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This paper presents a comparative analysis of different modeling and control techniques
that can be used to tackle the energy efficiency and management problems in buildings.
Multiple resources are considered, from generation to storage, distribution and delivery.
In particular, it is shown what are the real needs and advantages of adopting different
techniques, based on different applications, type of buildings, boundary conditions. This
contribution is based widely on the experience performed by the authors in the recent
years in dealing with existing residential, commercial and tertiary filed buildings, with
application ranging from local temperature control up to smart grids where buildings
are seen as an active node of the grid thanks to their ability to shape the thermal and
electrical profile in real time. As for control models, a wide range of modeling techniques
are here investigated and compared, from linear time-invariant models, to time-varying,
to nonlinear ones. Similarly, control techniques include adaptive ones and real-time
predictive ones.

Keywords: smart buildings, energy management, heat pump, linear MPC, real-time NMPC

1 INTRODUCTION

The idea of smartness or highly energy-efficient and decarbonized building sector has gained
remarkable popularity over the last few years. Recent studies showed that about 40% of total
energy consumption accounts for the building sectors, residential, commercial and industrial ones
(European Union, 2010).

In this context, the need for advanced control systems for efficient usage of thermo-electrical
devices has become crucial to contribute to energy-efficient buildings and cities, as well as to
gain flexibility for the loads in a future scenario dominated by erratic renewable sources. In this
regard, there have been studies on building energy management associated with the control
algorithms that covers classic to advanced methods. These approaches focused on temperature
control (Hazyuk et al., 2012), optimal control of HVAC systems (Manjarres et al., 2017),
energy optimization for a group of buildings connected to heat pumps (Staino et al., 2016),
HVAC, battery energy storage, and renewable generation coordinator (Biyik and Kahraman, 
2019).

To this scope, in this paper, a brief review on energy management systems, available control
approaches and modeling algorithms is performed. Special attention is devoted to heat pumps, not
only for their effectiveness in generating thermal energy from electrical energy, but also because they
show wide margins for saving further energy. Actually, their inner efficiency is a nonlinear function
of the operating conditions and disturbances, thus paving the way to optimal strategies, in real time,
to store energy–in any form–when it is more convenient and use it when it is needed to meet user

Frontiers in Energy Research | www.frontiersin.org 1 September 2022 | Volume 10 | Article 899866

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.899866
https://creativecommons.org/licenses/by/4.0/
https://loop.frontiersin.org/people/1310982/overview
https://loop.frontiersin.org/people/256318/overview
https://loop.frontiersin.org/people/989068/overview
https://doi.org/10.3389/fenrg.2022.899866
http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.899866&domain=pdf&date_stamp=2021-10-15
https://www.frontiersin.org/articles/10.3389/fenrg.2022.899866/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.899866/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.899866/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Rastegarpour and Ferrarini Modeling and Advanced Control for Energy Management in Buildings

requirements. Such a special behavior will be well detailed in the
paper. Notice that due to the wide variety of topics discussed in
the paper a detailed literature review has been performed in each
of the following chapters.

1.1 Aim of Study
This paper provides a systematic approach to the energy
management and control problem for buildings of different sizes.
It is mostly based on a structured analysis of the recent authors’
investigations over the last decade in the following fields:

• Control-oriented modeling of thermal and electrical
components as well as building envelopes and their
couplings
• Model Predictive Control approaches (from linear to

nonlinear techniques)
• Role of heat pump COP estimation and prediction for

energy efficiency
• Experimental testing in small to large buildings with HVAC

system

The study aims at providing new researchers with a quick start
on the topic and experienced researchers with a summary of
recent practical and theoretical experiences for future research.

1.2 Paper Organization
The paper is organized as follows. Section 2 reviews the
modeling approaches used for the energy efficiency application
in buildings. A review of the control strategies is developed
in Section 3, while the guideline for controller selection based
on application case study is given in Section 4. The possible
challenges and real applications are given in Section 5. Section 6
concludes the paper.

2 BUILDING MODELING FOR ENERGY
EFFICIENCY APPLICATIONS

An accurate estimation and prediction of the energy
consumption of buildings is crucial to enforce efficiency.
However, one should first ask himself: what is the meaning of
energy efficiency? And how many different types of models are
available? A comprehensive comparative analysis of the available
modeling technologies is provided in (Koulamas et al., 2018)
where the authors encompasses bottom-up and top-down
approaches, white/gray/black box models, calculation-based and
data-based models.

