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Abstract 

In this paper, a condition monitoring system for railway track geometry is presented. The methodology has 

been designed for high-speed application, where the train travels at the maximum allowed speed for most of 

the trip. The system is designed to rely on acceleration data recorded by in-service vehicles to provide 

estimations of the track longitudinal level, based on pre-built regression models. It exploits synthetic indicators 

sampled over predefined track sections 100 m long. Different predictors are considered, computed both from 

acceleration data and from track geometry measured by the diagnostic train. The proposed modelling strategy 

allows distinguishing between isolated and distributed defects that populate the railway track as well as 

reproducing the evolution over time of the maximum longitudinal level registered in the considered track 

section; moreover, also accurate predictions of the defect amplitude are made. The results have been validated 

against track geometry data recorded by the diagnostic train during a monitoring period of two years. It is 

proven that the proposed system could support current maintenance strategies, providing a continuous flow of 

data to monitor the track infrastructure. 

 

Keywords: condition monitoring, longitudinal level, bogie vertical acceleration, in-service vehicle, multiple 

regression models. 

 

1. Introduction 

Maintenance strategies currently adopted by railway infrastructure managers to guarantee the 

integrity and safety of the network rely on special purpose diagnostic trains. These trains are exploited 
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for periodic inspection runs, planned according to a predefined schedule, during which both 

acceleration data and track geometry parameters are recorded [1]. The frequency of train passages 

should be sufficient to detect any occurring change of the track conditions, and it normally depends 

on the class of the railway line. For instance, high-speed lines are typically inspected every two weeks, 

whereas less frequent inspections (e.g., monthly) are carried out on commuter lines. However, 

diagnostic trains do not allow a continuous monitoring of the track state, that may lead to downtimes 

and potentially critical situations in the unlikely event of very fast or sudden degradation of the track 

conditions. 

In the last decade several works have been proposed, proving in-service vehicles to be suitable 

for infrastructure monitoring purposes and progressively leading to condition-based maintenance 

strategies (CBM). Inertial sensors have been widely adopted in this field of research, as they are 

robust, reliable, versatile and rather cheap. They can be installed on different components of the 

vehicle [2], their position, type and full scale being dependent on the target of the specific application, 

i.e., the defect type. For instance, axle-box mounted accelerometers were employed to successfully 

monitor rail corrugation and roughness [3][4]. Bogie mounted sensors were adopted to monitor 

vertical and lateral track alignment [5][6][7]. Finally, applications relying on carbody mounted 

sensors were proposed, in particular for low speed and urban applications [8][9].  

Once data are recorded on-board and transmitted to a ground server for analysis, different 

methodologies could be employed. The acceleration time histories can be used to solve an inverse 

problem, willing to identify the input track profile generating the acquired signal. Carbody 

acceleration was used in [10] to solve an inverse problem adopting a Kalman Filter (KF) with a 

simplified yet fast rail vehicle model. A mixed filtering approach allowed estimating track 

irregularities [11], combining KF for the displacement estimation, band-pass filters for wavelength 

classification and a compensation filter for amplitude and phase estimation. 

Vehicle accelerations can also be treated at the post-processing stage to identify the track geometry 

profile by adopting signal processing techniques. Double integration of the acceleration signals was 



proven to be an effective solution. Axle-box vertical acceleration allows reconstructing the track 

geometry of a high-speed line [12], adopting a 10 m versine processing. The results were validated 

in [13] against track geometry data measured by a Track Recording Vehicle (TRV), showing 

satisfactory results. Other attempts have been made in [14][15], where vertical and lateral track 

irregularity were identified.  

The methodologies previously mentioned aim at the reconstruction of the track geometry 

profile and generally require a relevant number of sensors and post-processing effort [16]. Although 

accurate results have been reached, such a system may be not adequate for commercial applications, 

especially in case a fleet of vehicle is considered, in light of the significant amount of data to be 

managed, analysed, and aggregated to provide condensed information about the track state. In this 

respect, the possibility to monitor synthetic indicators may represent an effective alternative. In fact, 

current maintenance procedures consider the peak and rms values as parameters to trigger the 

necessary operations [17]. For instance, the degradation of the track conditions was monitored 

considering the standard deviation of the track geometry measured by the TRV [18]. A step forward 

would consist in considering indicators directly computed on-board the in-service vehicle, prior to 

transmission to the ground control room. In [19], the rms of bogie vertical acceleration has been 

adopted to monitor the vertical track alignment, in terms of rms and peak values. However, over and 

underestimations of the defect amplitude has been observed in the research work. 

