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Abstract: In recent years, there has been a noticeable shift towards electric mobility and an increasing
emphasis on integrating renewable energy sources. Consequently, batteries and their management
have been prominent in this context. A vital aspect of the BMS revolves around accurately determin-
ing the battery pack’s SOC. Notably, the advent of advanced microcontrollers and the availability of
extensive datasets have contributed to the growing popularity and practicality of data-driven method-
ologies. This study examines the developments in SOC estimation over the past half-decade, explicitly
focusing on data-driven estimation techniques. It comprehensively assesses the performance of each
algorithm, considering the type of battery and various operational conditions. Additionally, intricate
details concerning the models’ hyperparameters, including the number of layers, type of optimiser,
and neuron, are provided for thorough examination. Most of the models analysed in the paper
demonstrate strong performance, with both the MAE and RMSE for the estimation of SOC hovering
around 2% or even lower.
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1. Introduction

Climate change has compelled humanity to seek alternative forms of energy produc-
tion and reduce greenhouse gas emissions from hydrocarbon combustion. This has led to a
shift towards renewable energy sources and the adoption of electric motors for electrifying
transportation, which is considered a promising approach with numerous benefits [1].
Electric motors are powered by battery packs, making them a viable option. Wind turbines
have emerged as a leading solution for renewable energy and are predicted to outpace
fossil fuels by 2035, as reported by Forbes [2]. Unlike conventional steam generators that
can be controlled by adjusting the fuel supply, renewable energy sources like wind and
solar produce energy intermittently, necessitating immediate consumption or storage. This
has led to the development of energy storage solutions, with LIB gaining significant popu-
larity [3]. Currently, batteries dominate the field of energy storage, and some have reached
their EOL status. This has given rise to the market for second-life battery products, which
are used as alternatives to brand-new batteries [4].

Efficiently utilising batteries within a system requires detailed modelling to predict the
battery’s condition accurately. Two crucial aspects are the SOC [5] and the SOH [6], which
provide valuable insights into the remaining energy, power delivery capacity, and overall
cell life. Modelling batteries is complex and time-consuming due to their intricate electro-
chemical nature. Furthermore, the accurate assessment of the residual lithium in the battery
presents a challenging task, demanding precise algorithms embedded within the BMS.
These algorithms, based on mathematical models and/or machine learning techniques,
are essential in estimating the battery’s states, including SOC and SOH levels, using the
information of the terminal voltage, terminal current, and surface temperature [5].

The SOC of a battery cell represents the capacity availability as a percentage of its
maximum possible charge capacity [7]. Forecasting is not an easy undertaking [8] and
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estimating the SOC is a challenging task, as it is a nonlinear function affected by various
factors, including the voltage, current, temperature, and SOH [7], among others. Early
attempts at accurate estimation involved two main techniques: open-circuit voltage-based
methods [9] and CC [10]. However, these approaches were not able to accurately predict the
SOC. To improve the accuracy, model-based methods were introduced, which combine an
equivalent cell model with a suitable filter or observer. Commonly used filtering techniques
include the Kalman filter [11], particle filter [12], H infinity filter [13], and observer-based
techniques [14]. These methods rely on mathematical equations in estimating the SOC,
but their computational cost is high.

Recently, the popularity and benefits of data-driven methods have surged, thanks to
advancements in electronic materials and the vast amount of accessible data. On the other
hand, model-based techniques, such as the equivalent circuit model, require the initial
configuration of parameters [11]. Obtaining these parameters is challenging as they are
dependent on the specific case and are influenced by the SOC, SOH, and temperature of the
battery. Consequently, this process demands engineering expertise and experience, making
it a laborious and complex procedure. On the contrary, data-driven methods have the
advantage of not requiring extensive parameterisation and can effectively capture battery
dynamics [15]. Several review articles have been published in recent years, but some of
them lack a focus on data-driven techniques. For instance, in [16], the authors provide a
comprehensive review of BMS implemented in electric vehicle applications to estimate
the SOC, but without delving into data-driven methods or emphasising outdated articles.
Similarly, ref. [17] presents a general review of electric vehicle-related issues but overlooks
data-driven techniques. In another review [18], the authors cover the needs of electric vehi-
cles and different techniques but lack a detailed analysis of data-driven approaches, which
are currently outdated. In contrast, some articles have dedicated attention to data-driven
methods. For example, in [19], the authors thoroughly analyse battery modelling and state
estimation but lack more in-depth coverage of estimation techniques, especially data-driven
ones. On the other hand, in [20], there is a complete review of SOC and SOH estimation
using machine learning techniques, including theoretical explanations and comparisons
between the methods reviewed. Similarly, in [15], the authors analytically explain the
mathematical formulation of various data-driven techniques, estimation methods, testing
procedures, and limitations. However, it lacks the inclusion of more recent articles on recur-
rent and deep learning combinations. A more recent article [19] focuses on SOC estimation
trends but overlooks data-driven methods. Likewise, in [21], there is a comprehensive
review of data-driven techniques but it does not cover many articles.

In light of the aforementioned gaps, this paper aims to present an overview of SOC
estimation trends in the last five years, focusing on data-driven methods. Figure 1 depicts an
overview of the included techniques. Building on the mathematical formulations covered in
previous review articles, this paper focuses on the latest state-of-the-art articles published
in the last three years. Each reviewed article was analysed considering the proposed
algorithm, tested battery cell types, equipment, testing conditions, and their accuracy.

The screening process for this overview involved using the “Scopus” and “Google
Scholar” databases, employing keywords such as SOC, machine learning, estimation, deep
learning, and data-driven methods. More than 107 articles were identified over the last
three years during the first screening, and they were assessed based on factors like the
citation count, impact factor, and publication year. Subsequently, following the second
screening process, 28 of these articles were selected in the same way for thorough review
and analysis in this overview article. The main advantages and disadvantages of each
method are presented in Table 1.
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Figure 1. State-of-the-art data-driven techniques for estimation of the SOC.

Table 1. Advantages and disadvantages of each method.

Method Advantages Disadvantages

SVM

• Suitable for classification and
regression tasks

• Great accuracy for nonlinear and
low-dimensional data

• Not recommended for handling
large datasets due to its high
computational demands

• Difficult parameter selection
• High complexity

GRP

• Suitable for classification and
regression tasks

• Capable of understanding and
modelling complex, nonlinear
connections within datasets

• Incorporates prior information to
improve predictions

• Quickly identifies the maximum
point of a function

• High computational cost
• Complicated design of the

appropriate kernel function
• Poor scaling

DNN

• Applicable for many real-world
applications (audio, text, image)

• Can easily learn nonlinear and
complex patterns

• Great robustness
• Fine-tuning flexibility

• Requires a large amount of data
• High computational cost
• Prone to overfitting
• Optimal hyperparameter

selection

TCN

• Cannot easily handle nonlinear
and complex patterns

• Complex calculation of the
optimal hyperparameters
(dilation rates, kernel size)

• Limited long-term dependencies

• High computational cost
• Complicated design of the

appropriate kernel function
• Poor scaling

LSTM

• Solves gradient-related issues
• Captures long-term dependencies
• Great robustness to noisy input

data
• Can learn complex and nonlinear

patterns

• High computational cost
• Hyperparameter sensitivity
• Struggles with short-term

patterns
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Table 1. Cont.

Method Advantages Disadvantages

GRU

• Lower complexity than LSTM
• Solves gradient-related issues
• Less prone to overfitting and can

be trained faster
• Effective for shorter sequences

• Less effective for long sequences
• Cannot easily capture

complicated patterns
• Sensitive to noisy data

Hybrid

• Enhanced performance
• Feature extraction
• Can be implemented in various

tasks
• Provides great robustness

• High computational cost
• Complicated hyperparameter

tuning
• Prone to overfitting
• Strong dependency on the

weakest-performing component

This paper is organised as follows. In Section 2, we delve into classification, regression,
and probabilistic techniques. Moving on to Section 3, we present feedforward neural
network techniques. In Section 4, we focus on recurrent neural network techniques. Finally,
in Section 5, we explore the hybrid learning approaches.