A widespread calculation-based quasi-steady-state physical
model is provided by the ISO 13790 standard discussed also in
(Kalogeras et al., 2019). In the paper, the model is successfully
compared to ISO 52016 standard, updating ISO 13790. In
addition, the predictive capability of this model is ascertained
using the simulation results of EnergyPlus dynamic simulator, as
a benchmark software.

Apart from some numerical errors that appear in some mid-
season months, the above models are very useful to compute a
monthly or yearly consumption of a building.

However, from a control point of view, suitable short-time
“control-oriented” dynamic models need to be developed to
evaluate the building energy performance during the transient
behaviour within a time frame typical of temperature control
systems, usually measured in minutes/hours.

In this perspective, there are several different modelling
techniques to represent the thermal behavior of buildings.

The resistor-capacitor (RC) network model has been widely
used in the application of building energy efficiency programs.
This kind of first principle modeling approach is linear based on
an RC equivalent network corresponding to lumped-parameter
energy balance equations. In (Yang et al., 2018) a method is
proposed to develop an integrated state-space model for indoor
air and radiant temperature together with a quality index, namely
Predicted Mean Vote, suitable for fast real-time optimization.
Similar approach is used in (Ferrarini et al., 2017) for control-
oriented modeling of an office-size space.

In these approaches, generally, some parameters can be
identified in a white-box fashion using physical information
related to the envelope, materials, indoor volumes and so on.
Some others are instead more difficult to be computed on a
priori knowledge. Thus, they are either estimated using data from
literature or regulations or tuned using directly measurement
data information, which makes them gray-box models.

Such a hybrid white/gray box approach is applied in
some application cases discussed in the following sections. In
particular, in Section 5. For more case studies you may refer to
(Dong et al., 2013; Lin and Yang, 2018; Zhang et al., 2022).

3 CLASSIC VS PREDICTIVE CONTROL
STRATEGIES

In the technical literature, there are many control approaches for
energymanagement applications in buildings.Thewidest applied
techniques are classic feedback regulators and predictive optimal
controllers. For the sake of brevity, only a quick hint is provided
for classic controls, while more attention is paid to predictive
ones.

3.1 Classic Control Algorithms
Classic feedback controllers are often used for their simplicity
and effectiveness. These are used for indoor temperature and
humidity control, or for heating water temperature control, or
even power control of the compressor of a heat pump.

There are two main categories: discrete and continuous ones.
The first category is based on a hysteretical behaviour over a
threshold with a predefined interval (for example, for indoor
temperature we can set 20°C with 0.5°C tolerance, through a
thermostat). The second category is based on PI/PID controllers.

Although both of them are effective, discrete controllers
induce an oscillating behavior on the control variables. Such
fluctuations may reduce the comfort as well as the residual life
of components (e.g., electro-valves).

But there is one more important drawback: the discrete
approach is definitely not good in presence of high-inertia
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systems. As an example, consider a radiant panel heating system.
Typically, the water/pavement is at around 30–35°C to have an
indoor temperature of 20°C. If the discrete controller switches
off the heating at 20.5°C of indoor temperature, the pavement
remains at 30–35°C for quite some time, still heating the room.
The unwanted result is that the room temperature will then
increase much beyond the original set point, and the original
threshold.

On the contrary, continuous PI/PID controllers avoid
fluctuations, but have the problem of tuning, that threatens
many technicians during commissioning. However, PI/PID
tuning (online or offline) is a well-addressed topic, especially
for buildings applications. The interested reader may refer
to (Salpakari and Lund, 2016; Ferrarini et al., 2017; Ferrarini
and Babini, 2020) for interesting case studies in residential
and tertiary field applications. Results show that even a
simple clustering technique allows finding proper tuning,
and trivial rule-based enhancement can increase energy
efficiency of about 12.6%, without the need for structural
retrofitting.

Although PI/PID algorithms provide a reliable and safe
solution, there is no simple way to enforce constraints and
physical limitations of the system. Furthermore, PIDs are usually
single-input single-output control algorithms and they are not
able to deal with multi-input/output systems. In this case, the
interaction between different loops cannot be effectively seen by
the controller which leads to a longer time response or more
fluctuations.

3.2 Advanced Predictive Control
Approaches
As said, classic control methods are applied in the majority
of building energy management systems. This is mainly due
to their simplicity (in both design and implementation), while
still showing good performance. So, why should other control
techniques be investigated?

