
Journal of Computational Physics 490 (2023) 112326
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A stable loosely-coupled scheme for cardiac 

electro-fluid-structure interaction

Michele Bucelli a,∗, Martin Geraint Gabriel b, Alfio Quarteroni a,c, 
Giacomo Gigante d, Christian Vergara b

a MOX, Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
b LABS, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 
Milano, Italy
c Mathematics Institute, EPFL, Av. Piccard, CH-1015 Lausanne, Switzerland
d Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università degli Studi di Bergamo, Viale Marconi 5, 24044 
Dalmine (BG), Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 October 2022
Received in revised form 1 June 2023
Accepted 24 June 2023
Available online 30 June 2023

Keywords:
Cardiac modeling
Multiphysics
Electromechanics
Fluid-structure interaction
Robin-Neumann interface conditions

We present a loosely coupled scheme for the numerical simulation of the cardiac electro-
fluid-structure interaction problem, whose solution is typically computationally intensive 
due to the need to suitably treat the coupling of the different submodels. Our scheme relies 
on a segregated treatment of the subproblems, in particular on an explicit Robin-Neumann 
algorithm for the fluid-structure interaction, aiming at reducing the computational burden 
of numerical simulations. The results, both in an ideal and a realistic cardiac setting, show 
that the proposed scheme is stable at the regimes typical of cardiac simulations. From a 
comparison with a scheme with implicit fluid-structure interaction, it emerges that, while 
conservation properties are not fully preserved, computational times significantly benefit 
from the explicit scheme. Overall, the explicit discretization represents a good trade-off 
between accuracy and cost, and is a valuable alternative to implicit schemes for fast large-
scale simulations.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Mathematical and numerical modeling of the cardiac function can provide meaningful insight into physiology, as well 
as assist in the development of personalized treatment [60,83,95,96,122]. Several computational models of the human 
heart function have been proposed, often focusing on specific features of its function: electrophysiology [5,21,37,59,91,103,
119,121], electromechanics [8,9,13,34,46,51,54,63,77,90,92,100,107,112,113,120], hemodynamics [18,31,72,116,118,134–136], 
fluid-structure interaction [19,20,30,74,85,132] and myocardial perfusion [33,39,40,69,88,135].

Usually, the remaining features are neglected or surrogated by means of simplified models. While this approach can 
provide meaningful results in physiological [51,72,100,136] as well as pathological scenarios [93,107], the heart function is 
characterized by the coordinated interplay of different physical processes, each affecting every other in multiple ways [95]. 
Therefore, models featuring fully coupled and three-dimensional representations of electrophysiology, active and passive 
mechanics and fluid dynamics have the potential of providing a very accurate description of the physics of the heart [53,
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66,109,114,126,127]. Models of this kind have been employed e.g. in computational studies on ventricular assist devices 
[14] and for in-silico clinical trials on digital cohorts of bundle branch block patients [125]. However, this comes at a high 
price in terms of model complexity and computational cost. For this reason, electro-fluid-structure models for the cardiac 
function are seldom considered in the literature. In particular, modeling the fluid-structure interaction (FSI) effects between 
the cardiac muscle and the blood dynamics is computationally challenging [20,30,43,48,65,85,132]. This is due in part to the 
anisotropy and non-linearity of the constitutive laws of muscular tissue, but also to the so-called added-mass effect [29,50]: 
since fluid and structure have similar densities, numerical methods must be carefully designed to avoid time instability 
while keeping under control computational costs. These issues become even more pressing since, in the cardiac context, 
the FSI model is driven by the active muscular contraction, in turn triggered by electrical excitation, adding to its overall 
complexity and computational burden.

In this framework, explicit yet stable FSI schemes are very attractive [15,16,23,25–27,49,56,57,62,78,110,111]. We focus 
in particular on loosely coupled Robin-Neumann (RN) type schemes, as discussed in [56,57]. Here, RN indicates the kind 
of interface conditions that are alternatively enforced at the interface between the fluid and the structure. Analysis and 
numerical experiments for such schemes have been performed in both idealized and realistic vascular cases, considering a 
linear, isotropic and passive material for the structure [56,57], highlighting their stability for suitable ranges of the interface 
Robin parameter and of the time step.

The aim of this paper is to introduce, for the first time, a complete loosely coupled segregated scheme for the cardiac 
electro-fluid-structure interaction (EFSI) problem. To this aim, we combine, in a modular framework, a loosely coupled 
scheme used so far to couple electrophysiology and FSI [22] with the explicit RN scheme proposed in [56,57] for FSI. We 
assess the effectiveness of the proposed scheme in a cardiac context, where the structure is characterized by a non-linear 
constitutive law, anisotropy and active contraction driven by electrophysiology. Moreover, we consider all the four cardiac 
phases (systolic and diastolic phases, together with the two isovolumic phases). We compare the complete loosely coupled 
scheme for EFSI against an explicit-implicit scheme where fluid and structure are strongly coupled in a monolithic fashion. 
We also consider a hybrid scheme, in which a small number of RN iterations is performed. We compare the schemes in 
terms of both accuracy and computational efficiency. Numerical results indicate that the complete loosely coupled scheme is 
stable in time and allows for significant computational savings. We also highlight a good accuracy of the explicit algorithm 
when compared to the explicit-implicit one, except for a mass loss during the isovolumic phases, so that overall the latter 
allows to strike a compromise between accuracy and computational efficiency. Finally, our conclusions are supported by a 
numerical experiment performed for a realistic ventricular model.

The rest of the paper is structured as follows. In Section 2 we introduce the cardiac EFSI problem. In Section 3 we detail 
the numerical methods used, with reference in particular to the complete loosely coupled scheme, and in Section 4 we 
present numerical results and a comparison between the schemes under consideration. Finally, in Section 5 we draw some 
conclusive remarks.

2. Mathematical modeling of cardiac electrophysiology-fluid-structure interaction

Let us denote by t ∈ [0, T ] the independent time variable. We consider a time-dependent domain �(t) ⊂ R3 representing 
a human left ventricle [20]. The domain is split into the fluid part �f(t), representing the volume occupied by the blood 
inside the chamber, and a solid part �s(t), corresponding to the volume occupied by the cardiac muscle, such that �(t) =
�f(t) ∪ �s(t) and �f(t) ∩ �s(t) = ∅. The two domains share an interface �(t) = ∂�f(t) ∩ ∂�s(t). We denote by n(t) the 
unit vector normal to ∂�(t), outgoing from �(t), and to �(t), outgoing from �f(t). To keep the notation light, we shall 
henceforth drop the explicit dependence on time of the sets defined so far, e.g. we will denote �(t), at the time-continuous
level, simply by �.

We denote by �f,b and �s,b the portion of boundary corresponding to the ventricular base on the fluid and structure 
domains, respectively. Moreover, we denote by �s,epi the epicardial surface (i.e. the outer wall), while � corresponds to the 
endocardial surfaces on fluid and solid domains. There holds �f,endo = �s,endo = �. Finally, we denote by �MV and �AV two 
regions, possibly intersecting (see Section 2.8 for further details), of the fluid domain boundary representing the mitral and 
aortic valve orifices. The domain is represented in Fig. 1a.