In this framework, different machine learning approaches have been proposed in recent years [20]. 

Probabilistic models based on Markov chains [21] and classification algorithms (Support Vector 

Machine, decision tree, augmented Bayesian) [22][23] were used to predict the evolution of synthetic 

indexes related to track geometry. 

In this paper, a condition monitoring system for the track longitudinal level is proposed, 

starting from the methodology we presented in [19]. Specifically, an update of the modelling strategy 

is here provided, with the aim of improving the accuracy of the predictions of the vertical track 

alignment. To this end, the designed system relies on multiple regression models to infer the 



maximum longitudinal level in D1 range (3-25 m wavelength, in accordance with the reference 

standard EN 13848-5 [17]). Different regressors are considered, ranging from acceleration rms, 

railway track morphological characteristics (i.e., curves and straight sections), up to direct 

information of track longitudinal level coming from the diagnostic vehicle. The attention is limited 

to high-speed applications, where this type of defect represents the major reason for track repair. To 

this end, data collected during a long-term monitoring campaign of two years along a reference high-

speed line (300 km/h) are considered. To verify the accuracy reached, the predictions are validated 

against the geometry records taken by the TRV. At the present stage of this research, also the 

acceleration data are measured on the same TRV, that has in fact exactly the same architecture of the 

commercial high-speed vehicle. 

 

2. Condition monitoring system 

In this section, the working principle of the condition monitoring system first presented in [19] is 

summarized. The system is specifically designed to predict the track longitudinal level based on 

acceleration measurements taken by an in-service vehicle. However, at the present time, the condition 

monitoring system is not installed on a commercial vehicle yet. Therefore, the acceleration data 

measured by the very same diagnostic vehicle performing the track inspection are considered. Major 

attention is devoted to the longitudinal level in D1 range due to the frequency of these defects, that 

typically drive maintenance operations along high-speed lines. Synthetic indicators as RMS and the 

peak longitudinal level (MAX in the following) are computed, considering the RMS bogie vertical 

acceleration (0-40 Hz frequency range) and pre-built linear regression models. The indicators are 

sampled along 100 m windows, after that a precise data positioning along the line is achieved by the 

specifically designed geo-localization algorithm [24]. For a better comprehension of the system 

architecture, a schematic representation is provided in Figure 1. 



 

Figure 1. Workflow of the condition monitoring system. 

 

The system consists of two steps. In the training phase, acceleration data gathered by the commercial 

vehicle are combined to the direct measurements of the track geometry recorded by the diagnostic 

train. Data are registered along a reference high-speed line of 200 km, considering the vehicle target 

speed of 300 km/h, during a long-term monitoring period of 18 months. This way, the statistical 

relevance is guaranteed by including different track conditions (i.e., degraded and renewed track 

profiles) as well as wheel profiles (that is worn and reprofiled ones). Linear regression models are 

built considering track geometry and acceleration data registered along the corresponding 100 m 

windows. Two models are built, to predict both the RMS and the MAX longitudinal level considering 

the RMS bogie vertical acceleration as input. In the implementation foreseen in [19], the track 

condition monitoring system takes advantage of the dataset from the TRV only in the training phase 

of the model, thus a dashed line is adopted in Figure 1. 

The second step follows, that adopts the designed models to predict the track geometry parameter of 

interest. Very accurate results are achieved when inferring the RMS longitudinal level, given the 

significant value reached by the coefficient of determination R2 = 0.93. A lower degree of correlation 
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is instead registered in the case of the MAX longitudinal level, since the corresponding model is 

characterized by R2 = 0.72. For completeness, the considered regression model is presented in Figure 

2a.  