An easy and technical answer is that the recent progress in
communication protocols and industrial processors opened the
way for implementation of advanced control algorithms. Butwhat
are the advantages in doing that? Concrete advantages of using
advanced control algorithms are undeniable, such as:

• the ability to include forecasts
• the possibility to handle constraints of the system
• the ability to track multiple objectives (e.g., comfort vs

energy saving)
• the flexibility towards changing boundary conditions
• the ability to operate the system around the optimum point
• the possibility to handle system nonlinearities
• the possibility to handle a time-varying behavior

As an example, if heat pumps are exploited for air
conditioning, it is well known that their efficiency is not
constant at all, being a nonlinear function of specific quantities
of the operational condition as well as weather disturbances
(at least for air-to-water pumps). With advanced control
techniques, it is possible to make the heat pump work when
it is more efficient, transforming the potential disadvantage

of a complex nonlinear behavior (efficiency changing over time),
into a concrete advantage.

In addition, it is possible to find a compromise in real time
between storing energy when it is cheap and using it when it
is necessary. Would that be possible with traditional control
schemes?

Here in this section, different types ofmodel predictive control
algorithms (MPC) are analysed and compared for building
energy management scenarios. MPC techniques achieved a
high performance in a wide range of industries as they can
accommodate a performance index (optimal solution) and
constraints satisfaction (actuator and operational limitations). It
has been also used successfully with the application of smart
buildings, especially the ones integrated with heat pumps [see
(Verhelst et al., 2012; Kajgaard et al., 2013)]. In particular cases
with variable electricity prices, it shows a significant energy
saving (cost reduction up to 35%).

In this regard, the type of model and mathematical
formulation of the predictor defines the type of MPC algorithm.
Generally, it ranges from linear to nonlinear methodologies
(Rastegarpour et al., 2020a).

The aim is always to optimize the building operation with
respect to both thermal comfort and energy cost.Obviously, those
are conflicting objectives, so that a multi-objective optimization
problem is to be selected.

Therefore, a weighted sum of the energy cost (Je) and thermal
discomfort cost (Jd) is evaluated over a prediction horizon of N,
as follows:

Jt =
N−1

∑
i=0
(γ1 Je (i) + γ2 Jd (i)) (1)

where γ1 and γ2 are the respective normalized weighting
factors. The MPC aims at calculating the optimal control profile
to minimize the total cost Jt over time. The optimization problem
is subject to the systemdynamics, actuator limitations and system
constraints.

3.2.1 Linear MPC
Usually, in practical applications, the computational performance
is prioritized over model accuracy. In such cases, a linear
representation of the system dynamics should be obtained and
used as the predictor agent inside the optimization problem.
Therefore, linear or convex quadratic problems are formulated
to find the optimal control profile, which provides cheaper
computational effort.

The linear representation of the system dynamic can
be obtained either through classic linearization techniques
(Rastegarpour et al., 2020a) or developing first principle linear
models (Rastegarpour et al., 2018). The latter includes many
strong assumptions in order to separate the linear part of the
model from the nonlinear one, tuning the MPC on the linear
process model only (Mantovani and Ferrarini, 2015).

On the contrary, classic linearization technique obtains a
linearized state-space model of the process around a certain
operating point. In this case, there could be some stability issues
depending on the level of nonlinearity of the system.
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In the application of building energy management, however,
the dynamics of thermal storages is nonlinear with respect to
the circulated water flow rate within the tank layers. The heat
pump dynamic is another potential source of nonlinearity due
to its strong load dependency. The dynamical behavior of this
thermo-electrical equipment can dramatically change during the
transition from one operating point to another. Hence, a single
linear MPC designed at a particular operating point does not
necessarily give satisfactory control performance over a wide
operating range.

In (Rastegarpour et al., 2020a), authors studied a MPC
algorithm with successive linearization, named SMPC. In the
SMPC approach, the model is linearized at each sampling instant
based on the current operating point. The linearized model
remains fixed over the prediction horizon. In this way, at every
sampling time, the “best” linearized model is used to perform
prediction and control.

However, as discussed in (Rastegarpour et al., 2020a), the
SMPC achieves acceptable performance as long as the system
has a behavior close to linear within the prediction horizon,
while it may fail when the dynamic behavior of the system varies
significantly during the prediction horizon. In the latter case, the
state prediction is not accurate anymore. To tackle this problem,
the proposed SMPC is refined in (Rastegarpour et al., 2020a),
where the system dynamic is linearized around a reference
trajectory instead of the current operating point. The approach
is called linear time-varying MPC (namely LTV-MPC) and takes
into account also time-varying behaviour.

The reference trajectory can be initialized with a simple off-
line open-loop optimization with the prediction horizon of N,
and then, starting from the second sampling time onwards, it is
updated at every sampling time using the trajectory computed as
an optimization result of the MPC at the previous sampling time.