To track the motion of the domains, we introduce three fixed reference configurations �̂, �̂f , �̂s. We similarly denote 
with a hat the reference configuration for any of the previously defined boundary portions. The displacement of the time-
dependent domains is expressed by the maps

Ls : �̂s × (0, T ) → �s �s(t) = {x = Ls(̂x, t) , x̂ ∈ �̂s} ,

Lf : �̂f × (0, T ) → �f �f(t) = {x = Lf(̂x, t) , x̂ ∈ �̂f} .

The precise definitions of Ls and Lf are provided in the following sections.
The unknowns of our model are the following functions:

v : �̂s × (0, T ) → R transmembrane potential,

w : �̂s × (0, T ) → RNw
ion gating variables,
2
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Fig. 1. (a) Computational domain �f (left) and �s (right) of the idealized ventricle. Colors and labels denote the different portions of the boundary. (b) 
Streamline representation of the fiber field f0. Color is used to distinguish endocardium, myocardium and epicardium. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

z : �̂s × (0, T ) → RNz
ion ionic concentrations,

s : �̂s × (0, T ) → RNact activation state variables,

d : �̂s × (0, T ) → R3 solid displacement,

dALE : �̂f × (0, T ) → R3 fluid domain displacement,

u : �f × (0, T ) → R3 fluid velocity,

p : �f × (0, T ) → R fluid pressure,

with Nw
ion = 12, Nz

ion = 6 and Nact = 2, according to the chosen ionic and force generation models (see Sections 2.2 and 2.3).

2.1. Fiber generation

The cardiac tissue is characterized by the presence of fibers, that influence both its electrical and mechanical behavior 
[44,58,91,102]. We account for their presence by defining at every point of �̂s an orthonormal basis {f0, s0, n0}, representing 
the local directions of fibers, of fiber sheetlets and normal to fiber sheetlets, respectively. The basis is generated at every 
point by means of the algorithm presented in [104], as a preprocessing step. We refer the interested reader to [91] for a 
detailed review of fiber generation methods for the whole heart. Fig. 1b reports the generated fiber field on the idealized 
ventricle.

2.2. Electrophysiology

Electrophysiology models the evolution of the transmembrane potential, i.e. the difference of potential v between the 
intra- and extra-cellular spaces, as well as the evolution of ionic concentrations and ionic channels that determine the 
electrical excitation of cardiac cells [32]. To this end, we use the monodomain equation, coupled with the ionic model by 
Ten Tusscher and Panfilov [115]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− ∇ · (�m∇v) + I ion(v,w, z) = Iapp(̂x, t) in �̂s × (0, T ) ,

∂w

∂t
= Fw

ion(v,w) in �̂s × (0, T ) ,

∂z

∂t
= Fz

ion(v,w, z) in �̂s × (0, T ) ,

�m∇v · n = 0 on ∂�̂s × (0, T ) ,

v = v0 in �̂s × {0} ,

w = w0 in �̂s × {0} ,

z = z in �̂ × {0} .

(1)
0 s
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In the above system, the first equation is the monodomain model, whereas the second and third equations express the ionic 
model in a compact form. We refer the interested reader to [115] for the precise definition of Fw

ion, Fz
ion and I ion, as well as 

for the definitions of the components of w and z. We point out that the vector z includes the intracellular concentration of 
calcium ions [Ca2+]i , that is relevant to the force generation model.

The tensor �m expresses the anisotropic conduction properties of the myocardium. It is computed in terms of the fiber 
field as

�m = σ f
m(f0 ⊗ f0) + σ s

m(s0 ⊗ s0) + σ n
m(n0 ⊗ n0) ,

where σ f
m, σ s

m and σ n
m are conductivities in the fiber, sheetlet and normal directions, respectively [91].

Finally, the Iapp term in the monodomain equation models the ventricular stimulation by the Purkinje network in a 
simplified way, by applying a stimulus at three distinct locations on the endocardial wall [91,100].

We remark that we are neglecting the so-called geometry-mediated mechano-electric feedback effects [108], that account 
for the fact that the electrical activation propagates in a moving domain. While relevant in pathological conditions, such 
effects have limited impact on simulations in sinus rhythm [108]. Nonetheless, the generalization of the proposed loosely 
coupled EFSI scheme to a model including mechano-electric feedback is straightforward.

Initial conditions v0, w0 and z0 are obtained by running a single-cell electrophysiology simulation until a periodic limit 
cycle is reached, as detailed in [100].

2.3. Force generation

The state of contraction of cardiac cells is expressed at every point in �̂s by the state vector s. Its evolution is modeled 
by the ODE model proposed in [98]. Since the model features a very large number of variables, we use its reduced-order 
counterpart discussed in [99]. The reduced model can be expressed as a system of ODEs defined at each point in �̂s:⎧⎪⎨⎪⎩

∂s

∂t
= Fact

(
s, [Ca2+]i,d

)
in �̂s × (0, T ) ,

s = s0 in �̂s × {0} .

(2)

The generated active tension is then computed as a function of the contraction state as

Tact(s) = Tact,maxG(s)

with G(s) ∈ [0, 1] and Tact,max the maximum generated contraction. We refer the interested reader to [98,99] for the precise 
definition of Fact and G . We remark that Fact depends on d accounting for the positive correlation between the stretch in 
the fiber direction and the generated force, coherently with the well-known Frank-Starling mechanism [73,75,87].

2.4. Solid mechanics

We define the map Ls as

Ls(̂x, t) = x̂ + d(̂x, t) ,

where d is the displacement field of the muscle, which is obtained as the solution of the elastodynamics equation in 
Lagrangian formulation [86]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
∂2d

∂t2
− ∇ · Ps(d, s) = 0 in �̂s × (0, T ), (a)

d = 0 on �̂s,b × (0, T ), (b)

Ps(d, s)n = −(n ⊗ n)

(
K epi

⊥ d + Cepi
⊥

∂d

∂t

)
− (I − n ⊗ n)

(
K epi

‖ d + Cepi
‖

∂d

∂t

)
on �̂s,epi × (0, T ), (c)

d = d0 in �̂s × {0}, (d)

∂d

∂t
= 0 in �̂s × {0}. (e)

(3)

In the above, Ps is the first Piola-Kirchhoff stress tensor, that accounts for both active and passive mechanical properties in 
the active stress framework [4]. It is decomposed additively as

Ps(d, s) = Ppas(d) + Pact(d, s)
4



M. Bucelli, M.G. Gabriel, A. Quarteroni et al. Journal of Computational Physics 490 (2023) 112326
into the passive contribution Ppas(d) and active contribution Pact(d, s). On the epicardial boundary �̂s,epi, we impose visco-
elastic Robin boundary conditions that mimic the mechanical effect of the pericardium and the organs surrounding the 
heart [90,113]. K epi

⊥ and K epi
‖ represent elastic stiffness coefficients in the normal and tangent direction to the boundary, 

respectively, while Cepi
⊥ and Cepi

‖ are normal and tangent viscosity coefficients.
The passive stress tensor is defined in the hyperelastic framework as the derivative of a strain energy functional W :

Ppas(d) = ∂W
∂ F

,

where F = I + ∇d. We use the Guccione constitutive law for ventricular tissue [61,100,120] with a penalization term 
for near-incompressibility. The constitutive law is non-linear and features anisotropy determined by the fiber field. See 
Appendix A for more details.