 

Figure 2. Linear regression model to predict the MAX longitudinal level from the RMS bogie vertical acceleration.  

a) Regression models for all defects, distributed defects and isolated defects. Data gathered at 300 km/h along the 

considered high-speed line. Longitudinal level in D1 range (left rail) measured by the diagnostic vehicle along a spatial 

window of 100 m: b) distributed defect (defect A in the following); c) isolated defect (defect B).   

 

The solid black line in Figure 2a represents the linear regression model adopted to infer the MAX 

longitudinal level from the RMS bogie vertical acceleration (R2 = 0.72). The model is built 

considering pairs of acceleration and track geometry data recorded along corresponding spatial 

windows of 100 m, i.e., the whole dataset reported in Figure 2a (blue and red data contemporarily 

considered). It turns out that the adoption of this regression model to infer the MAX indicator may 

lead to significant estimation errors, with both over and under-estimations of the MAX longitudinal 

level.  

This result can be qualitatively explained referring to a preliminary analysis carried out to distinguish 

the defect nature, that relies on the crest factor (i.e., the ratio of the peak and rms value, referred to as 

𝐶𝐹) of the acceleration data, that is a measure of how extreme the peaks in a waveform are. In this 



first analysis, an arbitrary threshold value set to 3.5 was adopted (note that the comments in the 

following are not depending on this specific threshold); a defect is considered as isolated in case the 

threshold is exceeded, while lower values identify distributed defects. Therefore, the data available 

in Figure 2a have been separately considered to realize two different regression models: blue and red 

colours respectively identify distributed and isolated defects.  

For the sake of clarity, Figure 2b shows an example of a distributed defect (𝐶𝐹 = 2.9 in Month 1), 

that consists in a series of adjacent defect inside the considered 100 m window; whereas in Figure 2c 

an isolated defect is presented (𝐶𝐹 = 4.1 in Month 1), that is one single defect inside the window.  

From Figure 2a, it is then evident that for the same acceleration rms considered as input, the adoption 

of a specific model (related to the defect nature) instead of a unique one (representative of the whole 

railway line) will lead to significantly different results. For instance, consider an acceleration of 2 

m/s2 as input for the prediction of the MAX longitudinal level: a defect of 7.2 mm will be recognised 

by the adoption of a unique regression model (black line), while 6.4 mm and 7.8 mm will be 

respectively predicted considering the defect as a distributed (blue line) or an isolated one (red line).  

This result exemplifies the need to design a modelling strategy that is sensitive to the defect nature, 

as well as to distinguish the defect before predicting the track geometry from the measured 

acceleration. As a result, higher prediction accuracy can be reached, making the system more reliable 

to support the current maintenance strategy.  

Willing to increase the model accuracy, an attempt to reduce the window size from 100 m 

down to 25 m was considered in [19]. Improved results were achieved in terms of coefficient of 

determination (R2 passing from 0.72 to 0.77), as well as by correctly predicting the evolution over 

time of the MAX longitudinal level of a specific 25 m window (limiting the prediction error to 1.5 

mm in the analysed cases). However, the reduction of the window size would require a very accurate 

geo-localization of the data, that may be hard to be met in a commercial application. 

Therefore, in this paper an alternative modelling strategy to improve the prediction accuracy is 

proposed, based on the distinction of the defect type as discussed in Figure 2. To this end, the solution 



relies on multiple regression models, still adopting a 100 m window to sample the data. In Section 3, 

different regressors available both from the commercial vehicle and from the diagnostic train itself 

will be considered, discussing their effectiveness.  

 

3. Multiple regression models  

The considered high-speed vehicle is equipped with bogie accelerometers to sense the vertical and 

lateral acceleration. During the train run, the acquisition board computes synthetic indicators as the 

rms and peak values in a limited frequency band (0-40 Hz) over 100 m windows, that are then saved 

and transmitted to the ground server for the analysis. Moreover, the geo-localization algorithm allows 

associating the track nominal characteristics (i.e., curves and straight sections) to the acquired 

acceleration data. These parameters have been considered as possible meaningful contributors to the 

prediction of the MAX longitudinal level, as detailed below: 

- the crest factor of the bogie vertical acceleration (computed as the ratio of the peak and rms value 

at the post-processing stage), that as mentioned provides an insight of how extreme peaks are in 

a signal; 

- the RMS bogie lateral acceleration; 

- a categorical variable (Boolean, that assumes values 0 or 1) to distinguish curves and straights 

tracks. 