It is worth noticing that the proposed linear MPC algorithms
yield a convex quadratic program (QP) for which specific tools
exist.

The simulation results of these algorithms show that the
LTV-MPC approach obtains a significantly better performance
when compared to the SMPC. Even more, the numerical
solution is quite close to the optimal one and performs
similarly to the nonlinear algorithms (Rastegarpour et al., 2019a;
Rastegarpour et al., 2020a; Rastegarpour et al., 2021).

3.2.2 Nonlinear MPC
If the nonlinear dynamics of the system are used in the
optimization problem, then the resulting optimal control
problem holds nonlinear constraints. Therefore, the available
linear and convex solutions are not valid anymore. Therefore,
nonlinear control solutions should be employed.

The type of nonlinear predictive controller differs depending
on the type of information used to predict the system’s dynamics.
In general, we can divide them into the following categories:

• fuzzy models: these are mainly based on if-then rules which
play the role of expert knowledge to represent the system’s
behavior (Škrjanc et al., 2001).

• nonlinear autoregressive network (with exogenous inputs):
it is using historical or current measurements to learn
a pattern and predict its future value; artificial neural
networks are the most common ones in this category (Raza
and Khosravi, 2015).
• explicit first principle models: these are mainly based on

the energy conservation laws on the control volume under
study.

The nonlinear MPC algorithms usually go under the category
of model-based methods where a representation of the physical
system is provided through the explicit first principle approach.
This model is then used to formulate the optimization problem
for finding an optimal control trajectory.

In this case, shootingmethods and interior point optimization
are used for the solution of the optimal control problem.

In (Rastegarpour et al., 2020a) authors used an RK4 technique
to discretize the nonlinear dynamic of the system. The optimal
control profile is calculated through the solution of a nonlinear
program solved by a primal–dual interior point method, using
the software IPOPT. The paper also compares the linear and
nonlinear MPC algorithms for the application of building
energy management. A quality index is introduced to better
evaluate the impact of model uncertainties on the control
performance.

A similar nonlinear MPC method is used for the
economic optimization of multiple floor-heating buildings
(Rastegarpour et al., 2020b), which will be reviewed in
Section 5.

4 CONTROLLER SELECTION FOR
BUILDING ENERGY MANAGEMENT

As reviewed in previous section, different control algorithms
can be exploited to obtain a higher level of sustainability in
buildings. To this scope, different types of predictive or non-
predictive algorithms can be formulated depending on the
dynamical behavior of the system, from linear, to nonlinear, to
time-varying, to time-invariant ones. Table 1 summarizes the
proposed modeling and control approaches for building energy
management purposes. This is an easy guide for those who are
going to select a modeling or control approach depending on
their applications and their limitations.

However, selection of a suitable control methodology
significantly depends on the time horizon during which the
energy performance is going to be evaluated.

From a monthly or yearly perspective, there is no need to
take care of the transitory behavior of the thermo-electrical
equipment (such as heat pumps or fan coils), while they can
be all studied in steady-state conditions with a set of algebraic
equations. In this case, the optimization problem focuses more
on the seasonal issues like monthly climatic conditions and
occupancy profile when a long-term planning is usually foreseen
[see (Ferrarini et al., 2019) (Rastegarpour et al., 2017)].

On the contrary, the dynamical behavior of the system’s
components are more important once the controller aims at
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improving the buildings’ performance in a short time interval of
hours or minutes level. In this case, depending on the number
of variables and constraints, the resulting optimization problem
could be a very complex one. So, one practical solution is to use a
multi-level architecture for the control, a so-called hierarchical
predictive control algorithm. This can be a combination of
classic and advanced control approaches which are reviewed in
Section 3.

In this view, building energy management interfaces with
different boundary levels and control loops. It all depends on
the level of complexity to put into the mathematical formulation.
However, from a very high-level perspective, three different
control hierarchies can be introduced:

• Power generation/distribution system: this includes a top
level view of the control hierarchy, where a building (as
individual load) or a smart grid (as a set of loads) are
integrated with electrical and thermal generation systems
(PV panels, wind turbines, diesel generators, industrial heat
pumps etc) for energy market optimization purposes. The
control system in this level designs in a larger sampling time,
usually in hour(s) range.
• Load level: This includes the control of an individual

building (residential or commercial) including all thermal
and electrical devices such as heat pumps, water tanks,
batteries, local renewable and building’s thermal zones. The
control system in this level designs in a medium sampling
time, usually in minute(s) level.
• Thermo/electrical equipment: This includes the bottom

level of the control hierarchy, where the inner control loops
of the thermo/electrical devices are taken into account, as
for example:

– control of the refrigerant cycle including fans, valves and
compressor

– control of the water flow rate within the heat pump
condenser

– control of the heat exchangers
– control of battery energy flow
– control of air handling units and fan coils

The control system at this level is operated with a small
sampling time, usually in second(s) range.