2. Classification, Regression, and Probabilistic

In this first section, data-driven methodologies will be discussed, incorporating classi-
fication, regression, and probabilistic approaches. Within this framework, the two principal
categories are the SVM and the GPR, each offering distinct capabilities in solving the given
problem. Despite their advantage of being suitable for use with small amounts of data, both
techniques are facing declining popularity due to the significant increase in data volumes.

2.1. Support Vector Machine

An SVM is a data-driven method that is implemented for the classification and re-
gression of linear and nonlinear data to detect outliers while improving the computational
efficiency. The method is straightforward to implement and exhibits a strong capability
to generalise with new data. Generally, the SVM algorithm searches for the optimal hy-
perplane that maximises the margin between the two classes. Moreover, when the data
are not perfectly separable, the Soft-Margin SVM algorithm is used, which allows some
misclassification. Furthermore, when the task is nonlinear and low-dimensional, it converts
it into a linear and high-dimensional task by using the appropriate kernel function. Figure 2
demonstrates the linear and nonlinear classifier using the SVM algorithm. A detailed
mathematical analysis of the SVM classifiers can be found in [22].

Figure 2. Linear and nonlinear SVM classifiers. (a) depicts a linear classifier, while (b) depicts a
nonlinear classifier that transforms the original input space to a space with more dimensions named
feature space [23].
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In [24], an innovative framework is proposed for the joint estimation of the SOC and
SOH by leveraging the strengths of two different models. Initially, the LS-SVM model is
employed to extract degradation features from voltage and current data. These features
are then used in conjunction with UPF, which incorporates a battery degradation model to
optimise SOH estimation. Secondly, for the SOC estimation, an LS-SVM model is developed
based on the correlation between the voltage and SOC. Then, the UPF is again employed,
but, this time, it is adjusted by the SOH information using an ampere-hour integration
model. The model is tested on a 2.2Ah NMC 18650 battery cell using a NEWARE BTS3000n
battery cycler. The DST and capacity test are applied to generate the battery’s dataset.
The results demonstrate that the error of the SOC is below 2% over the battery’s life cycle,
and the RMSE of the SOH is under 4%. It appears that when the model utilises the SOH
information, the accuracy, robustness, and stability increase. In this case, when noise
is added to the SOH, the SOC error increases, although the results remain satisfactory.
The proposed model, contrasted with the sample entropy model, provides superior results
in estimating SOH while also requiring reduced computational effort, making it suitable for
real-time applications. Moreover, it achieves better results than the EKF, DBN, and ECM-
based models. The outcomes of the study are shown in Table 2. In general, the suggested
model offers high accuracy and robustness. However, it should undergo testing across a
broader range of temperatures and more complicated operational scenarios.

Although the SVM method can achieve satisfactory results, there are still many prob-
lems because it is a computationally expensive algorithm, can only be used in small
datasets, there is difficulty in parameter selection, and when there is a multi-class task,
the development of the optimal classifier is very complicated.

2.2. Gaussian Process Regression

GPR serves as a versatile tool utilised in classifying and regressing nonlinear data,
as well as predicting time series with online learning capabilities. Moreover, it is frequently
used when the task is to find the global maximum of a function as fast as possible, without
considering the outputs. GPR begins by forming initial assumptions about the underlying
function using a mean function and covariance function (kernel) in the prior stage. Sub-
sequently, empirical observations play a key role in the next stage, leading GPR to revise
these assumptions based on the data. This yields a posterior distribution that merges prior
expectations and empirical insights, enhancing our understanding of the function and its
uncertainty. The findings of the studies related to GPR are presented in Table 2. In [25],
there is a comprehensive mathematical analysis of GPR. Figure 3 presents two smooth
Gaussian processes, the Ornstein–Uhlenbeck and radial basis Functions, and includes both
prior and posterior data. The dark line presents the current mean of the Gaussian process,
while the grey lines are the samples. The black spots are the empirical observations, while
the red triangle depicts the estimation of a new data point.

In [26], the authors developed a GPR model. Initially, an input set is prepared to
correlate with the SOC using a strategy to extract the best features by analysing the correla-
tion and computing the principal components of the input data. The simple GPR model
achieves an RMSE of less than 3.4%, and in order to enhance its accuracy, an autoregres-
sive GPR model is developed, resulting in an improved RMSE of less than 3%. Notably,
the autoregressive GPR model proves to be effective in providing satisfactory estimations
even under extreme conditions and when the initial SOC error is 20%. The battery pack,
consisting of 177Ah NMC battery cells tested on a Digatron EVT 300–600 battery tester,
achieves an impressive estimation error of less than 3.9%. Moreover, the model can achieve
better accuracy and robustness by utilising the Pearson correlation coefficient than the Grey
Relational Grade when the reduced matrix has fewer features. Furthermore, it has been
observed that the sampling period’s expansion shows a noticeable decrease in computation
time. Additionally, the authors employed the DST and FUDS datasets to assess the model’s
alignment with aging and an initial SOC error within a margin of 20%. The model exhibited
satisfactory performance and robustness even under some extreme conditions. Extending
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testing to diverse temperatures and more intricate datasets is recommended to bolster
the robustness assessment. Refining the hyperparameter selection process would also
contribute to error reduction and overall model enhancement.

Figure 3. Gaussian processes that include prior and posterior data [25]. In this visual representation,
grey lines represent data points generated by the Gaussian Process (GP), while black dots denote
actual empirical observations. The dark grey line signifies the present mean estimate of the GP, and
the red triangle represents the predictive outcome for the forthcoming data point.

In the paper by [27], a hybrid approach that integrates data-driven and model-based
methods is introduced. Initially, the model utilises GPR to construct process and observation
models derived from experimental datasets of batteries. Subsequently, the UKF model is
implemented to boost the precision of SOC prediction by smoothing voltage deviations.
Furthermore, the prediction model’s mean and covariance functions are employed to
depict the model’s uncertainty. The proposed method was tested on two LFP battery cells,
having different rated capacities, using the Arbin BT2000 battery tester. The accuracy of
SOC estimation was evaluated across various health levels, spanning from the 50th to
the 350th cycles. It was noted that the SOC estimation errors increased notably when
the battery degradation reached higher levels. This increase in error is attributed to the
reduction in the battery’s total capacity, causing the real SOC value to be higher than
the estimated value. Nonetheless, the overall model demonstrated exceptional accuracy,
reliability, and generalisation capabilities for various testing conditions, with the maximum
error remaining around 2%. For model validation, the utilisation of the UDDS and DST
cycles is notable, given their capability to emulate diverse load profiles. However, their
repetitive nature may lead the algorithm to rapid learning. Therefore, the inclusion of more
intricate driving cycles is advised. These complex cycles could incorporate a randomised
blend of diverse repetitive patterns, ensuring a rigorous assessment of the model’s accuracy
and better robustness.

The major drawbacks of this algorithm are the high computational cost when the dataset
is large, the complicated construction of the right kernel, and the poor scaling. Generally,
it achieves satisfactory results with low errors, but the high computational cost and com-
plexity lead to large memory requirements. It also provides a solution for many real-world
applications, such as image classification, text classification, and pattern recognition.

3. Feedforward Neural Network

The simplest structure of a neural network is the FFNN, where information always
moves forward. FFNNs can have varying numbers of hidden layers, depending on the
specific architecture and complexity of the network design. Still, in most cases, when
referring to FFNNs, they refer to a “shallow” network consisting of one hidden layer, while
those with multiple hidden layers are commonly known as “deep” networks (Figure 4).
The term “deep learning” specifically emphasises the use of deep neural networks with
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several hidden layers to extract hierarchical features from data. An FFNN operates by
transmitting data across interlinked layers of nodes, with each layer modifying the input
through weight and bias adjustments combined with activation functions before forwarding
it to the subsequent layer. Through continuous parameter refinement during training,
FFNNs can discern complex patterns and associations within data, rendering them valuable
for applications such as image recognition and natural language processing. This type
of NN is relatively straightforward and improves the computational and generalisation
capabilities. The results of the studies related to FFNN algorithms are presented in Table 2.

