
SPACE4AI-R: a Runtime Management Tool for

AI Applications Component Placement and

Resource Scaling in Computing Continua

Federica Filippini, Hamta Sedghani, Danilo Ardagna

October 31, 2023

Abstract

The recent migration towards Internet of Things determined the rise of
a Computing Continuum paradigm where Edge and Cloud resources coor-
dinate to support the execution of Artificial Intelligence (AI) applications,
becoming the foundation of use-cases spanning from predictive mainte-
nance to machine vision and healthcare. This generates a fragmented sce-
nario where computing and storage power are distributed among multiple
devices with highly heterogeneous capacities. The runtime management
of AI applications executed in the Computing Continuum is challenging,
and requires ad-hoc solutions. We propose SPACE4AI-R, which com-
bines Random Search and Stochastic Local Search algorithms to cope with
workload fluctuations by identifying the minimum-cost reconfiguration of
the initial production deployment, while providing performance guaran-
tees across heterogeneous resources including Edge devices and servers,
Cloud GPU-based Virtual Machines and Function as a Service solutions.
Experimental results prove the efficacy of our tool, yielding up to 60%
cost reductions against a static design-time placement, with a maximum
execution time under 1.5s in the most complex scenarios.

KeywordsComponent placement, Edge computing, Local Search, Opti-
mization, Resource selection.

1 Introduction

The Computing Continuum paradigm has recently emerged as the natural in-
tersection between Edge Computing, characterized by resource-constrained de-
vices guaranteeing low latencies thanks to the proximity to data-generating
sensors [1], and Cloud Computing, which makes accessible an ideally-unlimited
computational power at the price of high network communications overheads [2].
According to this model, Artificial Intelligence (AI) applications can be executed
by deploying latency-sensitive tasks on Edge devices, while resource-intensive
tasks are offloaded to the Cloud [3]. This generates a fragmented scenario

1

where the computing and storage capabilities are distributed among devices
with highly heterogeneous capacities. Effective methods are needed to orches-
trate at best the Computing Continuum resources, and to determine the optimal
placement for AI applications components minimizing the expected costs while
meeting Quality of Service requirements (see Figure 1).

Figure 1: The placement problem: mapping an application on the infrastructure

This Resource Selection and Component Placement (RS-CP) problem should
be tackled in two different phases: at design time and at runtime. Design-time
algorithms aim to optimize the initial placement, before the application execu-
tion starts, based on the expected input workload and the predicted components
performance. This may become sub-optimal over time, since the actual work-
load is usually subject to fluctuations due, for instance, to variations in the
generated data volumes. Thus, the optimal solution has to be monitored and
adapted dynamically while the application is running. While a design-time tool
is allowed to take as much time as needed (up to several minutes) to find the ini-
tial placement, a runtime tool, which is executed online, must provide a feasible
reconfiguration in few seconds at most.

Building upon a state-of-the-art design-time solution [4], we propose SPACE4AI-
R: a tool to effectively address the RS-CP problem at runtime, supporting
the execution of AI applications on Computing Continuum resources includ-
ing Edge devices, Cloud Virtual Machines and Function as a Service configu-
rations. Through a Random Search combined with a Stochastic Local Search
heuristic, SPACE4AI-R copes with dynamic workload fluctuations, identifying
the minimum-cost reconfiguration of the running placement.

Experimental results show that our tool can yield up to 60% cost reductions
with respect to a static placement in a realistic use-case concerning the identi-
fication of wind-turbine blades damage, and it tackles large-scale systems with
up to 15 application components in less than 1.5s.

The rest of the paper is organized as follows: Section 2 describes the RS-CP
problem and the optimization model developed to characterize it. Section 3 de-
scribes the SPACE4AI-R framework, whose experimental validation is reported
in Section 4. Section 5 briefly overviews the state of the art. Conclusions are
finally drawn in Section 6.