These variables have been considered as candidate predictors for a multiple regression model, 

adopting the forward selection procedure. According to the methodology, given N candidate 

variables, N simple regression models are built (one per each predictor), to select the one that 

minimise the residual sum of squares. This variable is picked up to build the model, and the procedure 

is iterated including each one of the remaining N-1 variables, until a stopping criterion is satisfied. 

To this end, a p-value of 0.05 for the null hypothesis (i.e., no relationship between two variables) was 

considered, that is the approach commonly adopted from a statistical point of view. In case a p-value 

higher than the threshold is registered, the variable is proven to be unfit and discarded.  



According to the forward selection criterion, the crest factor computed from the bogie vertical 

acceleration (𝐶𝐹𝑧̈ in the following) proves the highest relevance, and was thus considered in the 

regression model, that reads like: 

𝑀𝐴𝑋𝐿𝐿 = 𝑏0 + 𝑏1𝑅𝑀𝑆𝑧̈ + 𝑏2𝐶𝐹𝑧̈ (1) 

where the subscript LL stands for the longitudinal level, while the bogie vertical acceleration is 

identified by z double-dotted. Equation 1 represents the plane that best fits the experimental data by 

minimising the residual sum of squares, shown in Figure 3. Specifically, a 3D view is proposed in 

Figure 3a, and side views aligned with the best fit plane are shown in Figure 3b and Figure 3c to 

better observe the data dispersion.  

 

Figure 3. Multiple regression model adopting the RMS and the CF from bogie vertical acceleration to predict the MAX 

longitudinal level (spatial window 100 m, R2 = 0.78). a) Data distribution in 3D view; side views aligned to the fitting 

plane in b) and c). 

 

The considered modelling strategy leads to a coefficient of determination R2 = 0.78. This result can 

be regarded as satisfactory if compared to the simple regression model, with an increase with respect 

to the 100 m window (R2 = 0.72) and 25 m window as well (R2 = 0.77).  



The results of Figure 3 prove the multiple regression to be a promising strategy to improve the model 

accuracy, so that the forward selection criterion is then considered to verify the possibility to adopt 

any additional predictor. The p-value suggests the relevance of both the track characteristics (i.e., 

curves and straight sections) and the RMS of bogie lateral acceleration. However, no significant 

increase in the coefficient of determination is reached by their adoption, as R2 reaches a value of 0.79. 

Therefore, they have been considered as negligible and discarded for the following analysis. 

Once the crest factor was recognised to be the most suited regressor, a step forward is provided 

in an attempt to better capture the defect nature. The proposed solution directly adopts the track 

longitudinal level measured by the TRV as the parameter to compute the crest factor, referred to as 

𝐶𝐹𝐿𝐿 in the following. 𝐶𝐹𝐿𝐿 is computed at the post-processing stage as the ratio between the peak 

and rms values of the longitudinal level, considering 100 m windows along the railway line, and it is 

a direct index of the defect nature, not affected by the vehicle dynamics as in the case of 𝐶𝐹𝑧̈. Then, 

it is adopted to build up a multiple regression model, that reads like: 

𝑀𝐴𝑋𝐿𝐿 = 𝑏0 + 𝑏1𝑅𝑀𝑆𝑧̈ + 𝑏2𝐶𝐹𝐿𝐿 (2) 

The algorithm schematised in Figure 1 is essentially modified accounting for the fact that the track 

condition monitoring system will take advantage also of the dataset of the TRV, so that the dashed 

line will become a “solid” line.  

The results of the adoption of the crest factor of the longitudinal level as a predictor are shown in 

Figure 4, according to the same data representation of Figure 3.  



 

Figure 4. Multiple regression model adopting the RMS bogie vertical acceleration and the CF from longitudinal level to 

predict the MAX longitudinal level (spatial window 100 m, R2 = 0.89). a) Data distribution in 3D view; side views aligned 

to the fitting plane in b) and c). 