In [28], an enhanced battery model was developed using an FFNN. Subsequently,
the EKF algorithm was developed to create an FFNN-based SOC estimation method. Within
this framework, an FFNN was employed to depict the battery’s behavior, yielding the
terminal voltage as its output. The model takes into account the battery current, surface
temperature, SOC, and a novel parameter termed the “polarisation state of the battery” as
its inputs. This unique polarisation state, distinct from the polarisation voltage, can only
be computed using the cell’s terminal current. Significantly, the polarisation state is well
suited for datasets with variable sampling intervals, rendering its value independent of the
interval size when the current remains constant. Careful consideration should be given to
selecting the time constant in calculating the polarisation state, as it directly influences the
model’s complexity. The time constant value, ranging from 0 to 1000, is utilised alongside
the correlation coefficient to assess the similarity among polarisation states, determined by
a preset threshold. The robustness of this approach was tested on 2Ah lithium NCA 18650
battery cell data, examined at temperatures of −10 °C, 0 °C, 10 °C, and 25 °C. To further
validate the FFNN-based approach in real time, a hardware-in-loop (HiL) testbench was
developed, featuring an actual battery, to closely emulate the operational conditions of
electric vehicles. The findings demonstrate that after reaching a stable state, the errors in
estimating the SOC can be maintained within a limit of 2%. The model was tested at various
temperatures and with an error in the initial SOC and managed to provide satisfactory
results (accuracy and robustness), even at very low temperatures. However, the model was
only tested on the UNIF01 and MANHATAN datasets. The size and the complexity of the
datasets are recommended to be increased to further test the performance of the model.

3.1. Deep Neural Network

Generally, DNN algorithms usually refer to multiple-layer FFNNs, and the way that
they operate is mentioned above. Similarly, the model’s efficiency can be determined from
the number of hidden layers and neurons, while an optimiser can be used to fine-tune the
hyperparameters, such as the number of hidden layers and neurons and the activation
function, to name a few. Figure 4 depicts a DNN architecture consisting of an input layer
with six inputs, five hidden layers with various numbers of neurons by each layer, and an
output layer with two outputs.

Table 2. Summary of SVM, GPR, FFNN, DNN, and TCN techniques for SOC estimation.

N/N Ref Algorithm Battery Temperatures Performance

1 [24] LS-SVM 2.2Ah NMC 25 ◦C maxError 2%

2 [26] GPR 177Ah NMC 25 ◦C and 0 ◦C maxError 3.9%

3 [27] GPR 2.55 and
2.6Ah LFP 10 ◦C and 40 ◦C maxError 2%

4 [28] FFNN 2Ah NCA −10 ◦C, 0 ◦C, 10 ◦C,
and 25 ◦C maxError 2%

5 [29] DNN 2.9Ah NCA 20 ◦C, −10 ◦C, 0 ◦C,
10 ◦C, and 25 ◦C

MAE 1.10% @ 25 ◦C,
MAE 2.17% @ −20 ◦C

6 [30] TCN 2.9Ah NCA 0 ◦C, 10 ◦C and 25 ◦C Average MAE 0.67%
Average RMSE 0.87%
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Figure 4. Deep neural network architecture [31].

In [29], the authors examined different DNN architectures for SOC estimation un-
der constant and different ambient temperatures. For the constant ambient temperature
case, the DNN comprised three layers with four, four, and one neuron(s) in each layer,
respectively. However, in the case of a varying ambient temperature, the DNN consisted of
four layers with 8, 16, 32, and 1 neuron(s) in each layer, respectively. The data collected
from testing the 2.9Ah NCA 18650 battery cell using a Digatron battery tester at various
temperatures (−20 ◦C, −10 ◦C, 0 ◦C, 10 ◦C, and 25 ◦C) were utilised during the training
phase of the DNN. After validation with multiple datasets, the DFNN achieved an MAE of
1.10% and 2.17% for the 25 ◦C and −20 ◦C dataset, respectively. For the model evaluation,
a wide variety of intricate driving cycles were employed, encompassing a significant range
of temperatures. As the tests indicated, it was also robust to noisy data and measurement
offsets. This method can be easily improved by optimising the hyperparameters using the
grid search or Bayesian optimisation techniques.

To ensure satisfactory results, DNNs require a large amount of data, which can be
difficult to acquire in many cases or can involve a time-consuming process. Furthermore,
DNNs, particularly deep architectures, can exhibit computational intensity during both
training and inference, resulting in high power consumption when implementing the
model in hardware. Lastly, issues such as overfitting and hyperparameter tuning also need
to be tackled.

3.2. Temporal Convolutional Network

A convolutional neural network is an enhanced type of artificial neural network that
has gained widespread adoption in computer vision due to its sophisticated capabilities.
While sharing the same architecture of input, hidden, and output layers with traditional
ANNs, CNNs stand apart by employing a convolution operation in place of standard matrix
multiplications between these layers. However, the TCN represents a specialised variant
of the convolutional neural network especially designed for sequential data processing.
TCNs employ a stack of convolutional layers to convolve input sequences with learnable
kernels, capturing temporal patterns and dependencies. The introduction of dilation,
which controls the kernel spacing, allows TCNs to efficiently model short- and long-term
relationships in the data, addressing the exploding and disappearing gradient issue. This
capability makes TCNs advantageous for tasks requiring the understanding of diverse
time scales. TCNs offer parallelisability for faster training and inference compared to some
recurrent models. Additionally, TCNs accommodate variable-length sequences through
padding, maintain temporal equivariance, and exhibit robustness to input data time shifts,
collectively establishing them as a versatile and effective option for diverse sequential data
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analysis tasks. Figure 5 represents an architecture of a TCN with a kernel size of 5, with
dilation of 1, 2, and 4, for input and hidden layers 1 and 2, respectively.

Figure 5. Temporal convolution network architecture [32].

In [30], a method using a TCN is proposed, where the TCN layer consists of six stacks,
each containing four convolutional layers with a kernel size of 6, 64 filters, and dilation
of 1, 2, 4, and 8 to learn input dependencies. The TCN can learn by itself and update its
parameters according to the input data, leading to a model that accurately estimates the SOC
under different conditions. The training process is sped up, and overfitting is prevented by
employing an early stopping and declining learning rate strategy. During the training phase,
the data were normalised to the range [−1, 1], and the Adam optimiser was used to optimise
the network parameters. This method was implemented in a 2.9Ah NCA 18650 battery
cell under several testing conditions and achieved an average MAE and RMSE of 0.67%
and of 0.87%, respectively. Using the transfer learning technique, the model can be applied
to other types of LIB SOC estimation with minimal additional data for further training.
A comparison test was also carried out between the TCN model and RNN methods, such
as LSTM and GRU, which showed that the TCN model achieved more accurate results.
The authors utilised a wide variety of complex datasets and varying temperatures to assess
the model’s accuracy. However, a robustness test was not conducted based on initial errors
and noisy data. To enhance the model, the utilisation of a hyperparameter optimisation
algorithm is recommended. Furthermore, in order to decrease the computational time of
the model, the consideration of a compression method is advised.

In general, TCNs are capable of delivering precise estimation. However, they might
face challenges in capturing long-term, complicated, and nonlinear relationships within
the data. Another aspect to consider is the meticulous choice of hyperparameters, such as
dilation rates, kernel size, and the number of layers, to ensure optimal performance.

4. Recurrent Neural Network

RNNs are specialised neural architectures for the processing of sequential data by
maintaining internal states that capture previous information. They work iteratively,
processing each sequence element while updating their hidden states, enabling them to
model temporal dependencies. Crucial parameters to consider include the type of RNN
architecture, the number of hidden units, the learning rate, and regularisation techniques.
RNNs possess the advantage of handling variable-length sequences, making them suitable
for tasks involving sequences of different lengths, such as natural language processing and
time series analysis. However, they can face challenges related to vanishing gradients and
capturing long-range dependencies. Despite these limitations, RNNs remain valuable in
capturing temporal patterns in sequential data. This category includes the LSTM and GRU
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NN, which can provide a solution to gradient-related problems. The outcomes of each
study are summarised in Table 3.

4.1. Long Short-Term Memory Neural Network

The LSTM architecture is a type of RNN for sequential data processing that employs
three gates (input, forget, and output) to regulate the information flow within the cell and
successfully resolves vanishing and exploding gradient problems during backpropagation
through time. The forget gate, influenced by the current input and previous hidden state,
determines what to retain or discard from the cell state. The input gate, driven by the same
inputs, decides which new information to incorporate. These gates influence the update of
the cell state, which merges past and new information. Considering the input and hidden
state, the output gate regulates which part of the cell state becomes the output. These
mechanisms enable LSTMs to manage and leverage relevant information across sequential
steps, facilitating the capture of intricate patterns in data. Figure 6 depicts the structure
of an LSTM unit. Many LSTM units can be arranged in parallel and form an LSTM layer,
where layers can be stacked and create a complex sequence deep learning model.