2 RS-CP Problem

This section describes the application model (Section 2.1), the computing in-
frastructure (Section 2.2), and the mathematical formulation developed to char-

2

acterize the RS-CP problem (Section 2.3).

2.1 Application Model

In our framework, AI applications are modeled as Directed Acyclic Graphs
(DAGs), as in Figure 2, whose nodes represent the different application com-
ponents. We assume that each component is a Deep Neural Network (DNN)
function that can be run in a Docker container deployed either in an Edge de-
vice, in a Cloud virtual machine (VM) or using the Function as a Service (FaaS)
paradigm.

Figure 2: Application DAG

We assume that the DAG includes a single entry point, characterized by an
exogenous input workload λ(τ) (expressed in terms of requests/sec) that varies
over time, and a single exit point. The set of all application components is
denoted by I. The directed edge from a node i to a node k is labelled with
⟨pik, δik⟩, where pik is the transition probability between component i and com-
ponent k, while δik is the transferred data size. Each i ∈ I is characterized by a
load λi(τ) that depends on the exogenous workload λ(τ) and on the transition
probabilities from the previous components.

As already mentioned, DNNs may be partitioned differently according to
resources capacity and network settings [5]. Thus, we say that components are
characterized by multiple candidate deployments, denoted by the set Ci.

Each element cis ∈ Ci represents a different way of partitioning the DNN,
i.e., it is defined as cis = {πi

h}h∈Hi
s
, where πi

h denotes the single partition and

Hi
s is the set of all partition indices (see Figure 3).
The main performance metric we consider in our framework is the response

time. Quality of Service (QoS) requirements might be imposed on both the
response time of single components (local constraints), and on the response time
of a sequence of consecutive components, denoted as path (global constraints).

2.2 Infrastructure

Computing Continuum resources include Edge devices, Cloud Virtual Machines
(VMs) and Function as a Service (FaaS) configurations. In particular, FaaS is a

3

(a) Component 1 (b) Candidate deployment c11

(c) Candidate deployment c12 (d) Candidate deployment c13

Figure 3: Example of AI application component with its candidate deployments

type of Cloud computing service that provides a serverless paradigm to execute
tasks, implemented as functions, on a Cloud platform. We denote the set of
the candidate Edge resources by JE = {1, ..., E}, the set of the candidate Cloud
devices by JC = {E+1, ..., E+C} and the set of all FaaS configurations by JF =
{E+C+1, ..., E+C+F}, so that J = JE∪JC∪JF . Furthermore, we denote by
nj ∈ N the maximum number of available instances for all resources j ∈ JE∪JC .
We introduce the concept of computational layers, defined as disjoint sets of
resources that can be considered as alternative to one another (e.g., different
VM types from the same Cloud provider’s catalog, or two alternative models
for a specific Edge device). Only one resource can be selected in each layer.

To identify the optimal placement, we need to determine which resource
types j ∈ J are compatible with each partition πi

h for all the candidate de-
ployments cis characterizing component i ∈ I (this depends on the hardware
characteristics and available network connections). Hence, we introduce a com-
patibility matrix A = [aihj], where aihj is 1 if πi

h can be executed on resource

j. Moreover, each partition πi
h is characterized by a different memory require-

ment m̃i
hj depending on the resource where it is allocated, and each resource is

characterized by a memory limit Mj .
To compute the response time of the component partitions involved in local

and/or global constraints, we exploit different models. For Edge resources and
Cloud VMs we adopt either the queuing theory, representing each resource as
single server multiple class queue system (i.e., as an individual M/G/1 queue), or
Machine Learning (ML)-based models developed as in [6]. For FaaS configura-
tions, we rely either on similar ML-based models or on an external tool proposed

4

in [7], which allows to compute the response time of a function depending on
various parameters, such as the requests arrival rate, the demanding time, and
the expiration time before the function shutdown. Additionally, we consider the
network delays induced by data transmissions between partitions and compo-
nents executed on different resources. The communication between the different
kinds of devices is enabled by several network domains, exploiting different tech-
nologies (e.g., WiFi, 5G), each one characterized by the corresponding access
time and bandwidth.

