number of phases (Butools 2018). The mean
value is randomly sampled from three uniform distributions: [0, 20], [30, 50],
and [60, 80]. This applies for all but 25(50)-job instances which are derived
from the Taillard dataset (Taillard 1993), specifically from the 50-job and 5-
machine instances, by only considering two machines only. Furthermore, the
deterministic processing times in the Taillard dataset are used as the mean
value of the random processing times.

The number of phases is randomly chosen between 1 and 4 for generating the
distributions for all the instances. It is important to note that the generation
approach provided by the BuTools library does not allow explicit control of
higher-order moments such as the variance and the skewness.

Different risk levels (α) were exploited to conduct the experiments, specifi-
cally 5%, 10%, and 20%. A total of 420 instances were generated by creating
20 test instances for each combination of the number of jobs n and risk level α.

6.2 Analysis of the branch-and-bound approach
The first objective of the experiments is to assess the performance of the branch-
and-bound approach. This has been carried out on small-sized instances, with
5, 6, and 8 first-pass jobs, for a total of 180 test instances. The branch-and-
bound algorithm was able to find the optimal solution for 95.9% of the instances
within a time limit of two hours. Specifically, it was able to solve all 5- and 6-job
instances and 87.7% of the 8-job ones.

The results of these experiments are reported in Table 2. The table reports
the statistics for the solution time and number of evaluated nodes. The first
three columns also provide an indication of the number of first-pass jobs, the to-
tal number of jobs (in parentheses), the fraction of the total number of instances
that the algorithm was able to solve and the specific risk level α.

On average, the proposed branch-and-bound approach was able to solve the
problem instances in about 1500 seconds (i.e., 25 minutes), with the actual time
ranging from a minimum of less than one second, up to two hours for those
instances where the algorithm was not able to find the optimal solution. With
respect to the number of evaluated nodes, on average, about 60 thousand of
them were analysed, which corresponds to (1.78%) of the total number of nodes
in the branching tree.

The results for the solution time clearly show, as expected) a dependence
on the number of jobs. Nevertheless, the analysis of the impact of the risk level
is less explicit. In fact, for a given dimension of the scheduling problem, the
value of α seems to impact the solution time. Furthermore, the analysis of the
number of evaluated nodes also points to the possibility that this dependence
could be due to the need to explore a larger number of nodes to reach the
optimal solution.

A two-factor ANOVA analysis has been carried out to investigate the possible
effect of the factors highlighted above (number of jobs and risk level) on the
performance of the branch-and-bound algorithm. The results of this analysis
are reported in Table 3, showing that the solution time significantly depends on
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Table 2 Branch-and-bound approach results.

# jobs* # optimal (%) risk level
solution time (s) evaluated nodes

mean min max mean min max (%)

5 (10) 100%

5 4.4 0.7 10.8 576 26 1593 1.49

10 6.0 1.2 14.6 893 381 2111 2.32

20 6.6 1.8 15.9 605 259 1723 1.57

ALL 5.7 0.7 15.9 691 26 2111 1.79

6 (12) 100%

5 49.4 2.6 153.5 4412 37 13189 0.88

10 97.6 8.8 240.3 9908 706 25702 1.98

20 81.9 13.4 241.4 8362 930 28933 1.67

ALL 76.4 2.6 241.4 7561 37 28933 1.51

8 (16) 87.7%

5 3611.1 582.8 6636 158307 25809 474834 0.13

10 4805.2 824.8 7200 184013 20074 544436 0.15

20 4902.3 693.7 7200 176301 20226 474290 0.14

ALL 4439.5 582.8 7200 172823 20074 544436 0.14

ALL 95.9% 1507.2 0.7 7200 60358 26 544436 1.14

* the number in () denotes the total number of jobs, including re-entrant
ones.

the number of jobs. On the contrary, the risk level and the interaction between
these two factors are not significant. It must be noticed that the experiments
have been completely randomised, using different randomly generated instances
for each experiment within the same combination of levels for the factors. Thus
blocking effects linked to the instances are not considered. On the contrary,
some of the characteristics of the instances can impact the performance.

Table 3 ANOVA table for the solution time of the approach.