The active contribution to the stress tensor is defined as [100]

Pact(d, s) = Tact(s)
F f0 ⊗ f0√

I4f
,

where I4f = F f0 · F f0 measures the stretch along the fiber direction. We remark that Pact acts only in the direction of the 
fibers.

To find the initial displacement d0, we solve a quasi-static solid mechanics problem imposing a homogeneous endocardial 
pressure p0 on �̂s,epi [100].

The condition (3c) is a generalized visco-elastic Robin boundary condition that mimics the presence of the pericardial sac, 
a fluid-filled cavity that provides mechanical support, lubrication and protection from infections to the heart [90,100,113].

Finally, we remark that the use of a homogeneous Dirichlet condition on the ventricular base is not consistent with 
physiology, and more sophisticated conditions should be applied [92,100]. However, since our focus is on the numerical 
method for the FSI problem, we use a homogeneous Dirichlet condition for simplicity.

2.5. Fluid domain displacement

We model the motion of the fluid domain in the Arbitrary Lagrangian-Eulerian (ALE) framework [41,42,68,84]. The dis-
placements involved in ventricular simulations are large but regular enough to allow the ALE method to be effectively 
employed [31,72,134,136]. We remark that, if valve leaflets were included in the model, the ALE approach would not be ro-
bust enough to account for their displacement, and alternative approaches such as the immersed boundary method would 
be better suited [81,123,127].

We introduce a fluid domain displacement field dALE : �̂f →R3 and define the mapping Lf as

Lf(̂x, t) = x̂ + dALE(̂x, t) .

The displacement dALE is obtained by arbitrarily extending to �̂f the solid displacement on the interface, d|�̂ . We do so 
by means of a harmonic lifting operator:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�dALE = 0 in �̂f × (0, T ) ,

dALE = d on �̂ × (0, T ) ,

dALE = 0 on
(
�̂f,b ∪ �̂AV ∪ �̂MV

) × (0, T ) .

(4)

We define the ALE velocity uALE as the time derivative of the ALE displacement, pushed forward to the current configu-
ration:

uALE(x, t) = ∂dALE

∂t
(L−1

f (x, t), t) .

2.6. Fluid dynamics

We model the blood as an incompressible Newtonian fluid through Navier-Stokes equations in the ALE framework [41,
68,94]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρf
∂u

∂t
+ ρf ((u − uALE) · ∇) u − ∇ ·σf(u, p) = 0 in �f × (0, T ) ,

∇ ·u = 0 in �f × (0, T ) ,

u = 0 in �f × {0} ,

u = 0 on � ,

(5)
f,b

5
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where ρf is the fluid density,

σf(u, p) = 2με(u) − pI ,

ε(u) = 1

2

(
∇u + ∇uT

)
,

and μ is the dynamic viscosity of the blood. Suitable boundary conditions are imposed on �MV and �AV to model the 
opening and closing of the mitral and aortic valve, respectively, as detailed in Section 2.8.

2.7. Fluid-structure interaction

Besides the geometric coupling expressed by (4), fluid and solid are coupled at the interface by imposing the continuity 
of velocity (kinematic coupling) and of stresses (dynamic coupling), expressing a no-slip condition and Newton’s third law, 
respectively [17]:⎧⎪⎨⎪⎩

u = ∂d

∂t
on � × (0, T ) ,

σf(u, p)n = σs(d, s)n on � × (0, T ) ,

(6)

where σs(d, s) is the Cauchy stress tensor of the structure, related to P (d, s) by

Jσs(d, s) = F Ps(d, s)T .

By taking a linear combination, the interface conditions (6) can be equivalently rewritten as follows [11,56]:⎧⎪⎨⎪⎩
αu + σf(u, p)n = α

∂d

∂t
+ σs(d, s)n on � × (0, T ) ,

σf(u, p)n = σs(d, s)n on � × (0, T ) ,

(7)

with α > 0 a suitable Robin coefficient.

2.8. Modeling of the four heartbeat phases

Cardiac valves open and close passively to prevent reverse flow, and determine four distinct phases of the heartbeat 
[73,75,87]. Focusing on the left heart, the phases are as follows:

1. isovolumetric contraction: both the mitral and aortic valves are closed, and the ventricle starts to contract. This leads to 
a rapid increase in ventricular pressure, without any variation in ventricular volume. As soon as the ventricular pressure 
becomes larger than the pressure in the aorta, the aortic valve opens;

2. ejection: blood is ejected from the ventricle into the aorta, leading to a decrease in ventricular volume. The mitral valve 
is closed, and the aortic valve is open. As soon as the flow through the aortic valve becomes null or negative, it closes;

3. isovolumetric relaxation: both valves are again closed, and the ventricle starts relaxing. Ventricular pressure reduces, 
while ventricular volume stays constant. When the ventricular pressure becomes smaller than the atrial pressure, the 
mitral valve opens;

4. filling phase: the mitral valve is open and the aortic valve is closed. Blood flows from the atrium into the ventricle, 
whose volume increases. When the flow through the mitral valve becomes null or negative, it closes.

Isovolumetric contraction and ejection form the systolic phase, during which the ventricle contracts, whereas isovolumetric 
relaxation and filling form the diastolic phase. In order to model a full heartbeat, all of these phases must be captured 
adequately. We point out that isovolumetric phases pose significant modeling challenges for standalone computational fluid 
dynamics simulations [31,118,133], since they would lead to a fully Dirichlet problem on the ventricular chamber. For this 
kind of problem, ventricular pressure would not be uniquely defined, and the prescribed boundary displacement would 
be required to be compatible with fluid incompressibility. On the contrary, FSI models such as the proposed one can deal 
with isovolumetric phases naturally, thanks to the fact that the FSI interface conditions include a stress condition on the 
fluid solid interface, and the boundary displacement is an unknown of the problem, determined in accordance with fluid 
incompressibility [22].

We use switching boundary conditions on �MV and �AV to model opening and closing of the mitral and aortic valve, 
as done in [20]. No-slip conditions u = 0 are used for closed valves, the open mitral valve is modeled through a Neumann 
boundary condition, σ(u, p)n = −pMVn, and the open aortic valve is modeled through a resistance boundary condition,

σf(u, p)n = −
⎛⎜⎝p0

AV + RAV

∫
�

u · n

⎞⎟⎠ n .
AV

6
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The choice of a resistance condition on the aortic valve allows to account for the typical evolution in time of the aortic 
pressure [80], at the same time preventing spurious reflections of pressure waves [70,97,124]. Conversely, atrial pressure 
can be approximated as constant in time.