In [33], a method utilising LSTM-RNN is introduced, demonstrating strong gen-
eralisation capabilities in datasets for various conditions and temperatures. For this
model, 10 driving cycles were created by using a random mix of the HWFET, UDDS, LA92,
and US06 to be utilised for the training and testing phase of the proposed method. When
tested on a 2.9Ah NCA 18650 battery cell using a Digatron battery tester at temperatures
of 0 ◦C, 10 ◦C, and 25 ◦C, the method achieved a 0.573% and 1.606% MAE on datasets
with steady temperatures and temperatures increasing from 10 ◦C to 25 ◦C, respectively.
Furthermore, it was observed that augmenting the LSTM depth in time (from 250 to 1000)
led to a progressively more accurate model. Ultimately, the proposed model has been
shown to perform better with larger datasets and can yield satisfactory results even with
incorrect initialisation. Despite the high accuracy of the model, the performance can be
improved by optimising its hyperparameters.

Figure 6. Structure of the LSTM unit [34].

In [34], a stacked LSTM network with three LSTM layers, each containing 50 nodes, is
proposed. The same architecture was tested with 100 nodes per layer, but no significant
improvement in performance was observed. A combination of the DST, US06, and FUDS
datasets was used for the training and testing procedure. To prevent overfitting, a dropout
layer with a rate of 50% was utilised for each LSTM layer. Testing was performed on 1.1Ah
18650 LFP battery cells using an Arbin BT2000 battery tester. Generally, the model achieved
a 1.39% RMSE and 2.02% MAE. Moreover, to check the robustness of the model, incorrect
initial values of the SOC were inserted. For these cases, the model’s error remained under
2%, converging rapidly to the ground truth value of the SOC. Additionally, the proposed
model demonstrated superior performance to the UKF. Additionally, it boasts a fast average
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evaluation time, making it well suited for real-time applications. The model should be
trained and tested in more complicated datasets and at more temperatures to provide satis-
factory results in real-life conditions. Lastly, to improve its performance, hyperparameter
optimisation is suggested.

In [35], the authors proposed a combined data-driven and model-based method.
Firstly, a one-layer LSTM model with 32 units was employed to estimate the SOC, using the
Coulomb counting method to generate the ground truth value of the SOC. The estimated
SOC was obtained by implementing an ACKF. The LSTM model takes input with a sequence
length of 30 in the time series. The Adam optimiser was employed, and the value of epochs
for the validation datasets was set to 75. Utilising the information from CALCE [36] of a
2.23Ah 18650 LFP, the model achieved an RMSE below 2.2% and an MAE under 4%. Even
when the initial SOC value has an error of 40%, the proposed method provides satisfactory
SOC estimations and converges quickly. This makes the model well suited for real-time
applications with uncertainty and noise. Notably, this model performed better than the
simple LSTM and the hybrid LSTM with the Cubature Kalman Filter models. The authors
employed a trial-and-error approach to tune the hyperparameters, which was both time-
consuming and prone to yielding significant errors. This challenge can be mitigated by
adopting a hyperparameter optimisation algorithm. Furthermore, the datasets utilised for
the training and testing of the model were relatively simple, necessitating the incorporation
of more complex datasets.

Similarly, in [37], a one-layer LSTM with 300 nodes was proposed to estimate the bat-
tery SOC, incorporating a UKF to filter the noise and minimise estimation errors. The Adam
optimiser was implemented, with a 0.01 learning rate, while the data were normalised to
the range (−1,1) using min-max normalisation. Testing was conducted on 1.1Ah 18650 LFP
cells at temperatures of 0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C, and 40 ◦C. The RMSE and MAE were
below 1.1%, surpassing the performance of other models such as SVM, GPR, and other NNs.
Additionally, when the proposed model was tested with temperatures that had not been
included in the training phase, it achieved satisfying results, as well as when the authors
considered an erroneous initial value of the SOC. For network parameter determination,
the trial-and-error method was used, which is computationally costly and, in most cases, is
not optimal. By applying a hyperparameter optimisation algorithm, this challenge can be
easily solved. Moreover, the training and testing datasets were relatively basic, prompting
the consideration of more complex datasets for a comprehensive evaluation.

The authors in [38] present a fresh approach to estimating the charging status of two
lithium-ion batteries. This method employs an LSTM model with an attention mechanism
to achieve accurate and efficient predictions. The proposed model comprises two hidden
layers, the LSTM and the attention mechanism, which are designed to predict the final
SOC and incorporate long-term dependencies by placing the attention mechanism in the
output layer of each LSTM unit. To ensure robustness, the Monte Carlo dropout technique
is utilised. The datasets used for evaluation consist of a 2Ah 18650 NMC cell acquired from
CALCE [36] and a 2.9Ah Panasonic NCA cell obtained from the University of Wisconsin–
Madison [39]. The model attains better performance by incorporating additional training
datasets, while the input length is 76. Throughout all experiments, the RMSE obtained from
the proposed model remains below 1.41%, outperforming the basic LSTM and bidirectional
LSTM models. Nevertheless, hyperparameter optimisation is recommended to be used to
improve the model accuracy and to ensure robustness; introducing initial errors into the
data should be explored further.

In [40], a novel architecture was developed incorporating stack bidirectional LSTM
neural networks, enabling the model to capture intricate dependencies within the input
data effectively. For the model’s validation, the datasets from the University of Wisconsin–
Madison [39] and CALCE [36] were employed, referring to a 2.9Ah 18650 NCA and a 2Ah
18650 NMC battery cell, respectively. The model proposed in the study, comprising two
bidirectional LSTM layers, each consisting of 64 hidden neurons, demonstrates remarkable
performance, achieving MAEs as low as 0.46% and 0.73% for standard and fluctuating
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temperatures, respectively. Several techniques were employed during the training process
to augment the model’s efficacy. Firstly, the input data were normalised within the range of
(0, 1) to facilitate more efficient convergence. Secondly, the ReLU activation function was
implemented in the output layer, contributing to enhanced nonlinearity and expressiveness
in the predictions. Thirdly, the Adam optimiser, utilising default settings, was chosen to
optimise the model’s parameters, ensuring better convergence and faster training. Further-
more, the training was conducted for 5000 epochs to learn intricate patterns within the
data thoroughly. Lastly, a dropout layer was incorporated with a masking probability of
20%, promoting regularisation and mitigating overfitting, thereby improving the model’s
generalisation ability. In conclusion, the stacked bidirectional LSTM performs better than
the recurrent SRNN, GRU, and LSTM models. Moreover, it can estimate the SOC for
various battery types across different temperatures, delivering satisfactory estimations.
Despite the authors’ extensive use of complex datasets for the testing and training of the
model, the assessment of its robustness remains inadequate. Furthermore, the absence of a
hyperparameter optimisation technique is notable; instead, the authors relied on a trial-and-
error approach to determine the optimal values. This method is not only time-consuming
but also can provide inaccurate results.

In [41], an encoder–decoder architecture based on bidirectional LSTM is proposed for
SOC estimation under various testing conditions. The study utilised the dataset from the
University of Wisconsin–Madison [39], which pertained to a 2.9 Ah 18650 NCA battery cell,
to examine the proposed model. The Adam optimiser with default settings and a dropout
masking probability of 20% were utilised. Data were normalised to the range [0, 1], and the
model was trained for 5000 epochs. The proposed approach achieved an impressive 1.07%
MAE across different temperatures, effectively learning complex dependencies from both
directions to enhance the learning of temporal information. The selection of an optimal
configuration involved trial-and-error experimentation, which led to a sequence length of
40, two bidirectional LSTM layers, and 64 bidirectional LSTM units. Notably, when the
sequence length is too short, it fails to comprehend the internal attributes of the LIB, while
excessively long sequences might hinder the effective capture of temporal dependencies.
Satisfactory estimates can be obtained even with varying ambient temperatures. Moreover,
several tests were conducted to find the optimal sequence length, width (biLSTM units),
and depth (biLSTM layers) for different temperatures, namely 40, 64, and 2, respectively.
The authors employed a trial-and-error approach to determine the optimal hyperparameters
for the model, including factors such as the BiLSTM units and sequence length, instead of
utilising a hyperparameter optimisation algorithm, which is a time-consuming method and
can lead to unsatisfactory results. Furthermore, the study did not involve the introduction
of initial errors in the input data to assess the model’s robustness.