Df Sum Sq F-value P-value

number of jobs 2 2.70 ∗ 108 321.77 1.09 ∗ 10−58

risk level 2 3.82 ∗ 105 0.45 0.63

number of jobs:risk level 4 6.33 ∗ 105 0.37 0.82

residuals 171 7.17 ∗ 107 - -

R2 = 0.79, R2
adj = 0.78

Further analyses have been operated considering the total number of nodes
evaluated during the search, and the average time needed to evaluate a single
node. The number of evaluated nodes is expected to identify situations where
multiple schedules have very similar objective function values. This reduces the
capability of the lower bound to prune branches and forces the algorithm to
evaluate a larger number of nodes and solutions. In contrast, the average time
to evaluate a node is expected to identify the impact of the computational effort
to assess the distribution of the objective function and the associated VaR. The
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total number of jobs surely impacts this, although other characteristics of the
instances could play a role.

A comparison was carried out to check for the possible influence of the num-
ber of jobs on the average number of nodes to be evaluated in the optimisation
and the average evaluation time per node. The results are reported in Fig. 4,
showing that instances with a larger number of jobs will take longer to be solved
due to a larger number of nodes to be evaluated in the search, as well as a higher
time needed to evaluate a single node, reasonably due to the requirement to han-
dle larger infinitesimal generator matrices for the evaluation of both partial and
complete schedules. With respect to both the indicators, the graphs in Fig. 4
also shows a very wide range of values and the presence of outliers. Thus,
also with respect to them, the resulting characteristics of the instances have a
significant impact and can affect the performance unpredictably.

Figure 4 Number of evaluated nodes and time to solve a single node for the
different dimensions of the instances.

Returning to the results of the ANOVA in Table 3, there is no statistical
evidence to state that the solution time is affected by the different risk levels.
With respect to this, Fig. 5 provides a box plot of the solution time with re-
spect to the number of evaluated nodes, considering the different risk levels and
confirming, also visually, that no clear difference emerges.

An additional investigation has been executed to assess the effectiveness of
the initial solution obtained through the Talwar rule (Sect. 4.1). Firstly, the
number of times the incumbent solution is updated is reported in Fig. 6(a),
which is consistently below 10. Thus the initial solution accelerates the branch-
and-bound algorithm when seeking the optimal solution. Nevertheless, the
contribution of the branch-and-bound algorithm remains significant. Fig. 6(b)
reports the percentual improvement from the initial to the optimal solution,
showing that the branch-and-bound algorithm can improve the initial solution
of 6.6% on average, with a minimum and maximum improvement of 0.0% and
22.6%, respectively.
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Figure 5 Box plot of the solution time and the number of evaluated nodes in
relation to the considered risk levels.

Figure 6 Updated solutions(a) and improvement(b) from the proposed initial
solution.
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Table 4 Performance of the algorithms with respect to the initial solution.

# jobs*

∆%

B&B IG NEH

mean min max StDev mean min max StDev mean min max StDev

5 (10) 7.2 0.0 14.5 3.8 6.7 0.0 14.4 3.8 3.5 0.0 7.2 2.1

6 (12) 8.2 0.0 21.3 4.3 7.4 0.0 15.6 4.0 3.6 0.0 7.9 3.6

8 (16) 7.5 0.7 22.7 5.0 7.2 0.0 25.6 4.7 3.9 2.9 6.1 1.3

10 (20) 9.1 4.5 18.3 5.3 7.1 1.1 15.5 3.6 2.9 0.3 6.1 2.5

15 (30) 6.1 4.9 8.3 1.6 6.6 0.0 15.5 3.3 3.5 0.0 14.8 6.4

20 (40) 3.7 1.6 5.2 1.4 7.6 0.0 15.0 3.6 4.8 1.7 7.5 1.8

25 (50) 2.6 1.1 6.1 2.1 8.1 1.7 19.6 7.0 7.6 3.2 13.9 3.2

As indicated during the initial analysis of the outcomes, while solving in-
stances with n = 8 and 2n = 16, the branch-and-bound algorithm failed to find
the optimal solution within the specified time limit in approximately 12.3% of
the instances. Furthermore, an additional examination was conducted to eval-
uate the quality of the obtained incumbent solution obtained from the branch-
and-bound algorithm, together with the investigation and comparison of alter-
native heuristic approaches, i.e., IG and NEH. Besides considering small-sized
instances not solved optimally, this analysis also considers larger instances where
the branch-and-bound approach can never reach the optimum within a given
time limit of two hours.