Valves are instantaneously switched from closed to open when the pressure upstream becomes larger than that down-
stream. Conversely, they are switched from open to close when the flowrate through them becomes null or reversed (i.e. 
when there is outflow through the mitral orifice or inflow through the aortic orifice). Thus, the opening and closure of 
valves is regulated by the numerical simulation and not prescribed a priori.

Notice that the mitral valve orifice �MV and the aortic one �AV present an overlapping region (see Fig. 1a), since due 
to the movement of the heart the effective open orifice regions share a common part. On such region of intersection, we 
impose a no-slip condition when both valves are closed. When instead either of the two valves is open, we impose the 
corresponding open-valve condition on �AV ∩ �MV. The opening and closing conditions of the valves prevent them from 
being both open at the same time.

3. Numerical discretization

Due to the large size of the problem, as well as its multiphysics and multiscale nature, the efficient numerical solution 
of the fully coupled electrophysiology-fluid-structure interaction (EFSI) system is a challenging task. One possible approach 
is based on a fully monolithic solver [53], where the coupled problem is discretized at each time step into a single large 
non-linear system. While very robust and stable, this approach requires the development of a dedicated solver and the 
use of suitable non-linear and linear solvers and preconditioners. Instead, one can choose to solve separately the different 
subproblems. This can be done maintaining a strong coupling between the problems, by means of subiterations [24,109], 
resulting in an implicit partitioned approach. However, iterative schemes of this kind might suffer from convergence issues, 
and can quickly become more computationally expensive than their monolithic counterpart [20].

In this context, we propose a fully loosely coupled scheme in which all problems are solved only once per time step, and 
coupling terms are treated in an explicit fashion. This segregated approach, while possibly requiring the time step parameter 
to be sufficiently fine to guarantee stability, has the potential of being very computationally efficient. Moreover, the proposed 
method is inherently modular, and allows to flexibly choose spatial and temporal discretizations for the different equations.

While this approach is very common for electromechanics simulations [9,36,51,92,100], the FSI coupling is usually treated 
in a strongly coupled way [65,85,109,129,132]. Indeed, when the fluid and solid have comparable densities, as in biological 
applications, the so-called added-mass effect [29] may lead to stability issues when a loosely coupled scheme is considered. 
Nonetheless, some loosely coupled FSI schemes have been investigated in the cardiovascular modeling literature [15,23,
25–27,49,56,57,78,110,111]. In particular, in [56,57] the authors investigated the stability properties of loosely coupled fluid 
structure interaction schemes based on Robin interface conditions, showing that for suitable choices of the Robin coefficients 
one may obtain a stable method. For the coupling of fluid and structure in our EFSI problem, we rely on a particular case 
of the Robin-based schemes, the loosely coupled Robin-Neumann (RN) scheme [25,49,56,57].

We introduce a partition of the time domain (0, T ) into equally spaced sub-intervals (tn, tn+1), and denote by �t =
tn+1 − tn the width of each sub-interval. We denote with a superscript n over any solution variable the time-discrete ap-
proximation of that solution variable at time tn (e.g. un ≈ u(tn)). We use finite differences for the time discretization of 
the subproblems. In the remainder of this section, we detail the proposed loosely coupled EFSI time discretization scheme 
(denoted with the abbreviation EFS1), as well as an explicit-implicit (E1FS∞) scheme in which the fluid-solid coupling is 
treated implicitly and monolithically [20,64,71,101,130,132], still maintaining explicit the coupling with the electrophysiol-
ogy problem. We also present a scheme based on performing 2 fluid-structure subiterations (E1FS2). The E1FS∞ scheme will 
be used as a reference for comparing numerical results. The considered schemes and the corresponding abbreviations are 
summarized in Table 1.

We remark that the new schemes discussed below are based on a loosely coupling (one or two iterations for time step) 
among electrophysiology, fluid and structure solvers. The same overall loosely-coupled structure can be seamlessly adapted 
to alternative methods to solve FSI, both strongly and loosely coupled, depending on the needs of the application under 
consideration or to improve the order of accuracy. Similarly, alternative approaches can be considered for the solution of 
the electrophysiology subproblem [82,112].

3.1. Fully loosely coupled EFSI scheme (EFS1)

We detail in what follows the steps composing at each time step the fully loosely coupled FSI scheme (EFS1). Given the 
solution up to time step tn , in order to compute the solution at time tn+1:

1. Solve the electrophysiology model (1) with the following implicit-explicit (IMEX) scheme [100]:
7
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Table 1
Summary of the abbreviations used to indicate the considered EFSI schemes. All schemes considered 
treat electrophysiology, force generation and fluid domain displacement in an explicit way.

Abbreviation Electromechanical coupling Geometric coupling FSI coupling

EFS1 explicit explicit explicit RN
E1FS∞ explicit explicit implicit
E1FS2 explicit explicit 2 RN iterations

(a) Solve the non-linear ionic model equations:⎧⎪⎪⎨⎪⎪⎩
wn+1 − wn

�t
= Fw

ion(vn,wn+1) in �̂s ,

zn+1 − zn

�t
= Fz

ion(vn,wn, zn) in �̂s ;
(8)

We remark that an implicit discretization is used for gating variables w, whereas an explicit one is used for ionic 
concentrations z;

(b) Solve the monodomain equation to compute vn+1:⎧⎪⎨⎪⎩
vn+1 − vn

�t
− ∇ · (�m∇vn+1) + I ion(vn,wn+1, zn+1) = In+1

app in �̂s ,

�m∇vn+1 · n = 0 on ∂�̂s ;
(9)

2. Solve the time discretization of the force generation model (2):

sn+1 − sn

�t
= Fact(sn, [Ca2+]n+1

i ,dn) in �̂s ; (10)

3. Update the fluid domain solving (4):⎧⎪⎪⎨⎪⎪⎩
−�dn+1

ALE = 0 in �̂f ,

dn+1
ALE = dn on �̂ ,

dn+1
ALE = 0 on �̂f,b ;

(11)

then set un+1
ALE = dn+1

ALE −dn
ALE

�t and compute the fluid domain at time tn+1 as �n+1
f =Lf

(
�̂f, tn+1

)
;

4. Solve the time discretization of Navier-Stokes equations (5) to compute un+1 and pn+1, with Robin boundary conditions 
on the fluid-solid interface:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
un+1 − un

�t
+ ρf

((
un − un+1

ALE

)
· ∇

)
un+1 − ∇ ·σf(un+1, pn+1) = 0 in �n+1

f ,

∇ ·un+1 = 0 in �n+1
f ,

un+1 = 0 on �n+1
f,b ,

αun+1 + σf(un+1, pn+1)nn+1 = α
dn − dn−1

�t
+ σs(dn, sn+1)nn on �n+1 ,

(12)

endowed with suitable boundary conditions on �n+1
MV and �n+1

AV as described in Section 2.6. We remark that interface 
conditions are computed using the solid displacement from previous time step, and that the advection term is treated 
in a semi-implicit way [94], so that the resulting problem is linear;

5. Solve the time discretization of the elastodynamics equation (3) to compute dn+1, with Neumann boundary conditions 
on the fluid-solid interface:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
dn+1 − 2dn + dn−1

�t2
− ∇ · Ps(dn+1, sn+1) = 0 in �̂s ,

dn+1 = 0 on �̂s,b ,

Ps(dn+1, sn+1)n = −(n ⊗ n)

(
K epi

⊥ dn+1 + Cepi
⊥

dn+1 − dn

�t

)
−(I − n ⊗ n)

(
K epi

‖ dn+1 + Cepi
‖

dn+1 − dn

�t

)
on �̂

epi
s ,

σ (dn+1, sn+1)n = σ (un+1, pn+1)n on �n+1 .