Despite their significant advantages, LSTM neural networks also entail several draw-
backs compared to other data-driven methods. LSTMs’ complex architectures can render
them computationally demanding, resulting in long training periods and high memory
requirements. Although LSTMs excel in capturing long-term dependencies, they might
encounter challenges in recognising specific short-term patterns within data. Furthermore,
determining the most suitable LSTM architecture and optimal hyperparameters can necessi-
tate extensive experimentation or the adoption of hyperparameter optimisation techniques,
which are highly time-consuming.

4.2. Gated Recurrent Unit Neural Network

The GRU architecture is a more basic variant of the LSTM model, featuring two gates:
the reset and update gates. The reset gate controls the extent to which previous information
is incorporated into the current hidden state, enabling the model to discard or retain past
information adaptively. The update gate, conversely, determines the degree of influence
that the current input and the previous hidden state have on the updated hidden state.
GRUs are characterised by a more straightforward internal structure than LSTMs, resulting
in decreased computational complexity. During data flow, the GRU takes input data and
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computes the reset and update gate activations, updating the hidden state by blending
the reset and current input. This updated hidden state influences the final output, making
the GRU computationally efficient and effective in modelling sequential data. Figure 7
presents the structure of a GRU unit, which can form a GRU layer and, by stacking layers,
can compose a complex model.

Figure 7. Structure of the GRU unit [42].

In [42], a GRU model is proposed for the estimation of the SOC. The framework
comprises the input layer, the GRU layer with 150 nodes, the FC layer with 80 neurons,
and the output layer. The model demonstrates robustness when the initial SOC is uncertain
and achieves great performance when it is trained on various temperatures, with an input
sequence length of 30. The proposed method is tested on two battery cells, the 1.3Ah
18650 NMC and the 1.1Ah LFP, in various temperatures (0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
and 50 ◦C). The results indicate that the model precisely estimates the SOC at different
temperatures, achieving a 3.5% RMSE, even when predicting over unknown temperature
conditions. This paper proves that LFP batteries require more hidden neurons compared to
the NMC battery in capturing the complicated properties of the battery due to the presence
of a plateau in the OCV–SOC curve. In the case of the NMC battery, the model consistently
maintained RMSEs below 2.5%. The US06 and FUDS datasets were used to test the
proposed model, while the DST dataset was utilised for the training process. These datasets
tend to have repetitive patterns, which are not present in real-world applications. Moreover,
a hyperparameter tuning algorithm should be employed to improve the model’s accuracy.

In [43], a GRU-RNN method is presented, comprising an input layer with three
nodes, a GRU layer with 1000 nodes, an FC layer with 50 nodes, and an output layer with
one node. The model was trained using an Adam optimiser with a learning rate of 0.0001.
Evaluating input sequences of 250, 500, and 1000, it was found that a sequence length of
1000 resulted in superior performance. For the model evaluation, two battery datasets, 2Ah
18650 NCA and NMC, were acquired from McMaster in Canada [29] and from CALCE [36],
respectively. Additionally, an 18Ah battery cell dataset was examined using high C-rate
pulses to discharge the battery cell at three different temperatures (0 ◦C, 10 ◦C, and 25 ◦C).
This model demonstrates its capability in accurately estimating the SOC under varying
temperatures, reaching 0.86%, 1.75%, and 1.05% MAEs, for the aforementioned datasets,
respectively. Research on the influence of the hyperparameters, such as the time step,
iterations, and training data size, shows that increasing these hyperparameters enhances
the accuracy of the GRU model. The experimental setup involved configuring the time
step, iteration, and mini-batches to 1000, 100, and 72, respectively. Before processing,
the data underwent normalisation, resulting in a range between 1 and 1. The input features
comprised time series data of the voltage, current, and temperature, with varying lengths
explored between 250, 500, and 1000. Interestingly, the investigation revealed that the most
favourable sequence length for the input data was 1000 s. Subsequent comparison tests



Forecasting 2023, 5 589

demonstrated that the proposed GRU-RNN model outperformed a standard RNN model.
Furthermore, it must be noted that the GRU model yielded accurate estimations of the SOC,
even when confronted with mixed charge and discharge data and high C-rate discharge
pulses. However, for a more comprehensive evaluation of the model’s robustness, it is
essential to conduct thorough tests using noisy data and introducing initial errors. In con-
clusion, for improved accuracy, expanding the model’s training across various temperatures
and implementing a hyperparameter tuning algorithm are recommended procedures.

In [44], another GRU method was proposed, consisting of a one-layer GRU with
30 nodes. This model uses voltage and current measurements to predict the SOC through
the GRU-RNN’s output. The momentum gradient algorithm optimises the network weights
by considering both the gradient direction and the previous values of the current example,
effectively preventing weight change oscillations and improving the convergence speed.
Noise is added to the sample data to mitigate overfitting and enhance generalisation
capability. The data preprocessing step involves using min-max normalisation, while the
model was trained under different momentum terms β, noise variance σ, and numbers of
hidden layer neurons. The method was tested under various operation conditions using a
2.2Ah LIB on a NEWARE CT-4008TB battery tester. In the first analysis, increasing β from 0
to 0.6 accelerated the error reduction and reduced oscillations, but β equal to 0.8 caused
noticeable oscillations. In general, a proper β leads to smaller SOC errors. Furthermore,
for varying noise variances, the smallest RMSE and MAE were found for σ equal to, while,
as σ increases, the RMSE and MAE rise. The model obtained the smallest RMSE and MAE
values by using 30 hidden neurons. This model achieved a 1.52% and 1% RMSE and
MAE, respectively, while the model’s performance can be further enhanced by increasing
the hidden layer’s neurons. Determining the ideal number of hidden layers and neurons
can be achieved through a hyperparameter tuning algorithm. Furthermore, the model’s
performance evaluation relied on a relatively simple dataset, indicating the importance
of integrating more complex datasets to evaluate its performance better. Additionally,
expanding the input features beyond the voltage and current could substantially improve
the accuracy of the model. For instance, temperature information can significantly influence
the accurate estimation of the SOC in battery systems.

In [45], the authors proposed a GRU model that utilises an altogether method to
optimise the model, utilising optimisers like Nadam and AdaMax to learn its own param-
eters rapidly. During the model’s pre-training phase, the Nadam optimiser is obtained
to swiftly locate the minimum optimised value. Subsequently, the AdaMax optimiser
is employed to refine the model parameters in the fine-tuning phase. The evaluation
dataset consisted of data from a 2.3Ah 26650 LFP battery cell, which were sourced from
CALCE [36]. The proposed GRU model comprises an input layer, a GRU layer with
260 units, an FC layer, and an output layer. To prevent overfitting, the dropout method
was applied using a masking probability of 20%. The batch size was set to 230 and the
epochs to 100, while min-max normalisation was implemented to scale the data. This
method demonstrates remarkable performance, achieving an impressive 1.13% RMSE and
an 0.84% MAE, while effectively reducing the training time of the model and enhancing
its performance. Additionally, the ensemble optimiser surpasses the Adam optimiser and
the GRU-Ensemble and showcases superior performance, exhibiting a lower error than the
LSTM-Ensemble. Nonetheless, the testing and training datasets employed for the model
were relatively simple, lacking initial errors and offsets essential for robustness assessment.
Moreover, using algorithms like grid search or Bayesian optimisation could have been
beneficial to determine optimal hyperparameter values, thereby enhancing the model’s
overall performance.
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Table 3. Summary of RNN techniques for SOC estimation.