 

A significant increase in the coefficient of determination R2 can be observed, that passes from 0.78 

(Figure 3) to 0.89 (Figure 4). The increase in the degree of correlation can be also inferred observing 

the dispersion of the data around the best fitting plane in Figure 4b and Figure 4c. 

To deepen the results, Figure 5 shows the distribution of the residuals as a function of the MAX 

longitudinal level (Figure 5a) and in terms of probability of occurrence (Figure 5b). In each diagram, 

the results achieved adopting the regression model of Equation 1 and Equation 2 are shown for 

comparison. 

 



 

Figure 5. Comparison of the residuals achieved adopting the crest factor from bogie vertical acceleration and from track 

longitudinal level as additional predictor. a) Residuals as a function of the MAX longitudinal level; b) statistical 

distribution.  

 

Focusing the attention on Figure 5a, a significant reduction of the absolute error can be recognised in 

case 𝐶𝐹𝐿𝐿 is adopted as a predictor, with the datapoints reported in red that are much closer the null 

value. However, the residual shows a slight dependency with the defect amplitude. This result can be 

related to the fact that large MAX values are uncommon, the railway line being kept in healthy 

conditions by maintenance interventions, so that inferring large defects will generally lead to larger 

prediction errors. In any case, it is worth noting from the distribution of the residuals of Figure 5b 

that the benefits from the adoption of 𝐶𝐹𝐿𝐿 as a regressor (red bars) can be also registered in the 

significant reduction of the tails. For instance, a 14% cumulative probability of getting prediction 

errors larger than 1 mm is registered in case 𝐶𝐹𝑧̈ is adopted, while the probability drops to 5% in case 

𝐶𝐹𝐿𝐿 is instead considered. Therefore, more precise estimates of the MAX longitudinal level are 

expected by the adoption of the regression model of Equation 2, as will be shown in Section 4. 

The significant improvement reached can be associated to the data fusion with direct track 

geometry measurements. The proposed solution can be regarded as a compromise between an 

autonomous condition monitoring system (based on acceleration data from the fleet) and the need to 



improve the model accuracy. In this respect, it is worth recalling that the aim of the condition 

monitoring system is to support the current maintenance strategy, providing a continuous flow of data 

in terms of reliable estimations of the track conditions.  

From the point of view of the implementation of the methodology, this leads to some implications 

that are hereafter presented supposing the system to be installed on a commercial vehicle. The 

regressor 𝑅𝑀𝑆𝑧̈ of Equation 2 will be made available on a daily basis, for each train run along the 

considered railway line. Conversely, 𝐶𝐹𝐿𝐿will be at disposal once every diagnostic train run, typically 

once every two weeks along high-speed lines. Therefore, to infer the MAX longitudinal level at a 

specific track section adopting the model of Equation 2, 𝐶𝐹𝐿𝐿 must be kept constant in between two 

subsequent diagnostic train runs and will be updated as soon as more recent data will be recorded. 

The proposed strategy relies on the assumption that the evolution rate of the defects can be considered 

as almost constant in a short time period of two weeks and will be verified and discussed in the next 

section, where the proposed model will be adopted to predict the MAX longitudinal level.  

 

4. Results and discussion 

The capability of the multiple regression model to predict the MAX longitudinal level is hereafter 

analysed. To this end, the most promising modelling strategy is considered, that relies on the adoption 

of the crest factor of the longitudinal level (𝐶𝐹𝐿𝐿) together with the RMS bogie vertical acceleration. 

Several defects were analysed. Applying the methodology, the obtained results are common for any 

defect belonging to one of the following categories: distributed defect, isolated defect and rapidly 

evolving isolated defect. For this reason, in the following three defects are discussed, representative 

of the three typologies. The same defects already analysed in [19] are considered in order to perform 

a comparative analysis. 

At first, in Figure 6, the attention is paid to a distributed defect observed along the considered high-

speed line (referred to as defect A). The corresponding signal measured by the diagnostic train along 

the considered spatial window can be observed in Figure 2b.  