(13)
s f

8
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We point out that this problem is non-linear, due to the non-linearity of the constitutive law.

3.2. Explicit-implicit EFSI scheme (E1FS∞)

The explicit-implicit (E1FS∞) scheme is based on treating explicitly the coupling of electrophysiology, force generation 
and mechanics, as well as the geometric FSI coupling, while treating the kinematic and dynamic FSI coupling in an implicit 
way. Given the solution up to time step tn , in order to compute the solution at tn+1, we repeat steps 1–3 as in the EFS1
scheme (Section 3.1), replacing steps 4 and 5 with

4. Solve the time discretization of the FSI problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
un+1 − un

�t
+ ρf

((
un − un+1

ALE

)
· ∇

)
un+1 − ∇ ·σf

(
un+1, pn+1) = 0 in �n+1

f ,

∇ ·un+1 = 0 in �n+1
f ,

un+1 = 0 on �n+1
f,b ,

un+1 = dn+1 − dn

�t
on �n+1 ,

σs
(
dn+1, sn+1)n = σf

(
un+1, pn+1) n on �n+1 ,

ρs
dn+1 − 2dn + dn−1

�t2
− ∇ · Ps(dn+1, sn+1) = 0 in �̂s ,

dn+1 = 0 on �̂s,b ,

Ps
(
dn+1, sn+1)n = −(n ⊗ n)

(
K epi

⊥ dn+1 + Cepi
⊥

dn+1 − dn

�t

)
−(I − n ⊗ n)

(
K epi

‖ dn+1 + Cepi
‖

dn+1 − dn

�t

)
on �̂

epi
s ,

(14)

endowed with suitable boundary conditions on �n+1
AV and �n+1

MV . The time-discrete problem (14) is non-linear due to the 
non-linearity of the solid constitutive law.

We point out that both kinematic and dynamics FSI interface conditions are now treated implicitly. We will refer to this 
scheme as E1FS∞ for short.

3.3. Explicit-hybrid EFSI scheme (E1FS2)

A hybrid approach between the EFS1 and the E1FS∞ schemes is obtained by introducing RN [11,12,52] subiterations with 
parameter α at each time step between fluid and structure problems, and performing 2 of such iterations. The steps 1–3 
are the same as in the EFS1 scheme (Section 3.1). Then, in place of the steps 4 and 5,

4. Setting un+1
0 = un , pn+1

0 = pn , dn+1
0 = dn , iterate for k = 0, 1:

(a) Solve the time discretization of the Navier-Stokes equations to compute un+1
(k+1)

and pn+1
(k+1)

by using structural dis-
placement at previous iteration to prescribe Robin boundary conditions on the fluid-solid interface:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

un+1
(k+1)

− un

�t
+ ρf

((
un − un+1

ALE

)
· ∇

)
un+1

(k+1)
− ∇ ·σf

(
un+1

(k+1)
, pn+1

(k+1)

)
= 0 in �n+1

f ,

∇ ·un+1
(k+1)

= 0 in �n+1
f ,

un+1
(k+1)

= 0 on �n+1
f,b ,

αun+1
(k+1)

+ σf

(
un+1

(k+1)
, pn+1

(k+1)

)
nn+1 = α

dn+1
(k)

− dn−1

�t
+ σs

(
dn+1

(k)
, sn+1

)
nn on �n+1 ;

(b) Solve the time discretization of the elastodynamics equations to compute dn+1
(k+1)

, using newly computed fluid veloc-
ity and pressure to provide Neumann conditions on the fluid-solid interface:
9
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
dn+1

(k+1)
− 2dn + dn−1

�t2
− ∇ · Ps

(
dn+1

(k+1)
, sn+1

)
= 0 in �̂s ,

dn+1
(k+1)

= 0 on �̂s,b ,

Ps

(
dn+1

(k+1)
, sn+1

)
n = −(n ⊗ n)

(
K epi

⊥ dn+1
(k+1)

+ Cepi
⊥

dn+1
(k+1)

− dn

�t

)

−(I − n ⊗ n)

(
K epi

‖ dn+1
(k+1)

+ Cepi
‖

dn+1
(k+1)

− dn

�t

)
on �̂

epi
s ,

σs

(
dn+1

(k+1)
, sn+1

)
n = σf

(
un+1

(k+1)
, pn+1

(k+1)

)
n on �n+1 .

Then, set un+1 = un+1
(2)

, pn+1 = pn+1
(2)

and dn+1 = dn+1
(2)

.

We refer to this scheme as explicit-hybrid, due to the fact that the iterative algorithm is arbitrarily truncated at 2 itera-
tions, instead of checking for convergence, resulting in a hybrid approach between the explicit and implicit discretizations.

3.4. Space discretization, non-linear and linear solvers

The discretized-in-time problems introduced above are discretized using finite elements [67,94]. Depending on the test 
case and on the subproblem, we consider tetrahedral or hexahedral elements, and either linear or quadratic finite elements. 
Independently of the scheme presented in the above sections, fluid and solid meshes are conforming at the interface �, and 
we stabilize the discretized Navier-Stokes equations using the SUPG-PSPG stabilization [117]. Moreover, the ionic model (8)
and force generation model (10) are solved independently at each vertex of the computational mesh. For the ionic model, in 
particular, we adopt the ionic current interpolation (ICI) approach [76,89]. The linear systems arising from the discretization 
of the monodomain equation (9) and of the fluid domain displacement problem (11) are solved by means of the conjugate 
gradient (CG) method [94,105], with an algebraic multigrid (AMG) preconditioner [131].

Specifically to the EFS1 and E1FS2 schemes, the non-linear system arising from the solid mechanics discretization (13) is 
first linearized by means of Newton’s method, and the resulting linear system is solved with GMRES [105], preconditioned 
using AMG. The block linear system arising from the discretization of Navier-Stokes equations (12) is solved with GMRES 
with the SIMPLE preconditioner [38], which in turn falls back onto AMG for the approximation of velocity and pressure 
diagonal blocks.

Instead, referring to the E1FS∞ scheme, for the solution of the FSI problem (14), we use a monolithic solver as presented 
in [20], in which both fluid and solid equations are assembled in a single non-linear system. The latter is linearized with 
Newton’s method and then solved with GMRES, using a block-lower triangular preconditioner that falls back onto SIMPLE 
and AMG for the fluid and structure submatrices.