Figure 1 shows levels of integration in a control hierarchy
based on the sampling time. In fact, it shows how to study
the system’s dynamic from a control perspective on different
levels.

5 CHALLENGES IN REAL APPLICATIONS

In this section, some relevant energy control applications for
building are analyzed and compared. They are listed based on
increasing size of the application:

• heat pump with thermal storage modeling and control
• building energy control integrated with electrical storage
• complex HVAC modeling and control
• multiple buildings in a smart grid

5.1 Heat Pump With Thermal Storage
Modeling and Control
A common vapor compression heat pump cycle consists of two
parallel heat exchangers, one acting as an evaporator (where
heat is absorbed) and another as a condenser (where heat
is released). There are several different types of heat pumps
depending on the heat and sink source environments, as
follows:

• heat sources: ambient air, ground, water
• heat sinks: space heating, domestic hot water

The amount of heat delivered by a heat pump strongly
depends on the environmental conditions where the heat pump
is operating in. In fact, this load-dependent efficiency of the
heat pump is the main reason which makes it an interesting
component in energy efficiency programs and opens the way for
optimization problems.

In this perspective, it is possible to operate efficiently any
heat pump in their efficient period by estimating and possibly
predicting their coefficient of performance (COP) based on the
available measurements. Heat pump COP is a practical index
representing the rate at which the heat pump generates heat with
respect to a specific electrical power consumption.

In this perspective, it is important to model the heat pump
components in order to accurately estimate or predict its COP
value. There are mainly three different approaches for modeling
a heat pump, here briefly recalled.

• Exploiting the available simulation software and
thermodynamic libraries such as thermolib or TRNSYS:
In this approach, models are mainly developed based on
thermodynamic principles already developed in some
libraries. These types of simulators are useful for the
overall evaluation of a heat pump cycle or for solving
sizing problems. They are not absolutely useful for control
system design or dynamic and online optimization
solutions. However, they are quite interesting to be used
as a reference model for testing different high-level
control scenarios, similar to the application presented in
(Rastegarpour et al., 2019a).
• Physics-based models, based on first principle

thermodynamic rules. This type of modeling technique
exploits the energy conservation laws and balance equations
in order to evaluate the transient behavior of the system.
This is a suitable approach for designing control systems
for the heat pump cycle and its local controller as it gives
a correct insight about thermal behavior of the refrigerant
and consequently an acceptable calculation of COP value.
However, in a building efficiency level, the dynamic of the
heat pump is almost negligible as it operates in seconds level
(see Figure 1). Moreover, from a practical point of view, the
transient behavior of a heat pump is not an interesting issue,
while the steady state conditions are more remarkable.
• Data-driven models. This is one of the best and most

practical solutions for the application of heat pumps in
building energy management programs. In fact, in this
approach, the most effective parameters on COP value is
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FIGURE 1 | Control hierarchy and levels of integration: the yellow(light) zone shows the part where the system behaves dynamically.

used to train a network or a polynomial to be used as a
predictor in higher level control algorithms. This type of
models can be both dynamic or static, depending on the
sampling time used for the network training. For example,
a simple method is used in (Boait et al., 2011) to take the
Carnot ratio andmodify it with amultiplier in order to catch
the heat pumpCOPvalue.A similar approach for heat pump
modeling has been employed by other authors, for example
(Magraner et al., 2010). In the rest of this section, we review
more precisely this modeling approach.

5.1.1 Control-Oriented Models of a Domestic
Air-To-Water Heat Pump
The application scenario of this section composes of a domestic
air-to-water heat pump connected to a hot water tank (Figure 2).
A set of control-oriented models of the heat pump is studied
in (Rastegarpour et al., 2019a). Those models are basically a
quadratic and linear combinations of subsets of the main factors
that affect the heat pump COP, which are identified through a
sensitivity analysis on the following parameters:

• external air temperature Toa
• external humidity H
• backward water temperature to condenser stage TB
• compressor power COMB

It is also proved that the dependency on only one of the many
factors, like air temperature, is not enough to formulate a reliable
model-based controller.