Finally, we assume that Edge resources are characterized by energy-consumption
hourly costs, Cloud VMs follow a per-second billing that depends on the chosen
provider, while FaaS costs are expressed in GigaByte-second, and they depend
on the memory size, the functions duration, the total number of invocations.
We indicate with CostE , CostC , and CostF the total costs of Edge devices,
Cloud VMs and FaaS configurations, respectively.

2.3 Problem Statement

The RS-CP problem can be formulated as a Mixed Integer Non-Linear Program
(MINLP) aiming at minimizing the placement cost while satisfying hardware,
network and QoS constraints. While this formulation is built upon the one pre-
sented in [4], physical and virtual computational layers are managed differently
at design time and runtime. Indeed, the resource type in a physical layer is
selected in the initial, design-time solution and it cannot be modified in future
reconfigurations, albeit scaling actions are allowed. Virtual resources, instead,
can be scaled to zero and eventually replaced by other types if required, since
their provisioning time is usually not too large. Therefore, determining a solu-
tion for the MINLP problem at runtime means: (i) switching on/off or scaling
the the appropriate Edge devices, which are physical resources already selected
at design-time; (ii) scaling in/out the number of VM instances, or selecting the
optimal type for virtual resources that are currently unused; (iii) identifying a
deployment for each component; (iv) allocating the partitions on the chosen de-
vices; (v) checking if the assignments are compatible with memory constraints
and QoS requirements. To characterize which resources should be selected and
how partitions should be assigned to the available devices, we introduce the fol-
lowing variables: xj , which is 1 if device j ∈ J is used in the final deployment;
yihj , which is equal to 1 if partition πi

h of candidate deployment cis is deployed

on resource j; ŷihj , which denotes the number of resource instances of type j

assigned to any partition πi
h. These allow to quantify the operational costs of

the resources and to define the objective function of our problem, namely:

minCostE + CostC + CostF ,

subject to assignment compatibility, QoS requirements, memory and alloca-
tion constraints.

5

3 SPACE4AI-R

Finding the optimal placement of an application over an infrastructure is very
challenging. Indeed, mathematical formulations proved to be NP-hard, and
heuristic algorithms are usually exploited to solve this problem. In this work,
we propose a Random Search (RS) combined with Stochastic Local Search (SLS)
algorithm.

RS (see Algorithm 1) aims at determining a pool K of good-quality solu-
tions (i.e., feasible deployments with low execution costs) by randomly exploring
the search space. In particular, new candidates are iteratively constructed by
selecting at random the resources to be considered (line 5), the components
deployments (line 7), and the partition-to-resource assignments (line 9). To in-
crease the probability of generating a feasible solution, the number of resource
instances is initially set to the maximum (line 13), and then tentatively reduced
to lower the costs (lines 15–17).

Algorithm 1 Random Search

1: Input: I,H,J ,DAG, A, Demanding time, QoS constraints, Resources costs, MaxIter,K
2: Initialization: Solutions← ∅
3: for 1, ...,MaxIter do
4: x← [0],y← [0], ŷ← [0]
5: Randomly pick a node j at each layer; set xj ← 1
6: for i ∈ I do
7: Randomly pick a deployment cis ∈ C
8: for h ∈ Hi

s do
9: Randomly assign partition πi

h to a node j s.t. xj = 1 and aihj = 1 and set

yihj ← 1, ŷihj ← 1

10: end for
11: end for
12: for ∀j ∈ JE ∪ JC such that yihj = 1 do

13: ŷihj ← nj ∀i ∈ I, ∀h ∈ Hi
s

14: end for
15: if solution ⟨x,y, ŷ⟩ is feasible then
16: for ∀j ∈ JE ∪ JC such that ŷihj > 1 do