4. Numerical results

Numerical methods were implemented in lifex [1–3,79], a C++ high-performance computing library tailored at cardiac 
applications and based on the finite element core deal.II [6,7,35]. In the following sections we report the results of 
numerical simulations using all the schemes presented in Section 3, considering an idealized left ventricle described as a 
prolate ellipsoid (Fig. 1a) and a realistic left ventricle model [137]. We report in Table 2 the discretization parameters of the 
meshes under consideration. We compare the solutions obtained with the different schemes as well as their computational 
efficiency.

The values used for model parameters are reported in Appendix B. Unless otherwise specified, simulations were run in 
parallel on 20 cores with CPUs Xeon E5-2640v4@2.4 GHz, using the computational resources available at MOX, Mathematics 
Department, Politecnico di Milano.

4.1. Solution indicators

One of the aims of the comparison among the schemes is to assess the loss of mass they feature, in particular during 
isovolumetric phases. To quantify this effect, we introduce two indices, the isovolumetric loss indices (ILI), representing the 
relative variation of blood volume during isovolumetric phases:

ILIC =
∣∣∣∣ V C,i − V C,f

max{V C,i, V C,f}
∣∣∣∣ ILIR =

∣∣∣∣ V R,i − V R,f

max{V R,i, V R,f}
∣∣∣∣ ,

wherein V C,i and V C,f are the volumes at the beginning and end of isovolumetric contraction, and V R,i and V R,f are the 
volumes at the beginning and end of isovolumetric relaxation. Optimal values for these two indices are ILIC = ILIR = 0, while 
positive values indicate that blood mass is not exactly preserved during the isovolumetric phases.
10
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Table 2
Type of elements (hexahedra or tetrahedra), number of elements, number of nodes and average 
element diameter h for the meshes considered on the prolate ellipsoid geometry (M1, MEP

1 , M2

and M3) and for the realistic ventricle mesh (MR ), for both the fluid and the structure domain.

Mesh Type Fluid Structure

# elem. # nodes h [mm] # elem. # nodes h [mm]

M1 hex 4684 5927 6.1 6612 8789 5.2
MEP

1 hex - - - 52 896 60 459 2.6
M2 hex 13 780 16 669 4.0 22 396 28 117 3.3
M3 hex 32 628 38 429 3.0 51 364 62 589 2.5

MR tet 140 644 157 369 1.8 73 860 89 314 2.2

Fig. 2. Test A. Transmembrane potential v (left) and intracellular calcium concentration [Ca2+]i (right) at several instants during the simulation, computed 
using the EFS1 with �t = 0.2 ms.

We also take into account the ejection fraction EF and peak systolic pressure pmax, defined as

EF = EDV − ESV

EDV
pmax = max

t∈(0,T )
p̄(t) ,

where p̄(t) is the ventricular average pressure at time t , and EDV and ESV are the end-diastolic and end-systolic volumes, 
i.e.

EDV = max
t∈(0,T )

V (t) ESV = min
t∈(0,T )

V (t) ,

where V (t) is the ventricular volume. Both EF and pmax have significant clinical relevance [73,75,87].

4.2. Test A: on the stability of the loosely coupled scheme

The explicit treatment of FSI coupling with RN interface conditions was shown to be conditionally stable [57] in idealized 
settings. More precisely, there exists δ > 0, possibly depending on the domain size, the material properties, the mesh size 
11
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Fig. 3. Test A. Fluid velocity magnitude |u| (left) and pressure p (right) at three time instants computed with the E1FS∞ and EFS1 schemes. The velocity 
is overlaid with a surface line integral convolution rendering of the velocity field [28]. From top to bottom, the snapshots correspond are taken during the 
isovolumetric contraction, ejection, and filling phases, respectively.

h and α, such that the scheme is stable if 0 < �t < δ. Precisely, as shown in [57], δ satisfies the conditions δ < C1h and 
δ < C2α

−1, with C1 and C2 constants depending on the domain and material properties of the problem.
In order to verify numerically whether the regime and the discretization settings typical of cardiac modeling fall within 

the stability range, we perform tests on the idealized left ventricular geometry depicted in Fig. 1a over a whole heartbeat, 
including all four phases. We consider the mesh M1 (see Table 2), composed of hexahedral elements. The electrophysiology 
problem (9) is solved on a finer mesh MEP

1 , nested into M1 and with half its mesh size, to better capture the sharp 
propagating activation front [100,106], and displacement and calcium are interpolated between the two meshes. For all 
subproblems, we consider trilinear finite elements. We set �t = 0.2 ms, and choose α = 5000 kg/(m2 · s).

A guideline for the choice of α in relation to the problem parameters (both physical and numerical) can be found in 
[55–57], wherein the optimized Schwarz method is applied in a geometrically idealized setting with a linear constitutive 
law. Since the material law for the present tests is non-linear and anisotropic, the results obtained in [55–57] only served 
as an initial indication, and we manually fine-tuned the value of α (see also Section 4.3.1 for a discussion of the effect of α
on the accuracy). A more formal investigation of the models used in this work will be the subject of future works.

We report in Figs. 2 and 3 the solution at several time instants, computed using the EFS1 scheme. In the latter figure, the 
solution obtained with the E1FS∞ scheme is also reported. The corresponding ventricular volume and pressure over time 
can be found in Fig. 4a. We can appreciate how in this setting the EFS1 scheme, despite being explicit, yields results that 
are stable in time and in qualitative agreement with those obtained with the E1FS∞ scheme.

In agreement with [56,57], we found the stability of the EFS1 scheme to depend on the choice of α. Indeed, as α → ∞, 
interface conditions (7) tend to Dirichlet-Neumann (DN) interface conditions (6), which are known to lead to unstable 
loosely coupled schemes in the hemodynamic regime [29]. As a consequence, we can expect the EFS1 method to become 
unstable for values of α not small enough. Our numerical experiments indicate that, in this setting, the EFS1 scheme is 
stable for all α < 6750 kg/(m2 · s), in qualitative accordance with [56].
12



M. Bucelli, M.G. Gabriel, A. Quarteroni et al. Journal of Computational Physics 490 (2023) 112326
Fig. 4. (a) Test B1. Time evolution of ventricular volume (left) and average pressure (right) with the E1FS∞ and EFS1 schemes, with different values of the 
Robin coefficient α. Gray areas identify the isovolumetric phases. (b) Test B3. Ventricular volume (left) and average pressure (right) for the E1FS∞ , E1FS2

and EFS1 schemes. For the last two schemes we use α = 5000 kg/(m2 · s).

Fig. 5. (a) Test B1. Isovolumetric loss indices, ejection fraction, and peak systolic pressure as a function of the Robin coefficient α. Where present, the dashed 
lines represent the values obtained with the explicit-implicit scheme. (b) Test B2. Isovolumetric loss indices, ejection fraction, and peak systolic pressure as 
a function of �t , for the E1FS∞ (black) and EFS1 (red) schemes, with α = 5000 kg/(m2 · s).

4.3. Test B: on the accuracy of the loosely coupled scheme

In the following sections, we consider the same setting as in Test A (Section 4.2), and assess the accuracy of the EFS1
scheme, depending on the choice of the Robin coefficient α and of the time discretization step �t .