N/N Ref Algorithm Battery Temperatures Performance

1 [33] LSTM 2.9Ah NCA 0 ◦C, 10 ◦C,
and 25 ◦C

MAE 0.573% @ fixed T
MAE 1.606% T: 10 to 25 ◦C

2 [34] Stacked LSTM 1.1Ah LFP 25 ◦C
RMSE 1.39%, MAE 2.02%
inaccurate initial SOCs:
RMSE 2%, MAE 1%

3 [35] LSTM 2.23Ah LFP [36] Yes RMSE 2.2%, maxError 4%

4 [37] LSTM 1.1Ah LFP 0 ◦C, 10 ◦C, 20 ◦C,
30 ◦C, and 40 ◦C RMSE 1.1%, MAE 1%

5 [38] LSTM with
Attention

2.9Ah NCA [39],
and 2Ah NMC [36] Yes RMSE 1.41%

6 [40] Stacked
biLSTM

2.9Ah NCA [39]
and 2Ah NMC Yes MAEs 0.46%, 0.73% @ fixed

and varying temperature

7 [41] biLSTM
(ED based)

2.9Ah NCA [39] Yes MAE 1.07% @ varying T

8 [42] GRU 1.3Ah NMC,
1.1Ah LFP

0 ◦C, 10 ◦C, 20 ◦C,
30 ◦C, 40 ◦C,
and 50 ◦C

RMSEs 2.5% NMC,
3.5% LFP

9 [43] GRU
2.9Ah NCA [29],
2Ah NMC [36]
and 18Ah new

0 ◦C, 10 ◦C,
and 25 ◦C

MAEs 0.86%, 1.75%, 1.05%,
resp.

10 [44] GRU 2.2Ah - RMSE 1.52%, MAE 1%

11 [45] GRU 2.3Ah LFP 0 ◦C, 30 ◦C,
and 50 ◦C RMSE 1.13%, MAE 0.84%

The main disadvantage of the GRU-NN is its potential limitation in capturing intricate
long-term dependencies in data compared to more complex architectures like the LSTM.
Additionally, due to their simpler design with fewer gating mechanisms, GRUs are more
prone to overfitting, as they struggle to generalise to complex data patterns and are more
sensitive to noise present in the training data.

5. Hybrid Learning Approach

The combination of data-driven techniques has become a subject of considerable
interest, aimed at elevating the overall performance of SOC estimation models. This
fusion is classified into optimisation and deep-learning-based models. By synergistically
harnessing the strengths of these two categories, SOC estimation techniques stand to
achieve notable advancements in their overall effectiveness and applicability across a wide
range of practical scenarios.

5.1. Optimisation-Based Algorithm

Optimisation-based algorithms often integrate a neural network model to establish
initial values, which are then fine-tuned through an optimisation algorithm to optimise the
hyperparameters. The primary objective of these algorithms is to enhance convergence by
overcoming challenges associated with local minimum values within non-convex functions.
By iteratively adjusting the parameters and optimising the hyperparameters, these methods
facilitate more efficient and effective optimisation, yielding improved performance and
enhanced convergence properties in the overall optimisation process. Some examples of
such algorithms include BSA, GSA, PSO, JAYA optimisation, LSA, and GA, and the results
of each are shown in Table 4.

In [46], a model was developed by combining the ELM algorithm with GSA to de-
termine the number of neurons at the hidden layer. The ELM architecture consisted of
3 layers—input, hidden, and output. For GSA, the population size was set at 50, while the
iteration number was 100, with the constraint for hidden layer neurons ranging from 0
to 500. The optimal number of hidden layers for different datasets and temperatures was
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determined. The improved ELM algorithm showed superior generalisation performance
at various operating conditions and achieved a low computational cost of under 0.6 s.
The data were split into 70% for training and 30% for testing and normalised to a range
of (−1, 1). The method, tested on an NMC 18650 battery cell at different temperatures,
achieved an RMSE of 1% and 1.6% for different datasets, outperforming other algorithms.
Finally, the proposed model demonstrated accurate SOC estimates even when subjected to
Gaussian noise, utilising a moving average filter. By using the GSA for the hyperparameter
tuning, the proposed method demonstrated advanced flexibility in adapting to different
datasets, without setting a large and flexible hyperspace.

In [47], a backpropagation neural network with three feedforward layers was enhanced
using a BSA to find the most suitable hyperparameters. The BSA used a population size
of 100, a mix rate of 0.9, and a two-dimensional search space. The approach employed
data from a 2Ah 18650 NMC battery obtained from CALCE [36]. The authors used 70%
and 30% of the overall data to train and test their model. In addition, an average filter
was applied to the data to reduce noise, and then the data were normalised to a range of
(−1,1). The outcomes of the BSA were showcased for both dynamic profiles, namely DST
and FUDS, across three distinct temperatures, 0 ◦C, 25 ◦C, and 45 ◦C. At 0 °C, the method
attained an RMSE of 1.47% and an MAE of 0.76%. Moreover, a comprehensive performance
evaluation was performed, comparing the proposed BPNN-BSA model with other existing
models like RBFNN-BSA, GRNN-BSA, and ELM-BSA. The analysis demonstrated that
the BPNN-BSA model exhibited superior accuracy and robustness compared to the other
models, particularly when subjected to diverse temperature conditions and electric vehicle
profiles. Utilising the BSA algorithm for hyperparameter tuning, the suggested technique
showcased commendable flexibility in acclimating to a single dataset. However, the authors
missed an opportunity to comprehensively assess the proposed method’s effectiveness by
not conducting tests across a broader range of datasets.

In [48], a hybrid model is presented, comprising a DBN with a KF to estimate the SOC,
with the whole model’s parameters optimised using a PSO algorithm. The DBN architec-
ture consists of two layers: a logistic regression and a stacked restricted Boltzmann machine
with visible and hidden layers. The amount of hidden neurons is determined by the RBM’s
parameters. This model is tested using a 2.2Ah NMC battery cell tested under various
conditions and a randomly generated battery dataset from NASA PCoE [49]. This approach
yields an MAE under 2.2%, with an RMSE below 0.7% and MAE below 0.57% for DST
profiles, outperforming the simple DBN. In this research, a series of comprehensive tests
were conducted, highlighting the superior performance of the DBN-KF model compared
to DBN. In particular, the DBN-KF model exhibited enhanced estimation accuracy for the
SOC under dynamic conditions. Furthermore, the investigation revealed that possessing
information about the initial SOC value significantly accelerated the overall convergence
time. Through the utilisation of the PSO algorithm for hyperparameter tuning, the pre-
sented approach demonstrated enhanced versatility in its capacity to conform to diverse
datasets. Nevertheless, it is important to acknowledge that the straightforwardness of the
proposed model might lead to more pronounced errors in practical real-world applications.

In [50], a novel approach is introduced, which involves an efficient type of neural
network. The method approximates the discrete nonlinear and dynamic system using a
polynomial NARX model. The input variables of the neural network are normalised and
selected using the fast-forward input selection algorithm. The JAYA optimisation scheme
is employed to fine-tune the essential parameters of the RBFNN. The parameters of the
NARX model are set through the application of a trial-and-error method. The method is
evaluated using 216 LFP battery cells with serial connection, achieving a 0.3172% RMSE
and 0.1926% MAE. The optimised model significantly reduces the RMSE and MAE errors
compared to the RBF model without optimisation. Through the application of the JAYA
algorithm for hyperparameter tuning, the proposed technique displayed an elevated
capacity for generalisation in its adaptation to a singular dataset. Despite the dataset’s
extensive cell count, the authors missed an opportunity to enhance the study’s credibility by
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incorporating a different dataset to evaluate the framework’s efficacy. Notably, the proposed
method optimises its input selection using the fast-forward selection algorithm, exclusively
employing the most relevant features for SOC prediction.

Table 4. Summary of optimisation-based hybrid techniques for SOC estimation.