17: ReduceClusterSize(j)
18: end for
19: Solutions← Solutions ∪ ⟨x,y, ŷ⟩
20: end if
21: end for
22: if Solutions ̸= ∅ then
23: Compute cost for all solutions
24: Sort solutions by cost
25: return k best Solutions ▷ the top K solutions with lower costs
26: else
27: return Solutions ▷ No feasible solution found
28: end if

SLS (see Algorithm 2) starts from the K candidates found by RS and
stochastically explores their neighborhoods, which are reached through a prede-
fined set of moves, to improve the solution quality. The set of moves T includes
atomic changes to the initial solutions defined by, e.g, migrating a partition

6

running on FaaS to an already-deployed VM, changing a FaaS configuration
with another one of lower cost (i.e., characterized by less memory), or changing
the deployment chosen for a component. Moreover, T includes more complex
moves, e.g., dropping an Edge server or Cloud VM from the placement by allo-
cating its partitions on the remaining running resources, or changing the Edge
server or the VM with another node with smaller cost.

Algorithm 2 Stochastic Local Search

1: Input: DAG,H,J ,A, QoS constraints, costs, MaxIter, RS sols
2: Initialization: BestSol← Best among RS sols
3: for s ∈ RS sols do
4: CurrSol← s
5: NewSol← s
6: for n = 1, . . . ,MaxIter do
7: Randomly pick T ∈ T
8: NewSol← T (CurrSol)
9: if Cost(NewSol) < Cost(CurrSol) and NewSol is feasible then
10: CurrSol← NewSol
11: end if
12: end for
13: if Cost(CurrSol) < Cost(BestSol) then
14: BestSol← CurrSol
15: end if
16: end for
17: return BestSol

4 Experimental Results

Figure 4: A use case of identifying wind turbines blade damage (Scenario C)

The experimental analysis is divided into two parts. The first one (Section
4.1) deals with a real use-case application related to the inspection of wind
farms. The second part (Section 4.2) deals with the scalability analysis, where
we prove that our tool is able to tackle small to large-scale general workflows.
For both analyses, we simulated a dynamic workload by considering a bi-modal
profile for the duration of the application (fixed to be 2 hours in our simulations),
and assume a periodic system reconfiguration (every 5 minutes). We set λ ∈
[λmin, λmax] req/s and compute the design-time solution for λ(0) = λmax. This

7

is a reasonable assumption, since sizing the system for the worst case is the most
conservative option to avoid violating QoS requirements. Moreover, this choice
guarantees that a feasible solution exists for the entire application execution;
indeed, Edge resources, which have usually less computational capacity, may
become the bottleneck if the load increases more than expected. The considered
workload profiles are reported in Figure 5.

The algorithms 1 and 2 were implemented in C++. The experiments were
executed on a HP Probook 455 with 1.9/4.4 GHz CPU AMD Ryzen 7 5800U
and 16GB of memory.

The source code, configuration files and results of all the experiments pre-
sented here are available at [8].

(a) Use-case analysis (b) Scalability analysis

Figure 5: Dynamic workload profiles

4.1 Use-case analysis

The DAG of the use-case application we considered in this section is reported in
Figure 4. It includes 7 components, which progressively process images collected
by drones to identify and classify damages in wind turbines blades. The com-
ponents can be executed on different Computing Continuum resources, grouped
in four computational layers (the component-to-resource compatibility is rep-
resented by dotted arrows), and the initial placement selected at design-time,
called production deployment, is indicated by red arrows.

We design three testing scenarios, which differ in the value of λmax (see
Figure 5a) and in the type of resource selected at design time in computational
layer 2 (see Figure 4): (A) user’s PC, λmax = 1.8 req/s; (B) 2 servers in the
user’s van, λmax = 7.5 req/s; (C) 3 Mobile Edge Computing (MEC) servers
accessed from a nearby 5G tower, λmax = 18 req/s. The list of all components
demands and resource costs are reported in Tables 1 and 2, respectively.