4.3.1. Test B1: on the influence of the Robin coefficient α on the accuracy
We start by comparing the results of the EFS1 scheme against those of the E1FS∞ scheme, varying the Robin coefficient 

α in the range of stability experienced in Test A (i.e. α < 6750 kg/(m2 · s)). The choice of the parameter α influences 
13
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Fig. 6. Norm of the difference between the solutions (from left to right, displacement, velocity and pressure) of the EFS1 and E1FS∞ schemes, with varying 
�t . The dashed black lines are parallel to f (�t) = �t , and are used as a reference for the convergence order. The differences are computed at the final 
simulation time T = 0.5 s.

Fig. 7. Isovolumetric loss indices for the E1FS∞ , EFS1 and E1FS2 methods, varying the mesh size h. All the tests were run using α = 5000 kg/(m2 · s) and 
�t = 0.2 ms.

the accuracy of the method. Indeed, as α → 0, interface conditions (7) reduce to two Neumann-type conditions, and no 
kinematic coupling is present anymore, hindering the accuracy of the scheme.

In Fig. 4a we report the time evolution of ventricular volumes and pressures for the E1FS∞ scheme and for different 
values of α in the EFS1 scheme. From these results, we can observe a general qualitative agreement between EFS1 and 
E1FS∞ solutions. However, unlike the latter, the EFS1 solutions feature a loss of mass and, consequently, volume variations 
during the isovolumetric phase. This leads to a slower ejection and filling, as well as a lower peak pressure. This behavior 
increases for decreasing values of α.

Similar conclusions can be drawn by looking at the plots in Fig. 5a, where the value of the considered indicators obtained 
by the EFS1 scheme has been plotted against the Robin coefficient α. Although the mismatch reduces as α increases, even 
with the highest value of α the two results present differences of 6.3 % in ejection fraction and 4.7 % in peak systolic 
pressure.

4.3.2. Test B2: on the influence of �t and the mesh size on the accuracy
We expect the mismatch between the E1FS∞ and EFS1 schemes to reduce as �t is reduced. To this end, considering 

α = 5000 kg/(m2 · s), we perform several simulations reducing the time step of both the schemes. The resulting indicators 
are reported in Fig. 5b. As expected, we observe that as �t → 0 there is increasing agreement between the solutions 
computed by the two schemes in terms of EF and pmax. For both schemes the isovolumetric loss indices ILIC and ILIR tend 
to zero as �t → 0, with similar rates. However, the ones obtained with the E1FS∞ scheme are in any case smaller than 
those of the EFS1 one.

We report in Fig. 6 the norm of the difference between the solutions computed with the EFS1 and E1FS∞ schemes, with 
varying �t , evaluated at the final time T = 0.5 s. We observe that the mismatch tends to zero as �t → 0, with order 1. 
Therefore, we conclude that the segregation of the fluid and solid solver introduces a splitting error which is at most of 
order 1, the same order of the time discretization used for the individual subproblems. We remark that higher-order time 
discretization schemes may require to enhance the EFS1 scheme to preserve the time convergence order.

Furthermore, we consider three differently refined meshes (see Table 2) and assess the corresponding accuracy by 
comparing the ILI indicators of the E1FS∞ and EFS1 schemes as the mesh size h varies. For all the tests, we set 
α = 5000 kg/(m2 · s) and �t = 0.2 ms. The results are reported in Fig. 7: we observe only minor variations with h in the ILI 
indices. Most importantly, the relative ordering of the ILI indices is independent of h, indicating that our considerations are 
valid independently of the mesh size.

The results presented in this section also highlight how the chosen value of α remains effective under significant varia-
tions of both �t and h.
14
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Table 3
Test B3. Isovolumetric loss indices, ejection fraction and peak systolic pressure for three simulations, 
using the E1FS∞ , EFS1 and E1FS2 schemes. For the last two schemes, we set α = 5000 kg/(m2 · s).

Scheme ILIC [%] ILIR [%] EF [%] pmax [mmHg]

E1FS∞ 0.02 0.00 57.0 121.2
EFS1 3.48 3.66 53.4 115.4
E1FS2 0.96 1.29 55.9 119.5

Table 4
Test B4. Ejection fraction and peak systolic pressure in the 
ejection phase test, for the E1FS∞ and EFS1 schemes. For 
comparison, we report the same quantities computed in the 
full heartbeat test (Test A) with the EFS1 scheme. In both 
cases, we set α = 5000 kg/(m2 · s).

Scheme EF [%] pmax [mmHg]

E1FS∞ 57.0 121.2
EFS1 54.4 119.6
EFS1 (full heartbeat) 53.4 115.4

Fig. 8. Test B4. Ventricular volume (a) and average pressure (b) in the ejection phase test, computed with the E1FS∞ and EFS1 schemes. For comparison, 
we report in blue the volume and pressure corresponding to the full heartbeat test (Test B1) with the EFS1 scheme. For loosely coupled schemes we set 
α = 5000 kg/(m2 · s).

4.3.3. Test B3: on the influence of multiple Robin-Neumann subiterations on the accuracy
We run a simulation using the scheme E1FS2, with α = 5000 kg/(m2 · s) and �t = 0.2 ms, and compare the results 

against the corresponding ones obtained with the E1FS∞ and EFS1 schemes in terms of the evolutions of ventricular volume 
and pressure. The results obtained are reported in Fig. 4b, while in Table 3 we report the values of the ILI, EF and pmax
indicators for the three schemes. We observe that doing two RN iterations can significantly improve the agreement with the 
explicit-implicit scheme. In particular, the isovolumetric phases are captured more accurately, as indicated by the ILI indices.

Furthermore, in Fig. 7, we compare the ILI indices for the E1FS2 scheme with those of the E1FS∞ and EFS1 schemes with 
varying mesh size h, showing how the previous considerations hold independently of the mesh refinement.

4.3.4. Test B4: on the accuracy during the ejection phase
Previous sections show that the EFS1 scheme introduces an error in capturing volume conservation during isovolumetric 

phases. This has an impact on the evolution of pressure during those phases, that in turn influences the solution during 
ejection and filling.

To understand to what extent the mismatch between E1FS∞ and EFS1 schemes is determined by isovolumetric phases, 
we simulate only the ejection phase, by providing as initial condition the solution of the E1FS∞ scheme from test A (Sec-
tion 4.2) at time t0 = 88 ms (corresponding to the end of isovolumetric contraction). We compare EF and pmax obtained 
with the E1FS∞ and EFS1 schemes. Results for these indicators are reported in Table 4. We observe that, while both ejection 
fraction and peak pressure are smaller in the EFS1 case than they are in the E1FS∞ case, the reduction is less significant 
than what is observed in a full heartbeat explicit simulation. Similar conclusions are drawn by comparing the pressure and 
volume over time, as reported in Fig. 8: in the ejection-only simulation, there is better agreement between the E1FS∞ and 
the EFS1 schemes.