N/N Ref Algorithm Battery Temperatures Performance

1 [46] ELM + GSA NMC 25 ◦C and 45 ◦C RMSE 1.1% DST, 1.4%
FUDS and 1.8% US06

2 [47] BPNN + BSA 2Ah NMC [36] 0 ◦C, 10 ◦C,
and 25 ◦C

RMSE 1.74%,
MAE 0.87% @ 0 ◦C

3 [48] DBN + PSO 2.2Ah NMC [49] Yes
AvgError 2.2%, DST:
RMSE 2.2%,
MAE 0.57%

4 [50]
NARX +
RBFNN +
JAYA

LFP Yes RMSE 0.3172,
MAE 0.1926

5 [51] RNARX-NN +
LSA 3.2Ah NCA, [36] 0 ◦C, 25 ◦C and 40 ◦C RMSE 0.8937%

6 [52] NARX-NN +
LSA 2Ah NMC [36] 0 ◦C, 25 ◦C,

and 45 ◦C
RMSE 1.26%,
MAE 0.76% @ 0 ◦C

7 [53] SGAGM 2.6Ah LC Yes MAE less 1%

In [51], a novel RNARX neural network algorithm is proposed, which benefits from the
computational capabilities of LSA to identify optimal hyperparameter values. The RNARX
method is structured with an input, hidden, and output layer, incorporating feedback
loops. The model’s hidden and output layers employ transfer functions, such as logsig and
purelin, respectively, to carry out specific operations. Data were randomly split in a 70 to
30 ratio, to create the training and testing groups, and then were normalised to a range of
(−1, 1). To evaluate the method, a 3.2Ah NCA battery cell was tested using a NEWARE
BTS-4000 at temperatures of 0 ◦C, 25 ◦C, and 40 ◦C. The values for input delay, feedback
delay, and the number of hidden neurons were determined as 2, 4, and 7, respectively,
resulting in an RMSE of 0.8937%. Additionally, dynamic drive cycle data from CALCE [36]
were utilised for the validation of the method. The study further explored the effects
of aging and noise, showing that the proposed model yielded satisfactory results even
under these challenging conditions. The study included a comprehensive comparison test,
evaluating the proposed RNARX-LSA model against the BPNN, ELM, RBFNN, DRNN,
and RF algorithms. The results clearly indicated that the RNARX-LSA outperformed all
other methods in terms of SOC estimation accuracy. Furthermore, the RNARX-LSA method
demonstrated a significantly smaller SOC error when compared to other approaches for hy-
perparameter tuning, such as the RNARX-BSA, RNARX-PSO, and RNARX-GSA methods.
This underscores the exceptional performance and efficacy of the RNARX-LSA method in
estimating the SOC. Applying LSA for hyperparameter tuning, the presented technique
demonstrated heightened flexibility concerning the employed datasets. However, it is
worth noting that the authors could have enhanced the study by testing the method across
a broader array of datasets and expanding the hyperspace with additional hyperparameter
options. Conversely, the comprehensive examination of factors like aging effects and noise
contributes to positioning the proposed framework as a holistic solution, verified through
trials in quasi-real-world scenarios.

The paper by [52] introduces an enhanced NARX-based neural network algorithm,
which utilises the LSA technique to determine optimal values for input delays, feedback
delays, and the number of hidden layer neurons. The LSA findings are demonstrated for
the FUDS and US06 dynamic profiles at three different temperatures: 0 ◦C, 25 ◦C, and 45 ◦C.
An optimisation process is performed to identify the best configurations for hidden layers,
input delay, and feedback delay. The optimal values for the three temperatures are found
to be 3, 7, and 3 for 0 ◦C; 3, 6, and 2 for 25 ◦C; and 11, 9, and 16 for 45 ◦C. The LSA
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parameters, such as the population size and iterations, are set to 50 and 100, respectively,
with a maximum value of 10 for the channel time. The limit range for hidden nodes is
set from 0 to 20, while the limit range for input and feedback delays is set from 1 to 10.
Transfer functions such as tansig and purelin are applied in the hidden and output layers,
respectively. To evaluate the method, data from a 2Ah 18650 NMC battery acquired from
CALCE [36] are used, achieving an RMSE of 1.26% and MAE of 0.76% at 0 ◦C. The SOC
value for each lithium-ion cell is calculated as the average value of the battery pack’s
SOC. Additionally, for the monitoring and balancing of the voltage of the battery pack,
a charge equalisation method is utilised. Comparative tests show that LSA outperforms
PSO in terms of objective function values, and the NARXNN-LSA method demonstrates
superior performance in terms of lower errors and computation time compared to the
BPNN-LSA and RBFNN-LSA algorithms. Similarly to the prior approach, employing LSA
for hyperparameter tuning revealed the proposed method’s heightened adaptability to
the utilised dataset. Moreover, this study encountered the same limitation of constrained
generalisation due to relying solely on a single dataset and exploring a narrow range
of hyperparameters.

The paper by [53] presents a novel estimation approach called SGAGM, which com-
bines GM with GA to estimate the SOC of batteries. The SGAGM(M, m, N) algorithm is
utilised for SOC estimation, where M, m, and N represent the window size, sliding data,
and predicted data, respectively, with values set to 8, 1, and 1. Two datasets were used
to validate this method. The first dataset consisted of a 2Ah 18650 battery cell acquired
from NASA’s dataset [54], while the second dataset was of a 2.6Ah LCO battery cell tested
on an ITECH electronic load IT8511A+. The SGAGM method achieved an impressive
MAE of less than 1% and a maximum error of less than 1.04%, demonstrating its high
accuracy in SOC estimation under different temperatures and working conditions. Fur-
thermore, the SGAGM method outperformed the GM(1,1) method in terms of estimation
accuracy. Through the utilisation of GA for hyperparameter tuning, the suggested approach
showcased commendable generalisation capabilities across both employed datasets. These
datasets encompassed both publicly available data and data derived from their proprietary
experimental setup. Nonetheless, a shortcoming of the study pertains to the limited scope
of the hyperparameters explored within the model, potentially leading to the suboptimal
performance of the framework.

5.2. Deep Learning

Deep-learning-based models possess a distinct advantage in merging diverse data-
driven models and concatenating them to construct larger and more sophisticated networks.
This characteristic enables these models to exhibit enhanced performance when tasked
with handling a wide array of complex and diverse challenges, encompassing tasks related
to feature extraction and prediction. By seamlessly combining multiple models, like
FFNNs, CNNs, and RNNs, to name but a few, and leveraging the power of deep neural
networks, deep learning approaches showcase remarkable adaptability and capability in
effectively addressing intricate problems in various domains. The corresponding outcomes
of each relevant research article are presented in Table 5. An inherent limitation in the
following approaches is the absence of proper hyperparameter tuning. In these cases,
the hyperparameters for the subsequent models are primarily adjusted using trial-and-
error techniques.

In [55], a combined CNN-LSTM network is proposed, where the CNN is responsible
for extracting advanced spatial features from battery parameters, and the LSTM models
the relationships among the present and the former inputs to capture temporal features.
The CNN architecture consists of three convolutional layers, each consisting of six filters to
extract spatial features, and the size of each hidden layer matches the input layer’s size.
The LSTM layer contains 300 hidden nodes to learn the temporal features, and an FC layer
with 80 nodes is utilised for SOC estimation. Evaluating a 1.1Ah LFP 18650 cell on an
Arbin BT2000 at temperatures ranging from 0 ◦C to 50 ◦C, the model attains a maximum
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MAE under 1% and a maximum RMSE less than 2%. This method outperforms the simple
CNN and LSTM methods in accurately mapping the impact of temperature, achieving an
MAE below 1.5% and RMSE below 2% even under various temperatures. It was noticed
that the RMSE and MAE values were slightly higher in the 40–80% SOC range due to the
plateau area in the SOC–OCV curve, where small voltage errors significantly affected the
SOC estimation. The study also suggests updating the network parameters to account
for battery aging effects. By combining a CNN to extract spatial features and LSTM to
enhance the capture of temporal features, the framework gains a generalisation capability.
However, the study’s scope was limited to a single dataset, omitting the exploration of
various datasets that would typically be expected.

In [56], a hybrid data-driven method using a dynamic NARX model combined with
LSTM-RNN is presented, addressing the issues of gradient explosion and gradient descent.
The NARX model uses current, voltage, and temperature inputs to predict the SOC, and the
predicted SOC, along with the same inputs, is subsequently fed into the LSTM network.
Both networks have 70 hidden layers, with input and feedback delays set at 1:2. The ’trainlm’
function is employed for training, and 3000 samples of initial current, voltage, and SOC
estimations are used as input to train the LSTM model. Testing on an LFP 18650 battery cell
using an EVT500-500 battery tester, the proposed method achieves an RMSE below 1% and
exhibits high multi-time prediction performance, surpassing the BPNN-PSO, LSTM, and LL-
SVM models. Overall, the proposed model achieves a significant 60% improvement over the
classic LSTM model. Employing the NARX model as the initial predictive layer and utilising
its output as input for the LSTM network, this approach establishes a two-step prediction
solution with remarkable accuracy. However, the framework’s applicability is hindered by
relying solely on a single dataset, constraining its potential for broader generalisation.