To support this analysis, the performance indicator ∆% is used (Eq. 7) to
measure the percentual improvement obtained by the algorithm with respect to
the initial solution value S0.

∆% =
S0 −Outputalgo
Outputalgo

(7)

The results in Table 4 show that the proposed branch-and-bound algorithm
can improve the initial solution by 6.4%, demonstrating its effectiveness even
on larger instances, where the capability to achieve the optimality cannot be
guaranteed.

With respect to heuristic approaches, the IG heuristic was able to improve
the VaR of the initial solution of 7.2% on average, ranging from a minimum
improvement of 0.0% to a maximum of 25.6%. The NEH heuristic improved
the VaR of the initial solution of 4.2% on average, ranging from a minimum
improvement of 0.0% to a maximum of 14.8%.

The improvement based on the initial solutions demonstrates that the branch-
and-bound approach dominates heuristic ones for smaller instances (up to 20
jobs in total). In contrast, as the dimension of the instances increases, heuris-
tic approaches can better improve the solution. Furthermore, the IG heuristic
clearly dominates the NEH one.

With respect to the computation time, the complexity of the IG heuristic is
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O(T ∗[2n]2), where T represents the number of iterations (Algorithm 1). Setting
the number of iterations (T ) to 10, the IG approach was able to converge in less
than 1 second for both 5- and 6-job instances and within 20 seconds for 8-job
instances. For larger instances of up to 25 jobs, convergence could be achieved
within 2 hours. Regarding the NEH heuristic, its complexity is O([2n]2), where
2n is the total number of jobs (including re-entrant jobs). However, due to the
partial schedule evaluation in the MAN, specifically the Kronecker product op-
eration, a larger infinitesimal generator matrix is derived, which requires higher
calculation times. Additionally, as a constructive heuristic, the NEH algorithm
cannot be terminated within a specific time limit.

6.3 Comparison with alternative robust scheduling ap-
proaches

To evaluate the benefits of scheduling to minimise the value-at-risk of the
makespan, alternative robust scheduling approaches have been implemented and
compared, i.e., approaches minimising the maximum (Levorato et al. 2022; Ju-
vin et al. 2023) and expected processing times (Levorato et al. 2022).

Two representative instances with 5(10) and 8(16) jobs have been randomly
selected among the ones generated according to Sect. 6.1. The details for these
instances are reported in Appendix A. Since the support of phase-type distribu-
tions is not bounded, minimum and maximum values are not available, entailing
difficulties in using approaches considering maximum processing times. To this
aim, the 0.01% and 99.99% quantiles are considered as the minimum and maxi-
mum values, respectively. To minimise the maximum makespan, a global budget
Γ, which denotes the maximum number of operations whose uncertain process-
ing times can reach their worst-case values, is randomly chosen from [80%, 100%]
as the total number of activities (Juvin et al. 2023).

For each representative instance, three optimal schedules are derived using
the three different objective functions, i.e., minimising the VaR, the minimax,
and the expected value of the makespan. The latter is operated by using a
deterministic problem where the processing times are equal to their expected
values. The three approaches led to different schedules for each instance h,
i.e., hi,VaR, hi,minimax, and hi,expval. Specifically, for each of the two instances
considered, the three optimal schedules are:

x1,VaR = {1→ 3→ 5→ 1′ → 2→ 3′ → 4→ 5′ → 2′ → 4′}
x1,minimax = {5→ 1→ 3→ 5′ → 2→ 1′ → 4→ 3′ → 2′ → 4′}
x1,expval = {5→ 1→ 3→ 5′ → 2→ 4→ 3′ → 1′ → 2′ → 4′}

x2,VaR = {4→ 8→ 7→ 5→ 4′ → 2→ 8′ → 7′ → 6→ 1→ 3→ 5′ → 2′ → 6′ → 1′ → 3′}
x2,minimax = {8→ 4→ 5→ 7→ 6→ 5′ → 7′ → 4′ → 1→ 2→ 8′ → 3→ 6′ → 2′ → 3′ → 1′}
x2,expval = {4→ 5→ 8→ 6→ 4′ → 5′ → 8′ → 2→ 3→ 6′ → 7→ 1→ 2′ → 3′ → 7′ → 1′}

For each instance, 1000 scenarios were randomly generated and the different
schedules were tested to evaluate the associated makespan. Table 5 displays the
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number of times each schedule achieved the minimum makespan over the con-
sidered scenarios, demonstrating a clear dominance of the minimisation of the
VaR. Moreover, to quantitatively assess the difference between the minimisation
of the VaR and the alternative approaches, a performance indicator 8 is defined
with xalt being the optimal schedule obtained with the minimax or determin-
istic expected value approaches. The results of this analysis are presented in
Table 6.