The outcomes achieved running both RS and LS for 104 iterations are re-
ported in Figure 6. In each scenario, we imposed four QoS constraints on
different components paths: in particular, we prescribed that the total response
time of the first two components (p1) must not exceed 1.8s, the total response

8

Resource Type Drone PC Server
van Server
tower VM1 VM2 VM3 VM4 FaaS 6GB

(hot) (cold)

26*Demand
[s] C1 h1 0.01 - - - - - - - - -

4*C2 h1 1.76 0.52 0.25 0.13 - - - - - -
h2 0.52 0.20 0.10 0.05 - - - - - -
h3 0.52 0.23 0.12 0.06 - - - - - -
h4 0.69 0.25 0.13 0.07 - - - - - -

8*C3 h1 - 1.52 0.95 0.73 1.43 0.46 0.34 0.19 1.27 2.21
h2 - 0.38 0.24 0.19 0.37 0.10 0.11 0.06 1.25 2.10
h3 - 0.38 0.24 0.18 0.36 0.10 0.11 0.05 1.05 1.94
h4 - 0.39 0.24 0.18 0.36 0.10 0.10 0.05 1.19 1.85
h5 - 0.38 0.24 0.18 0.36 0.10 0.10 0.05 1.14 2.19
h6 - 0.50 0.32 0.24 0.48 0.13 0.12 0.07 1.41 2.27
h7 - 0.50 0.32 0.24 0.48 0.13 0.12 0.07 1.14 1.62
h8 - 0.49 0.32 0.24 0.48 0.13 0.12 0.07 1.38 2.16

C4 h1 - 1.36 0.88 0.65 1.32 0.33 0.33 0.18 1.01 1.54

8*C5 h1 - - - - 1.63 0.40 0.27 0.20 1.58 2.27
h2 - - - - 0.41 0.11 0.07 0.05 1.25 1.90
h3 - - - - 0.41 0.11 0.07 0.05 1.37 1.97
h4 - - - - 0.42 0.11 0.07 0.05 1.20 2.10
h5 - - - - 0.42 0.11 0.07 0.05 1.35 1.89
h6 - - - - 0.55 0.14 0.10 0.08 1.32 1.83
h7 - - - - 0.55 0.14 0.10 0.08 1.05 1.79
h8 - - - - 0.55 0.14 0.10 0.08 1.46 2.30

C6 h1 - - - - 1.59 0.33 0.33 0.20 1.04 1.70

3*C7 h1 - - - - 1.47 0.45 0.31 0.22 1.44 2.23
h2 - - - - 0.74 0.23 0.16 0.12 1.59 2.40
h3 - - - - 0.74 0.23 0.16 0.12 1.51 2.11

Table 1: Use-case analysis: demand of component partitions on the compatible re-
sources

time of p2 = {C3, C4, C5} and p3 = {C4, C5, C6} must not exceed 3.2s, and the
total response time of the last component (p4 ≡ C7) must not exceed 1.5s. Fig-
ures 6a, 6b and 6c report the values observed during the whole simulation, for
the three scenarios, together with the constraints thresholds (dashed lines). We
can observe that, in Scenario A, the response times are always quite far from the
threshold, except, for path p1, in a central area where, as reported in Figure 5a,
the workload approaches λmin. Indeed, when this happens SPACE4AI-R sug-
gests to switch off the PC in layer 2 and execute both C1 and C2 on the drone,
increasing its utilization. A similar pattern occurs in Scenario B, where, how-
ever, it is more difficult for SPACE4AI-R to determine feasible solutions due
to the higher workload. In particular, we can note that the response times are

Name Cost [$/h] Number of Instances

VM1 0.41 n=4
VM2 1.53 n=3
VM3 1.99 n=3
VM4 3.16 n=3

Table 2: Use-case analysis: Cloud resources

9

(a) Response times (Scenario A) (b) Response times (Scenario B)