Table 5. Summary of deep-learning-based hybrid techniques for SOC estimation.

N/N Ref Algorithm Battery Temperatures Performance

23 [55] CNN + LSTM 1.1Ah LFP
0 ◦C, 10 ◦C, 20 ◦C,
30 ◦C, 40 ◦C and
50 ◦C

maxMAE 1%,
maxRMSE 2% and
maxMAE 1.5%,
maxRMSE 2% @
varying temp.

24 [56] NARX-NN +
LSTM LFP No RMSE 1%

25 [57] CNN + GRU 1.3Ah NMC
0 ◦C, 10 ◦C, 20 ◦C,
26 ◦C, 30 ◦C, 40 ◦C
and 50 ◦C

RMSE 4.36%,
MAE 3.04% @ 0 ◦C

26 [58] Autoencoder
NN + LSTM 2Ah NMC [36] Yes RMSE 1.3%,

MAE 0.93% @ 0 ◦C

In [57], a novel CNN-GRU network is introduced, featuring eight filters in the convo-
lutional layer, followed by two stacked GRU layers comprising 150 and 80 nodes. The Ada-
Grad optimisation algorithm is employed, updating the learning rate itself, with the initial
learning rate and momentum values set to 0.001 and 0.8, respectively. All hyperparameters
are determined through a trial-and-error method. Testing a 1.3Ah 18650 NMC battery
cell on an Arbin BT2000 battery tester at temperatures ranging from 0 ◦C to 50 ◦C, this
method achieves an RMSE of 4.36% and MAE of 3.04% at 0 ◦C. The proposed approach
outperforms the ELM, SVM, and GRU methods while also maintaining a satisfactory SOC
estimation speed, making it suitable for real-time applications. Replacing conventional
matrix multiplications with convolutions within the gated recurrent unit represents a novel
approach that effectively captures temporal dependencies in SOC prediction for the first
time. However, the study’s limitation lies in the absence of generalisation, as it solely relies
on testing with a single dataset.

In [58], the authors proposed a combined method using an Autoencoder and an
LSTM RNN. The Autoencoder NN with one hidden layer containing 22 neurons extracts
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relevant features, which are then fed into the LSTM RNN consisting of one layer with
100 units. To address overfitting, L2 regularisation and dropout with values of 0.001 and
0.5, respectively, are implemented. Utilising a CALCE [36] dataset of a 2Ah 18650 NMC
battery cell, the model achieved a 1.3% RMSE and 0.93% MAE at 0 ◦C. Comparative tests
with a multilayer perceptron NN, having 1 hidden layer and 25 neurons, revealed that the
proposed method performed better for all temperatures, including 0 ◦C, 25 ◦C, and 45 ◦C.
Through the utilisation of an Autoencoder for optimal feature extraction and an LSTM for
prediction, the authors attain commendable performance. Nevertheless, this achievement is
constrained to a single dataset, and the study lacks the inclusion of multiple datasets, which
is crucial for robust validation. Additionally, the absence of publicly available datasets
hinders effective comparisons with other methodologies.

6. Conclusions

Recently, there has been an increase in data-driven techniques, driven by advance-
ments in microcontrollers and the volume of available information. These data-driven
estimation algorithms have shown remarkable capability in recreating equivalent models
of battery cells and packs, leading to accurate SOC estimation with low errors. Among the
popular techniques, RNNs have gained prominence due to their ability to capture dynamic
time dependencies in battery behaviour. The effectiveness of these models is greatly im-
pacted by a number of factors, including the input data, hyperparameters, optimisation
algorithms, temperature, and neural network architecture. Often, finding the optimal
parameter values requires a trial-and-error approach. Additionally, there is a need to strike
a balance between the estimation time and performance, as SOC estimation is frequently
required for real-time applications. Therefore, future research should focus on develop-
ing hybrid models in which machine learning methods are combined with optimisation
methods to fine-tune the hyperparameters. By delving into hybrid models, researchers can
further increase the overall performance of the model. Using machine learning models in
conjunction with optimisation algorithms opens new avenues for enhanced battery SOC
estimation techniques.

To propel the advancement of data-driven SOC estimation algorithms, several key
recommendations should be considered. Incorporating key variables such as SOH, which
signifies a battery’s present capacity compared to its initial capacity, and RUL, denoting
its projected lifespan, improves the accuracy of SOC estimations. The inclusion of SOH
provides insight into the battery’s current efficiency, allowing for adjustments in SOC pre-
dictions to match the diminished or retained capacity. Meanwhile, RUL offers insight into
how long the battery will sustain its operations for, enabling a more informed assessment
of the charge levels over its remaining lifespan. Furthermore, broadening the research
scope from single cells to battery packs is crucial for practical applications. Developing
a transfer model that can achieve high performance with low computational costs for
various battery types is also essential. Implementing a BMS with internet connectivity to
leverage cloud applications can reduce computational expenses and enable efficient data
storage. Adopting more advanced techniques for the selection of hyperparameters and
model parameters is advisable to attain superior performance. Furthermore, the prevailing
approach for SoC estimation involves the use of physics-informed neural networks. This
trend is driven by the aim to accelerate computational processes during testing, ultimately
leading to reduced power consumption if the model is integrated into a real BMS. Addi-
tionally, there is the growing adoption of transformer-based algorithms in handling time
series data. However, one research work demonstrates that transformer-based algorithms
might not be well suited to this data type, resulting in higher error rates when compared to
simple data-driven methods. Lastly, deep learning models should predict SOC values and
swiftly detect battery faults, such as thermal runaways, to safeguard both the battery and
human safety.
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Nomenclature

(SOC) State of Charge
(EOL) End of Life
(ECM) Equivalent Circuit Model
(PF) Particle Filter
(KF) Kalman Filter
(ANN) Artificial Neural Network
(ACKF) Adaptive Cubature Kalman Filter
(EKF) Extended Kalman Filter
(SOH) State of Health
(BMS) Battery Management System
(RNN) Recurrent Neural Network
(LSTM) Long Short-Term Memory
(biLSTM) Bidirectional Long Short-Term Memory
(LIBs) Lithium-Ion Batteries
(CC) Coulomb Counting
(UKF) Unscented Kalman Filter
(GRU) Gated Recurrent Unit
(biGRU) Bidirectional Gated Recurrent Unit
(FC) Fully Connected
(CNN-GRU) Convolution Gated Recurrent Unit
(PSO) Particle Swarm optimisation
(LSA) Lighting Search Algorithm
(GA) Genetic Algorithm
(NARX) Nonlinear Autoregresive with Exogenous Input
(GM) Grey Model
(SGAGM) Sliding Genetic Algorithm Grey Model
(LS-SVM) Least-Square Support Vector Machine
(NMC) Nickel Manganese Cobalt Oxide
(LFP) Lithium Iron Phosphate
(MAE) Mean Absolute Error
(UPF) Unscented Particle Filter
(LCO) Lithium Cobalt Oxide
(RMSE) Root Mean Squared Error
(CALCE) Centre for Advanced Life Cycle Engineering
(UDDS) Urban Dynamometer Driving Schedule
(HWFET) Highway Fuel Economy Test Cycle
(US06) Highway Driving Schedule
(LA92) California Unified Cycle
(DST) Dynamic Stress Test
(FUDS) Federal Urban Drive Schedule
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(BJDST) Beijing Dynamic Stress Test
(SVM) Support Vector Machine
(GPR) Gaussian Process Regression
(FFNN) Feedforward Neural Network
(NCA) Nickel Cobalt Aluminum Oxide
(DNN) Deep Neural Network
(TCN) Temporal Convolutional Network
(BSA) Backtracking Search Algorithm
(GSA) Gravitational Search Algorithm
(ELM) Extreme Learning Machine
(BPNN) Backpropagation Neural Network
(RBFNN) Radial Basis Function Neural Network
(GRNN) Generalised Regression Neural Network
(DBN) Deep Belief Network
(RNARX) Recurrent Nonlinear Autoregressive with Exogenous Inputs
(SGAGM) Sliding Genetic Algorithm Grey Model
(GM) Grey Model
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