∆alt% =
Cmax(xalt)− Cmax(xVaR)

Cmax(xVaR)
(8)

Table 5 Number of times the different schedules obtained the smallest
makespan over the considered 1000 scenarios.

VaR approach Expected value approach Minimax approach

Instance 1 633/1000 213/1000 154/1000

Insstance 2 511/1000 172/1000 317/1000

Table 6 Improvement of VaR approach with respect to alternative robust
scheduling approaches

∆minimax% ∆expval%

mean min max median mean min max median

Instance 1 4.1 -19.5 33.2 7.5 3.9 -17.1 36.8 6.1

Instance 2 1.5 -15.2 37.1 6.7 6.2 -20.9 31.5 4.9

Across all the 1000 scenarios considered, the proposed VaR approach shows
an average improvement ranging from 1.5% to 6.2% compared to the alter-
native approaches. It is worth noting that in certain extreme scenarios, the
VaR approach can provide protection by improving the performance exceed-
ing 30%. This demonstrates the efficiency of the VaR approach in assisting
decision-makers in balancing expected performance and mitigating the impact
of extreme scenarios.

Finally, Fig. 7 reports the graphs of the cumulative distribution functions
(CDF) of the makespan for the schedules obtained with different alternative ap-
proaches, over the 1000 sampled scenarios. Specifically, the cdf of the makespan
for the schedule minimising the VaR is stochastically smaller (first-order stochas-
tic dominance) than the cdfs of the schedules minimising the other two alter-
native objective functions (Pinedo 2016). Thus, based on these analyses, the
proposed minimisation of the VaR provides better results compared to the two
alternative objective functions.
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Figure 7 Comparison of the performances between VaR approach and
alternative approaches on 1000 scenarios.

7 Conclusions
In this paper, the two-machine re-entrant flow shop scheduling problem with
stochastic processing times has been investigated. The aim was the development
of solution approaches able to devise a robust schedule, capable of protecting
against the occurrence of unfavourable events, using the minimisation of the
value-at-risk as a criterion for robustness. To estimate the makespan distribu-
tion, a Markovian Activity Network (MAN) approach was employed, leveraging
phase-type distributions to align with the realistic distributions observed in in-
dustrial processes.

The proposed branch-and-bound approach demonstrated reasonable perfor-
mance for small-scale problems, although being constrained by the increas-
ing computational load as the dimension of the scheduling instances increases.
Heuristics have been proposed to solve larger-scale problems, whose efficiency
and effectiveness are demonstrated through a set of experiments.

The first direction for future development is enhancing computational effi-
ciency. Compared to a similar branch-and-bound approach developed for the
non-re-entrant version of this scheduling problem (Liu and Urgo 2023), the pro-
posed one demonstrated reduced performance. This result opens the way to
further investigations on the characteristics and complexity of the two prob-
lems. Looking at this from the point of view of the total number of possible
solutions, the total number of alternative schedules for the re-entrant flow shop
problem (e.g., in the case of n+n jobs) is lower than the total number of possible
schedules for its non-re-entrant version (i.e. with 2n jobs). This is due to the
additional constraints linking the processing of first- and second-pass jobs, caus-
ing some schedules to be infeasible. In contrast, while a specific dominance rule
can be applied to the problem non-re-entrant problem (Liu and Urgo 2023), it
cannot unfortunately be used for the re-entrant problem (Sect. 4). Finally, both
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the Markov Chain models and the proposed lower bounds for the two problems
differ, which might impact computational performance and, consequently, the
overall solution time.