The numerical analysis of the maximum variation of the
COP (ΔCOP) with respect to the variation of each parameter is
summarized as follow:

• COPmin to COPmax→ 1 to 7
• ΔCOP w.r.t Toa→ 3.1

FIGURE 2 | Experimental system layout of a residential HP system.

• ΔCOP w.r.t H→ 0.21
• ΔCOP w.r.t TB→ 4.83
• ΔCOP w.r.t COMB→ 1.3

It becomes visible that the temperature lift in evaporator
and condenser (Toa and TB) have a major impact on
efficiency, which has been proven by the proposed sensitivity
analysis.

The proposed models are usable if there are enough sensors
to provide the designer with the required information. While,
there are cases where the lack of sensors will be a critical issue for
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training suchmodels. As a vivid case, the profile of the watermass
flow rate along the condenser manifold is highly uncertain in
absence of specific sensors.Therefore, the buffer tank temperature
at the level corresponding to the heat pump condenser can not be
accurately estimated at the end of each sampling period k, which
results in an erroneous COP estimation.

Therefore, in case of the lack of sensors, it is possible to tune an
equivalent control-oriented model for the system, i.e. heat pump
and buffer tank, under variable flow rate conditions on both the
condenser and load side, while still preserving good prediction
capabilities of themodel, with no tank temperature normass flow
rate sensors.

The proposed equivalent model is able to enhance the
performance of the designed predictive controller such that it
improves the heat pump operation (COP value) by approximately
53% and saves up to 21% electrical power consumption with
respect to the classic heating-curve(HC) technique. Figure 3
shows about 2 days of experimental test for the proposed
algorithm. The experiment is performed on a typical winter
day in Denmark, with a daily mean temperature of 0°C for
a time-of-use electricity price profile. The nonlinear optimal
control problem is compared with the current internal control
unit in the real modulating heat pump, which computes the
supply water temperature set point based on a conventional
weather-dependent heating curve.This experiment highlights the
advantages of the NMPC approach against the classic control
algorithm.

More details and results discussion are provided in
(Ferrarini et al., 2020).

5.1.2 Dynamic COP Predictor
The trained static models presented in the previous subsection
proved to provide satisfactory results in many applications.
However, the approach there presented needs an intensive data
collection procedure. Moreover, there are some issues, such as
aging or dramatic changes in environmental conditions or any
changes in the size of the buffer tank, which may enforce the
retuning of the proposed polynomials.

In order to avoid such a retuning procedure, it is possible to
propose a practical and generic solution for the heat pump COP
prediction, thanks to the available on-line estimation theoretical
framework.

In this approach, the proposed linear and nonlinear
approximations are merged with an on-line estimation technique
(Extended Kalman Filter is suggested) in order to update the
proposed model according to the current situation of the plant.
The updated model of the COP is then used in a recursive
algorithm to run theNth-step ahead prediction of the COP value.
In this case, it is possible to capture the future behavior of the heat
pump COP with an acceptable accuracy for a prediction horizon
sufficiently enough for the control purposes in such application.

This technique is used in an experimental setup for prediction
of the COP value of a domestic air-to-water heat pump
in Denmark. Figure 4 shows the predictive capability of the
proposed COP model for a prediction horizon of 30 min, where
each point corresponds to the 60-step prediction error of theCOP
value.

The proposed predictor is used also in a predictive
optimization problem which proved promising results. For more
info and details please refer to (Rastegarpour et al., 2021).

5.2 Building Energy Control Integrated
With Electrical Storage
There are many strategies to improve the energy consumption
trend in building sectors. Recent uses of building energy resource
management system as well as complex optimization techniques
uncovered new ways to achieve thermal and electrical energy
saving.

According to (Zame et al., 2018), energy storage systems
provides a remarkable flexibility to improve the operation of
smart buildings in terms of energy consumption and user
satisfaction.

In this scope, a distributed and hierarchical control algorithm
is developed in (Rastegarpour et al., 2019b) for smart buildings
application with the micro-grids (MGs) interaction. In fact,
the proposed control architecture aims at exploiting the
advantages of using thermal and electrical energy storages
to shift the power generated by renewable resources to
be more coincident with peak times for optimal pricing
concepts. On the other hand, it guarantees the comfort level
satisfaction for the building’s occupants in presence of different
disturbances.