(c) Response times (Scenario C) (d) Cost Savings

Figure 6: Path response times and dynamic placement cost savings

generally closer to the thresholds. Finally, the response times are more stable
in Scenario C, where only p4 is always close to the threshold. Figure 6d re-
ports the cost savings yielded by dynamically reconfiguring the system instead
of considering a static allocation, where the initial design-time solution deter-
mined as in [4] is kept fixed throughout the application execution. The runtime
management provides a cost reduction in all the considered scenarios, up to
60% when the computing infrastructure is more complex. The savings are more
significant when the input workload is smaller, since the design-time solutions
were determined in a maximum-load condition.

The average time required by SPACE4AI-R to compute each reconfiguration
in the three scenarios is of 0.396s, 0.412s and 0.427s, respectively (std. dev.:
0.081s, 0.084s and 0.088s).

4.2 Scalability analysis

To evaluate the scalability of our approach, we consider three different scenar-
ios at different scale, namely with 5, 10 and 15 components including up to
3 candidate deployments each and up to 4 partitions per deployment. It is

10

worth noting that, since the placement occurs at the level of the component
partitions, tackling the largest scenario means allocating on average 75 objects
(considering 2 deployments per component, and 2.5 partitions). Service de-
mands where randomly generated in the range of [1, 5]s for Edge resources,
[0.5, 2]s for VMs, and [2, 5]s for cold and warm FaaS requests, according to
other literature proposals [4, 9, 10]. For each scenario, we randomly generated
10 DAGs with branches, exploiting Networkx [11], to check how our tool deals
with general workflows. Furthermore, we consider two ranges of values for the
local and global constraints, namely strict (maximum response times are set
very close to the resources demands) and light (components and paths response
time thresholds are set very high). These distinction allows to assess how the
tool deals with opposite conditions, where determining a feasible reconfiguration
is more or less challenging. The number and type of resources and the number
of local and global constraints in each scenario is reported in Table 3. Local and
global constraints thresholds were randomly chosen in the ranges of [50, 100]s
and [200, 300]s, respectively, for the light and strict-constraints scenario. Sim-
ilarly, they were set in the ranges of [7, 10]s and [20, 25]s in the case of strict
constraints.

Experiments show that SPACE4AI-R succeeds in all the scenarios, for each
time instant and DAG. Figure 7 shows that, averaging the results across the
10 random DAGs, the tool tackles even large instances in the order of seconds,
which is close to 100× faster than the design-time tool, while guaranteeing cost
reductions against the static placement, meeting the reactivity requirements of
a runtime management framework. Note that the cost savings are higher for
larger systems, that benefit more from the reconfigurations. The SPACE4AI-R
execution time is larger when the workload is low and in the light-constraints
scenario, since more candidate feasible solutions can be generated and explored
in these settings.

Scenario 1 2 3

Number of components 5 10 15

7*Type and number of
resources in each layer CL1 Drone: 1 Drone: 1 Drone: 1

CL2 Edge: 2 Edge: 4 Edge: 5
CL3 VM: 3 Edge: 4 Edge: 5
CL4 FaaS: 2 VM: 4 VM: 5
CL5 - VM: 4 VM: 5
CL6 - FaaS: 4 VM: 5
CL7 - - FaaS: 5

Number of local, global constraints 3,3 4,4 5,5

Table 3: Scalability analysis scenarios

5 Related Work

Placement problems are continuously gaining attention from the research com-
munity. A classification of the literature proposals in terms of the placement
purpose (e.g., scheduling, offloading, distribution of physical resources), the