 

Figure 6. Defect A: distributed defect. Comparison of the MAX longitudinal level measured by the diagnostic train and 

predicted by the regression models. a) Simple regression model; b) multiple regression model adopting 𝐶𝐹𝐿𝐿 as additional 

regressor; c) 𝐶𝐹𝐿𝐿 as a function of the recording time. 

 

The direct measurements taken by the diagnostic vehicle during the whole monitoring period of two 

years are reported as blue squared markers as a function of the inspection time. Two maintenance 

interventions can be identified respectively in Month 11 and 17, so that three separate time periods 

can be distinguished, characterized by significant reductions of the MAX index. Data belonging to 

each period are fitted with solid regression lines to give evidence of the rate of defect growth. 

In addition, the predictions of the MAX longitudinal level are also shown as triangular red markers. 

With reference to Figure 1, the first 18 months constitute the training dataset, while the following 

months belong to the validation set. It can be observed that less predictions than the direct 

measurements are actually available. This is due to the fact that only acceleration data at the train 

maximum speed (300 km/h) can be adopted, in light of the dependency of vehicle acceleration over 

the train speed. When the system will be fully operational, more predictions than direct measurements 

will be instead available. 

More in detail, Figure 6a shows the results achieved adopting the simple regression model with the 

RMS bogie vertical acceleration as predictor. In Figure 6b, the same defect is inferred with the new 



proposed multiple regression model (exploiting the RMS of bogie vertical acceleration and the CF 

from longitudinal level, as shown in Figure 4). Comparing the estimated indexes in Figure 6a and 

Figure 6b, a significant improvement in the prediction accuracy can be recognised by the adoption of 

a multiple regression model, since the triangular markers are much closer to the squared ones at any 

time record available. A slight overestimation of the defect amplitude can be still observed, but when 

adopting a multiple regression model, the rate of defect growth is correctly predicted during the entire 

monitoring period, solid and dashed regression lines being always parallel. This significant 

improvement in terms of both prediction and evolution rate was observed for all the distributed 

defects. 

In Figure 6c the 𝐶𝐹𝐿𝐿 parameter is also reported in correspondence of each diagnostic train run. Also 

in this case, it can be observed that track renewal defines three regions. Considering a specific 

monitoring period, 𝐶𝐹𝐿𝐿 assumes values that can be regarded as almost constant. For instance, 𝐶𝐹𝐿𝐿 

assumes values close to 3 in the first period, slightly above 2 in the second one, and back to 3 in the 

last monitoring period (exception made for the very last data at disposal, approaching a value of 4). 

The change in the average 𝐶𝐹𝐿𝐿 values corresponds to the variation of the rate of defect growth 

inferred by the solid regression lines: the higher the 𝐶𝐹𝐿𝐿 index, the faster the defect evolution. If the 

attention is now paid to two subsequent time records belonging to the same monitoring period, the 

𝐶𝐹𝐿𝐿 values are very close to one another. This result demonstrates the model assumption to be 

reasonable, that is to consider constant 𝐶𝐹𝐿𝐿 values between two runs of the TRV, to infer the MAX 

longitudinal level considering the acceleration from the commercial fleet. 

Figure 7 proposes the same kind of analysis for defect B, an isolated defect whose measurements 

from the TRV are available in Figure 2c.  



 

Figure 7. Defect B: isolated defect. Comparison of the MAX longitudinal level measured by the diagnostic train and 

predicted by the regression models. a) Simple regression model; b) multiple regression model adopting 𝐶𝐹𝐿𝐿 as additional 

regressor; c) 𝐶𝐹𝐿𝐿 as a function of the recording time. 

 

Comparing the results shown in Figure 7a and Figure 7b, the multiple regression model provides 

better results, since it allows reducing the estimation error. For instance, a maximum error of 1 mm 

is registered in Month 11 in Figure 7b, whilst 1.5 mm is achieved adopting the simple regression 

model in Figure 7a at the same time record. The benefits are even higher if the monitoring period 

after the track intervention is analysed, where the predicted values are closer to the measured ones 

and a more precise rate of defect growth is identified, with the dashed line that is in very good 

agreement with the solid one. 