The experimental validation of the proposed control
algorithm has been performed in a well-equipped smart
grid research laboratory belonging to the ERIGrid research
infrastructure, equipped with energy storages, controllable loads,
PV panel, wind turbine and a point of common connection
connected to the national grid. The selected technologies for
such experiment is summarized as follows:

• Battery: Inverter SMA (Niestetal, Germany) Sunny Island
4500 with nominal power of 3.3 kW250 Ah, 60 V lead-acid
batteries.
• Controllable loads: 15 kW resistors, 1 kW lamps, 0.5 HP

motor, and 2.5 kVAR inductive load.
• Photovoltaics panels: inverter SMA Sunny Boy 100 E with

rating of 1.1kW nominal power.
• Wind turbine: Inverter SMAWindy Boy 1700 with nominal

power of 1.7 kW.
• Thermal energy storage: a 400 L tank
• Building dimension: an office with a volume of 72m3)

In this application, the building pipelines are supplied
through a three-way valve, which introduces more complexity
due to variable position of valve. Despite the fact that
thermal energy storage dynamical model is nonlinear
due to variable water flow rate, the optimization problem
is more complicated due to the logical/algebraic model
of battery with variable charging/discharging efficiency,
which makes the overall model a mixed-logic dynamical
system.

Figure 5 shows the overall control architecture and
experimental configuration of the proposed energy resources
management strategy.
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FIGURE 3 | Heat pump performance analysis: (A) Tank temperature, (B) COP comparison.

FIGURE 4 | Predictive capability analysis of the proposed COP predictors for
300 steps analysis (2.5 h).

The experimental and simulation results show the
effectiveness of the proposed solution. In fact, the proposed
algorithm saves up to 12.5% in load energy consumption and it
has 22% improvement of total cost benefit. As it has been shown
in Figure 6, the optimal control algorithm exploits the capacity
of the storages in the peak periods to serve the load and sell the
excess power to the grid resulting in a more cost benefit.

5.3 Complex HVAC Modeling and Control
The problem of performance improvement and energy
consumption reduction of the heating, ventilation and air
conditioning system (HVAC) of a large-scale university building
through the application of nonlinear predictive control strategies
is studied in (Rastegarpour and Ferrarini, 2021).

FIGURE 5 | Overall configuration of the experimental tests.

This paper also significantly extends the application case
in (Ferrarini and Babini, 2020), where no models of the
generation and distribution units were given and only feed-
forward/feedback PID control loops were evaluated. Also,
indoor disturbances due to a variable occupancy level are
addressed.

The experimental setup of the proposed study includes a
detailed reference model composed of the integration of a multi-
zone thermal model of the educational building with two air
handling units (each one endowed with air extractors with heat
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FIGURE 6 | Total power distribution among all storages, generators, and utility grid.

recovery units and temperature control loops), two heat pumps
(a water-to-water and an air-to-water type), a water tank and
aero-hydraulic circuits, see Figure 7.

Furthermore, a three-level hierarchical NMPC (H-NMPC)
algorithm is tested on this application (see Figure 8). A
centralized version of NMPC is also tested for comparison
purposes. The objective of the control system is twofold. First,
to optimally decide how to distribute the thermal load on the
two heat pumps by manipulating the water and air circulation
actuators in order to guarantee the thermal comfort and air
quality in the building. Second, to minimize the overall electrical

energy consumption in presence of all nonlinear dynamics,
equality and inequality constraints, physical limitations and
disturbances.

The experimental results show that The proposed algorithm
is able to improve significantly the heat pumps operation up
to 21 and 34% in air-to-water and water-to-water heat pumps,
receptively, compared to the traditional control system, without
sacrificing the comfort conditions.

The problem of performance improvement and energy
consumption reduction of the HVAC system in large scale
buildings are also studied in (Mantovani and Ferrarini, 2015) for

FIGURE 7 | Overall flow diagram of building and HVAC system.
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FIGURE 8 | Schematic of H-NMPC structure.

FIGURE 9 | Control architecture. MPC computes a power value to be
delivered to each zone. This value is filtered by a compensator to become a
valid value for the HVAC system.

a shopping center (Campo dei Fiori), which is located in northern
Italy. As a matter of fact, when HVAC plants are introduced, a
heavy nonlinear behavior due to the presence of heat exchangers
as plant terminals (such as radiators or fan coils) is introduced
and cannot be properly modeled with a constant heat exchange
coefficient, i.e., a thermal resistance.

However, the idea was to use a nonlinear block, which
filters the controller’s output (thermal power) for obtaining
real-world manipulated variables (mass flows or temperatures).
This nonlinear compensator proves to enhance closed-loop
performances with respect to classic linearization, which is not
suitable for the heavy nonlinearities of heat exchangers. This
way, it is possible to separate the linear part of the model from
the nonlinear one, tuning the MPC on the linear—and more
reliable—process model (see Figure 9).