11

(a) SPACE4AI-R execution time (b) Cost savings

Figure 7: Scalability analysis

computing paradigm (Cloud-Edge, only Cloud, only Edge), and the optimiza-
tion metrics (latency time, energy consumption, cost) is proposed in [12]. Sim-
ilarly, [13] reviews the placement methods according to the infrastructure and
applications characteristics. Most of the proposals [14,15,16,17,18,19] focus on a
design-time perspective, tackling the resource allocation and optimal component
partitioning under a fixed workload ([14]), minimizing the total processing time
by task offloading in an Edge-to-Cloud infrastructure ([15]), or dealing with en-
ergy optimization ([18,19]). Among the design-time approaches, [16,17] are the
closest to our work: in [16], the computing infrastructure is represented by an
Undirected Graph, where nodes correspond to Edge and Cloud clusters, while
the application is modeled as a DAG. They aim to minimize the total process-
ing, memory and data-transfer costs through a greedy approach, splitting the
application into subsets of star components sorted by the number of connection
links and then selecting the best provisioning for each star component. In [17],
the multi-component application placement problem is tackled via two heuris-
tic algorithms: a matching and local search-based method that is very efficient
when the number of components and devices is relatively limited, and a greedy
algorithm designed for larger systems.

However, runtime tools are becoming crucial, since demands are subject to
fluctuations and finding statistical knowledge of future requests is quite chal-
lenging. [20] presents an ML-based auto-scaling system that can behave proac-
tively or reactively to adjust the number of Edge nodes in response to workload
changes. [21] addresses the service offloading and placement in the Computing
Continuum through a greedy algorithm based on the online demands predic-
tion. [22] proposes a general online orchestration tool that deals with dynamic
workloads in different computing environments without any prior assumption

12

on the future system states and future demand trends. [23] proposes an online
knapsack method for the dynamic placement and migration of AI workflows
under latency constraints.

6 Conclusions

This work proposes SPACE4AI-R, a tool to support AI application component
placement and resource selection at runtime. Thanks to the fast heuristics and
efficient implementation, our approach is able to cope with dynamic workloads
from small to large scale systems, exhibiting execution times under 1.5s and
two order of magnitudes faster than the design-time approach, guaranteeing
up to 60% cost savings over a static placement. Future works will extend the
Stochastic Local Search algorithm by investigating other neighborhood explo-
ration techniques.

Acknowledgment

This work has been funded by the European Commission under the H2020
grant N. 101016577 AI-SPRINT: AI in Secure Privacy pReserving computINg
conTinuum.

References

[1] Sheng Yue, Ju Ren, Nan Qiao, Yongmin Zhang, Hongbo Jiang, Yaoxue
Zhang, and Yuanyuan Yang. Todg: Distributed task offloading with delay
guarantees for edge computing. IEEE TPDS, 33(7):1650–1665, 2022.

[2] P. Mell and G. Timothy. Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, USA, 2011.

[3] Sijing Duan, Dan Wang, Ju Ren, Feng Lyu, Ye Zhang, Huaqing Wu, and
Xuemin Shen. Distributed artificial intelligence empowered by end-edge-
cloud computing: A survey. Commun. Surveys Tuts., 25(1):591–624, 2023.

[4] Hamta Sedghani, Federica Filippini, and Danilo Ardagna. A random greedy
based design time tool for ai applications component placement and re-
source selection in computing continua. In IEEE EDGE, pages 32–40,
2021.

[5] Guozhi Liu, Fei Dai, Xiaolong Xu, Xiaodong Fu, Wanchun Dou, Neeraj
Kumar, and Muhammad Bilal. An adaptive dnn inference acceleration
framework with end–edge–cloud collaborative computing. Future Gener.
Comput. Syst., 140:422–435, 2023.

13

[6] E. Galimberti, B. Guindani, F. Filippini, H. Sedghani, D. Ardagna,
G. Moltó, and M. Caballer. OSCAR-P and amllibrary: Performance pro-
filing and prediction of computing continua applications. In ACM/SPEC
ICPE 2023, pages 139–146.

[7] Nima Mahmoudi and Hamzeh Khazaei. Performance Modeling of Server-
less Computing Platforms. IEEE Trans. Cloud Comput., 10(4):2834–2847,
2022.