Concerning the 𝐶𝐹𝐿𝐿 values shown in Figure 7c, almost constant values (about 4) are observed in the 

first monitoring period. This value is consistently higher than the one registered in Figure 6c, that 

complies with the nature of the considered defect (i.e., isolated). Lower 𝐶𝐹𝐿𝐿 values are then reached 

in the period after maintenance operation. This result can be associated to the defect getting closer to 

a distributed one with small amplitude, that is also an indication of the effectiveness of the track 

renewal. As a confirmation, attention can be paid to the signals reported in Figure 2c, where the 

longitudinal level in D1 range recorded before (i.e., Months 1 and 10) and after tamping operation 



(i.e., Month 13) is shown. It can be observed that before maintenance intervention, the defect can be 

regarded as an isolated one, with the longitudinal level that shows one single defect (15 m in the 

considered spatial window). Conversely, after maintenance, the amplitude of the waveform is 

significantly reduced, making the defect a distributed one of small amplitude. In the end, the signal 

histories of Figure 2c confirm the change of defect nature inferred by the 𝐶𝐹𝐿𝐿, and therefore its 

capability to distinguish isolated defects (solid and dashed lines in Figure 2c) from distributed ones 

(dotted line in Figure 2c). The change of defect nature is also the reason for the different prediction 

accuracy before and after maintenance intervention. In fact, as previously pointed out, the multiple 

regression model is particularly effective in case of distributed defects.  

As a final example, defect C is analysed in Figure 8, that is another isolated defect registered along 

the considered high-speed line. Out of several defects, it was selected due to its peculiar evolution in 

time, that shows a piece-wise linear trend. First, a rapid deterioration is observed in the initial phase 

of the index evolution; then, a significant reduction in the degradation rate can be recognised when 

the index reaches 6 mm in amplitude. The observed variation in the rate of defect growth can be 

related to the different phases of the ballast degradation, as recognised in [25][26]. Note that this type 

of behaviour is preserved also after maintenance took place in Month 11. 

 

 



 

Figure 8. Defect C: isolated defect. Comparison of the MAX longitudinal level measured by the diagnostic train and 

predicted by the regression models. a) Simple regression model; b) multiple regression model adopting 𝐶𝐹𝐿𝐿 as additional 

regressor; c) 𝐶𝐹𝐿𝐿 as a function of the recording time. 

 

The results achieved by the multiple regression model shown in Figure 8b outperform the ones that 

relies on just the RMS of bogie vertical acceleration. In fact, the predicted values are in good 

agreement with the measured data in the entire monitoring period of two years. The only exception 

is represented by Months 6 to 11, where larger deviations of the predictions are observed. As a result, 

also the degradation rate predicted by the model is lost, with the dashed red line that is far from the 

solid blue one, also showing a negative slope that corresponds to an infeasible improvement of the 

track conditions. 

If reference is made to Figure 8c, 𝐶𝐹𝐿𝐿 shows a similar piece-wise linear evolution both before and 

after the maintenance intervention. Referring to Months 1 to 11, at the beginning of the monitoring 

period a significant increase of the 𝐶𝐹𝐿𝐿 indicator is registered, that passes from 3 (Month 1) to 5 

(Month 4). Note that a constant 𝐶𝐹𝐿𝐿 of about 5.5 is preserved up to the tamping operation carried 

out in Month 11.  

The observed results, together with a fast degradation of the track condition, can be associated to a 

change in the defect nature, as confirmed by the longitudinal level measured by the diagnostic train 



in correspondence of the 100 m window under analysis, presented in Figure 9. Out of the period 

before maintenance, three train runs are considered, respectively associated to Month 1 (solid line), 

Month 4 (dashed line) and Month 11 (dotted line).  

 

Figure 9. Defect C: isolated defect. Longitudinal level in D1 range (left rail) measured by the diagnostic vehicle along a 

spatial window of 100 m. 

 

The signals shown in Figure 9 confirm that the low 𝐶𝐹𝐿𝐿 value observed at the beginning of the 

evolution (Month 1, solid line) is associated to a distributed defect of small amplitude (2 mm). In the 

data recorded during Month 4 (dashed line), the defect amplitude presents both a significant increase 

(5.5 mm) at 80 m of the window, and the peculiarities of an isolated defect. These results provide 

experimental evidence of the arise of an isolated defect, identified by the increase of 𝐶𝐹𝐿𝐿. Finally, 

the last record before maintenance (Month 11), confirms the presence of an isolated defect of about 

8 mm in the considered window.  