The experimental analysis shows that MPC allows for energy
saving of about 4.5% with respect to the current practice, thanks
to the predicting capabilities and the accuracy in estimating
disturbance inputs.

5.4 Multiple Buildings in a Smart
Micro-grid
From a pure user’s perspective, a PID may be good enough for
the temperature control in residential buildings with radiators
[(Ferrarini et al., 2017) (Ferrarini and Babini, 2020)]. However,
more advanced control algorithms, such as MPC, may improve
performance if we have radiant-panel building, although some
specific alternative solutions could be exploited.

On the contrary, once the controller aims at optimizing the
performance of thermo-electrical devices and improving the
overall energy efficiency of the smart micro-grid in a demand-
response scenario, the need of MPC algorithms is undeniable.

The results discussed in the previous subsections indicate that
the use of a simplified heat pump representation provides a better
suboptimal solution and consequently improves the building
energy performance. However, the problem is more challenging
when a group of users (building in different sizes) are taken into
account.

The scenario addressed in this section extends the classic
building heated by a heat pump, and consists of a set of different
buildings with different desired comfort levels and different
levels of flexibility. A combination of heat pumps with different
types of storages (electrical and thermal) and different types of
generators (renewable, diesel generators or main utility grid) is
an attractive solution to shape the load in a demand-response
scenario and to shift the heat pumps operation to their efficient
period.

The case study and corresponding control algorithms are
well described in (Rastegarpour et al., 2020b). The paper aims at
finding the best compromise among different goals:

• make the heat pump work when it is more efficient
• store electrical energy when it is cheap
• store thermal energy in the tank when the heat pump is

more effective
• modulate the inlet water temperature of the building

pipelines to satisfy the user’s comfort
• exploit the building thermal inertia

The results of the experimental analyses were extremely
encouraging. The optimal control formulation proposed there
was a nonlinear MPC algorithm which proved to be consistent
in many different scenarios. simulation results showed that it is
possible to cut electricity cost by about 20% in a variable price
scenario, thanks to the optimized flow of energy among storages
and users.

6 CONCLUSIONS AND RECOMMENDED
FUTURE DIRECTIONS

In this paper, the application of different control algorithms was
analyzed and discussed, in many different control perspectives.
In fact, two main control categories have been investigated:
classic (adaptive and rule-based control) and advanced (linear
and nonlinear MPC). Several different applications of those
control algorithms in smart grid and building levels were
reviewed.

The investigated studies show how to use different
types of predictive control algorithms to optimize the flow
of energy among different types of storages and users,
while still preserving the demand, in particular in smart
building applications. In this regard, the advantages and
disadvantages of linear and nonlinear MPC algorithms were
discussed.
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The studied application scenarios proved that, although a
simple classic control (such as PID controllers) can be used for a
temperature control in buildings, more advanced algorithms are
required to increase the overall efficiency of the buildings.

Although numerical conclusions are difficult to generalize,
depending on the specific application, adopted devices,
environmental conditions, and operational conditions generic
results can be conducted.

Generally, we may say that ranging from linear, to linearized,
to linear time-varying, to nonlinear MPC for applications with
heat pumps the efficiency increase over linear solutions is
respectively in the range of 4–12% and for nonlinear control up
to 20–40% in the load level.

In some cases, it is possible to decouple the linear and
nonlinear part of the system, tuning a linear MPC on the liner
parts. Although the performance is not as good as a complex
nonlinear MPC, still it allows up to 4.5% energy saving with
respect to the current practice.

The results show up to 22% cost benefit once the load
(including HVAC system) is integrated with different types of
storages in a microgrid application. In these scenarios a mixed-
logic optimization problem is solved as it includes some binary
values due to the if-then rules.

For the goal of improving the performance of the HVAC
system,NMPC showed an interesting result where the heat-pump
performance was improved up to 21 and 34% for air-to-water and
water-to-water, respectively.

The case studies discussed here are also extremely informative
for the variety of different applications. First, the proposed

methods are all computationally feasible where the simulation
steps (of usually 15-min) is executed in less than 2 s on a
standard office computer. Then, the optimal control algorithms
showed a consistent performance among several different
scenarios.

There were also many practical issues related to the
implementation of the proposed control strategies. As a vivid
case, the prediction errors due to the model mismatches
caused by the variable load profile and by the heat pump local
controller for water pump and compressor speed regulation were
investigated.

However, the possibility of using data driven control
algorithms and combination of the learning algorithms with
MPC concept are interesting future directions.
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