[8] Federica Filippini, Hamta Sedghani, and Danilo Ardagna. AI-SPRINT
SPACE4AI-R Local Search, December 2022.

[9] Tarek Elgamal, Atul Sandur, Klara Nahrstedt, and Gul Agha. Costless:
Optimizing cost of serverless computing through function fusion and place-
ment. In IEEE/ACM SEC, pages 300–312, 2018.

[10] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. Cold
start influencing factors in function as a service. In IEEE/ACM UCC
Companion, pages 181–188, 2018.

[11] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, SciPy Proceedings, pages 11 –
15, Pasadena, CA USA, 2008.

[12] Julian Bellendorf and Zoltán Ádám Mann. Classification of optimization
problems in fog computing. Future Gener. Comput. Syst., 107:158–176,
2020.

[13] Sven Smolka and Zolt Mann. Evaluation of Fog Application Placement
Algorithms: A Survey. Computing, 104(6), 2022.

[14] Yi Su, Wenhao Fan, Li Gao, Lei Qiao, Yuan’an Liu, and Fan Wu.
Joint DNN Partition and Resource Allocation Optimization for Energy-
Constrained Hierarchical Edge-Cloud Systems. IEEE Trans. Veh. Technol.,
72(3):3930–3944, 2023.

[15] Wenhao Fan, Liang Zhao, Xun Liu, Yi Su, Shenmeng Li, Fan Wu, and
Yuan’an Liu. Collaborative Service Placement, Task Scheduling, and Re-
source Allocation for Task Offloading with Edge-Cloud Cooperation. IEEE
Trans. Mob. Comput., pages 1–18, 2022.

[16] Baudouin Herlicq, Abderaouf Khichane, and Ilhem Fajjari. NextGenEMO:
an Efficient Provisioning of Edge-Native Applications. In IEEE ICC 2022,
pages 1924–1929, 2022.

[17] Tayebeh Bahreini and Daniel Grosu. Efficient Algorithms for Multi-
Component Application Placement in Mobile Edge Computing. IEEE
Trans. Cloud Comput., 10(4):2550–2563, 2022.

14

[18] Jing Bi, Kaiyi Zhang, Haitao Yuan, and Jia Zhang. Energy-Efficient Com-
putation Offloading for Static and Dynamic Applications in Hybrid Mobile
Edge Cloud System. IEEE Trans. Sustain. Comput., 8(02):232–244, 2023.

[19] Ying Chen Shaoxuan Yun. Intelligent Traffic Scheduling for Mobile Edge
Computing in IoT via Deep Learning. CMES, 134(3):1815–1835, 2023.

[20] Thiago Pereira da Silva, Aluizio Rocha Neto, Thais Vasconcelos Batista,
Flávia C. Delicato, Paulo F. Pires, and Frederico Lopes. Online machine
learning for auto-scaling in the edge computing. Pervasive Mob., 87:101722,
2022.

[21] Yeting Guo, Fang Liu, Nong Xiao, Zhaogeng Li, Zhiping Cai, Guoming
Tang, and Ning Liu. PARA: Performability-aware resource allocation on
the edges for cloud-native services. Int. J. Intell. Syst., 37(11):8523–8547,
2022.

[22] Xun Shao, Go Hasegawa, Mianxiong Dong, Zhi Liu, Hiroshi Masui, and
Yusheng Ji. An Online Orchestration Mechanism for General-Purpose Edge
Computing. IEEE Trans. Serv. Comput., 16(02):927–940, 2023.

[23] Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy.
Model-driven cluster resource management for ai workloads in edge clouds.
ACM Trans. Auton. Adapt. Syst., 18(1), 2023.

15

	Introduction
	RS-CP Problem
	Application Model
	 Infrastructure
	Problem Statement

	SPACE4AI-R
	Experimental Results
	Use-case analysis
	Scalability analysis

	Related Work
	Conclusions