Moving towards the conclusion, the comparison between the 𝐶𝐹𝐿𝐿 values of the three defects analysed 

and the time histories of the corresponding defects prove the capability of the proposed 𝐶𝐹𝐿𝐿 indicator 

to distinguish the nature of the defects.  

 In the end, the multiple regression model proposed in this work can be regarded as a significant 

improvement of the condition monitoring system presented in [19]. The proposed modelling strategy 

allows predicting the MAX longitudinal level based on the RMS bogie vertical acceleration 



(commercial train) and the crest factor of the track longitudinal level (diagnostic train). The achieved 

results further confirm the possibility to monitor the track longitudinal level based on the acceleration 

data measured by an instrumented commercial vehicle, that can be adopted to support the current 

maintenance strategy by means of a continuous flow of data and possibly a more efficient intervention 

scheduling.    

It is worth mentioning that the accuracy of the proposed methodology is expected to be mainly 

affected by correct data positioning (as addressed in [24]) rather than by the adopted acceleration 

transducers, given that a proper measurement range is selected. In fact, any accelerometer would offer 

accuracy and uncertainty suitable for the application. On the other hand, the application on a 

commercial vehicle may affect the availability of the monitoring system, that can be lower with 

respect to that installed on a TRV on account of the lower priority of transducers’ maintenance. 

However, the possibility to instrument different bogies of the same vehicle, or different trains, may 

overcome this limitation. 

 

Conclusions  

Based on a previously designed condition monitoring system suitable for high-speed applications, 

this paper proposes an upgrade of the modelling strategy to predict the track longitudinal level. The 

aim is that of predicting and monitoring the evolution over time of synthetic indicators, i.e., the MAX 

longitudinal level in D1 range, in predetermined spatial windows of 100 m length.  

In the paper, a multiple regression model is presented, considering different additional regressors 

other than the RMS bogie vertical acceleration. Out of several candidates, the crest factor of the 

longitudinal level best improves the model accuracy, adopting a data fusion approach with the direct 

track geometry measurements. This reflects into a significant increase of the coefficient of 

determination R2, that passes from 0.72 (simple regression [19]) to 0.89. In addition, also the 

prediction error is significantly reduced, leading to more accurate estimations of the MAX index.  



The increase in the model accuracy is related to the capability of the 𝐶𝐹𝐿𝐿 predictor to distinguish the 

defect nature, given that the railway line is populated by distributed and isolated defects. Regardless 

of the defect type, the designed system allows to correctly reproduce the rate of defect growth. 

Moreover, also the quantitative estimations of the MAX indexes are accurate, with a maximum error 

of 1 mm in the analysed cases. This improvement is particularly significant in the case of distributed 

defects. 

Currently, acceleration data are coming from the same TRV providing track geometry measurements. 

In the future stage of the research, the designed system could be tested considering the first 

acceleration data coming from an instrumented in-service vehicle. This would allow discussing the 

need to manage data redundancy from different bogies of the same train, or even data coming from a 

fleet of trains. In this respect, attention should be paid to the design of methodologies to integrate the 

information coming from the diagnostic train, both in terms of 𝐶𝐹𝐿𝐿 and of inspections timings and 

locations.  

The proposed condition monitoring system could be adopted to support the current maintenance 

strategy. In case the diagnostic train is not available to operate on a specific railway line (due to 

maintenance of its own equipment, or in case urgent interventions are required elsewhere), an 

estimation of the track condition can be achieved. Moreover, given that reliable estimations of the 

track conditions and of the degradation rate are made available, the time lapse in between the 

diagnostic train runs could be increased, with benefits in terms of easiness of the intervention 

scheduling. Finally, in case of sudden changes in a portion of the railway line, daily estimations would 

allow the identification of possible critical track sections in advance with respect to the diagnostic 

train, allowing timely interventions and preventing dangerous situations. 
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