Further in this direction, the possible dominance between the two machines
in the flow shop surely causes some problem instances to be extremely difficult
to solve. This has been addressed for the deterministic version of the problem
(Emmons and Vairaktarakis 2012), for which a machine dominance criterion has
been defined. A similar criterion is not available for the stochastic version of
the problem and, understanding the possible dominance among machines could
surely guide the search for the optimal solution and reduce the solution time.

Finally, within this paper, the first-pass and second-pass jobs are treated as
independent entities, with no consideration given to their similarity (Sect. 3).
Consequently, exploring the correlation between these two task sets could offer
valuable insights and enhancements for the proposed approach.

Future advancements of the proposed approach will also be focused on ex-
tending its applicability to a broader range of scheduling problems.
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Appendix A
For the representative 5(10)-job and 8(16)-job instances in Sect. 6.3, the phase-
type distributions of job processing times on each machine are reported in Ta-
ble 7 and 8. Each distribution is denoted by an initial vector β and a matrix T
(Neuts 1994).

Table 7 Distributions of the processing times for the representative 5-job
instances.

job j distribution
pja

distribution
pjb

1
β [1 0] [1]

T
[
−0.354 0.125

0.151 −0.151

]
[-0.028]

2
β [1 0] [1 0]

T
[
−0.036 0.033

0 −0.048

] [
−0.24 0.044

0.175 −0.175

]
3

β [1 0] [1 0]

T
[
−0.03 0.012

0.032 −0.032

] [
−0.053 0.044

0 −0.039

]
4

β [1 0 0 0] [1]

T


−0.503 0.171 0.149 0.048

0.214 −0.214 0 0

0 0.129 −0.129 0

0 0 0.028 −0.028

 [-0.05]

5
β [1 0] [1]

T
[
−0.252 0.134

0 −0.015

]
[-0.166]

1’
β [1] [1 0]

T [-0.027]
[
−0.185 0.185

0.485 −0.572

]
2’

β [1] [1 0]

T [-0.025]
[
−0.259 0.166

0.084 −0.084

]
3’

β [1] [1 0 ]

T [-0.051]
[
−0.043 0.013

0.05 −0.05

]
4’

β [1] [1]
T [-0.022] [-0.21]

5’
β [1 ] [1 0 0 0]

T [-0.013]


−0.128 0.044 0.012 0.03

0.061 −0.061 0 0

0.051 0 −0.051 0

0 0 0.088 −0.088





Po
st-

pri
nt

Table 8 Distributions of the processing times for the representative 8-job
instances.

job j distribution
pja

distribution
pjb

1
β [1 0] [1]

T
[
−0.313 0.292

0 −0.224

]
[-0.057]

2
β [1 0] [1]

T
[
−0.037 0.026

0 −0.025

]
[-0.057]

3
β [1 0] [1]

T
[
−0.057 0.014

0 −0.03

]
[-0.028]

4
β [1] [1 0]

T [-0.2]
[
−0.047 0.014

0 −0.032

]
5

β [1] [1 0]

T [-0.04]
[
−0.024 0.024

0.049 −0.504

]
6

β [1] [1 0]

T [-0.013]
[
−0.081 0.063

0 −0.117

]
7

β [1 0] [1]

T
[
−0.077 0.034

0 −0.007

]
[-0.148]

8
β [1 0 0 0] [1 0]

T


−0.052 0.041 0 0.01

0 −0.068 0.007 0

0 0 −0.072 0.032

0 0 0.064 −0.064

 [
−0.033 0.024

0 −0.017

]

1’
β [1 0] [1 ]

T
[
−0.124 0.078

0.07 −0.07

]
[-0.23]

2’
β [1 ] [1]
T [-0.014] [-0.035]

3’
β [1] [1 0]

T [-0.032]
[
−0.896 0.497

0.187 −0.187

]
4’

β [1] [1 0]

T [-0.061]
[
−0.028 0.004

0.016 −0.016

]
5’

β [1] [1 0]

T [-0.015]
[
−0.018 0.006

0 −0.072

]
6’

β [1] [1 0]

T [-0.06]
[
−0.243 0.187

0.075 −0.075

]
7’

β [1 0] [1 ]

T
[
−0.138 0.114

0 −0.075

]
[-0.014]

8’
β [1] [1 0 0 0]

T [-0.13]


−0.052 0.041 0 0.01

0 −0.068 0.007 0

0 0 −0.072 0.032

0 0 0.064 −0.064
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