Overall, this result indicates that the mismatch between the two schemes could be particularly relevant during the isovol-
umetric phases. Therefore, it can be of interest to explore adaptive methods that adjust e.g. the number of RN subiterations 
depending on the simulated heartbeat phase.
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Fig. 9. Test C. Total wall time (a), wall time spent to assemble the fluid and structure systems (b) and to solve them (c) against average mesh size h of the 
three considered meshes (Table 2). E1FS∞ , EFS1 and E1FS2 schemes. For the last two schemes, we set α = 5000 kg/(m2 · s).

4.4. Test C: computational efficiency

The chief advantage of a loosely coupled scheme is its computational efficiency if compared to a method where the 
couplings are treated implicitly. To verify this, we perform numerical simulations of the E1FS∞ , EFS1 and E1FS2 schemes 
with three differently refined meshes, detailed in Table 2. We compare the total wall time, the portion of wall time devoted 
to the assembly of fluid and structure systems, as well as the wall time spent in the solution of the fluid, structure or 
FSI systems. We do not consider in detail computational times associated to electrophysiology, force generation and fluid 
domain displacement, since the considered schemes are identical in those steps. These simulations ran in parallel using 44
cores with Intel Xeon Platinum 8160@2.1 GHz processors.

Results are reported in Fig. 9. From these results, we can appreciate how the EFS1 scheme leads to a very significant 
reduction in computational time with respect to the E1FS∞ one. This reduction becomes more significant as the mesh is 
refined: the total wall time for the simulation on the finest mesh M3 using the EFS1 scheme is approximately 45 % less 
than the corresponding simulation using the E1FS∞ scheme. In particular, the cost associated to both the assembly and the 
solution of the linear systems for the FSI problem is much smaller in the EFS1 scheme than it is in the E1FS∞ . Overall, the 
EFS1 scheme allows for a significant saving in computational time with respect to the E1FS∞ one.

Conversely, the E1FS2 requires a computational time similar to that of the E1FS∞ scheme. While the two require almost 
identical computational times in the assembly phase, the E1FS2 scheme spends less time than the E1FS∞ one during the 
linear solver phase, consistently with the fact that the former entails solving smaller linear systems than the latter. This 
advantage might become more significant when increasing the number of parallel cores, due to the generally less-than-
ideal scalability properties of linear solvers and preconditioners. A more in-depth performance analysis of the E1FS2 scheme 
will be the subject of future studies.

4.5. Test D: the case of a realistic human ventricle

We present a test case in a more realistic setting to showcase the effectiveness of the proposed scheme. We consider 
the left ventricle from the heart model provided by Zygote Media Group [137], represented in Fig. 10. We processed the 
geometry using the meshing algorithms presented in [47] using the software VMTK [128].

The model includes ventricular inflow and outflow tracts. Those portions are not formed of muscular tissue, as the bulk 
of the ventricle is [73]. To account for this, we introduce two subdomains into �̂s, denoted by �̂LV and �̂ring (see Fig. 10c), 
representing the left ventricle and the valvular rings, respectively, and employ a neo-Hookean constitutive law in �̂ring

(while keeping the Guccione constitutive law in �̂LV). We also set Tact,max = 0 in �̂ring.
For the discretization, we use tetrahedral elements for fluid and solid domains. The mechanics and fluid dynamics equa-

tions are discretized with linear finite elements. To deal with the higher accuracy requirements of electrophysiology, we use 
quadratic finite elements to discretize Equation (9). This is an alternative approach to the one used in previous sections, 
based on nested mesh refinement. We set �t = 0.2 ms. The test ran on 48 cores from the CINECA GALILEO100 supercom-
puter.1

We report in Fig. 11 some snapshots of the electrophysiology solution for this test case, while in Fig. 12 we report a 
comparison of domain deformation and fluid dynamics variables with the E1FS∞ solution. From these results we observe 
the stability of the proposed loosely coupled scheme and the qualitative agreement of the solution with the E1FS∞ one.

In Fig. 13 we show the ventricular volume and pressure over time for the two schemes, whereas in Table 5 we report 
the computed indicators. We observe again that the EFS1 scheme introduces an error in capturing the isovolumetric phases, 

1 Technical specifications: https://wiki .u -gov.it /confluence /display /SCAIUS /UG3 .3 %3A +GALILEO100 +UserGuide.
M. Bucelli, M.G. Gabriel, A. Quarteroni et al. Journal of Computational Physics 490 (2023) 112326
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Fig. 10. Test D. Computational domain �f (a) and �s (b, c) of the realistic ventricle. Colors and labels denote the different portions of the boundary in (a) 
and (b), and denote the two subdomains in (c).

Fig. 11. Test D. Transmembrane potential v (left) and intracellular calcium concentration [Ca2+]i (right) at several instants during the simulation of the 
realistic ventricle, computed using the EFS1 scheme.

Table 5
Test D. Isovolumetric loss indicators, ejection fraction and peak 
systolic pressure for the realistic test case, using the E1FS∞ and 
EFS1 schemes, with α = 5000 kg/(m2 · s).

Scheme ILIC [%] ILIR [%] EF [%] pmax [mmHg]

E1FS∞ 0.04 0.00 55.8 148.9
EFS1 2.76 3.60 55.5 136.2
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Fig. 12. Test D. Fluid velocity magnitude |u| (left) and pressure p (right) at three instants during the simulation of the realistic ventricle, computed using 
the E1FS∞ and EFS1 schemes. The velocity magnitude is overlaid with a surface line integral convolution rendering of the flow field [28].

and this leads to a mismatch with the E1FS∞ scheme in terms of peak systolic pressure, while the ejection fraction is well 
captured.

5. Conclusions

We propose a loosely coupled scheme (EFS1) in the context of cardiac simulations, for the coupling of electrophysiology, 
active and passive tissue mechanics, and hemodynamics, where the subproblems are solved only once per time step and 
a Robin interface condition is considered for the fluid subproblem. We compare its performance with two other schemes 
where electrophysiology is treated explicitly, one with strong FSI coupling (E1FS∞) and one where 2 FSI iterations are 
performed (E1FS2). The main findings of our work (valid for both an idealized and a realistic geometry) are:

1. the EFS1 scheme is stable in the physiological regime, provided that the Robin interface parameter α is small enough;
2. EFS1 introduces a further error, besides the time discretization, due to the lack of synchrony between the FSI interface 

conditions. This error is mostly relevant during the isovolumetric phases, although it vanishes for decreasing values of 
the time step �t;

3. EFS1 is about 45 % faster than E1FS∞ , with the computational saving becoming more relevant as the mesh is refined.
18
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Fig. 13. Test D. Ventricular volume (a) and average pressure (b) in the realistic test for the E1FS∞ and EFS1 schemes, with α = 5000 kg/(m2 · s).

In conclusion, we propose the EFS1 scheme as an effective algorithm for the solution of the cardiac EFSI problem, in partic-
ular when one is focused on the ejection or filling phases or when a modular approach (i.e. the use of separate codes for 
the subproblems) is needed. In the latter case, we also propose the use of the E1FS2 scheme as a competitive approach for 
the isovolumetric phases, i.e. when one is interested in the whole heartbeat. A more in-depth analysis of the E1FS2 scheme, 
and the development of a scheme that adaptively switches between the EFS1 and E1FS2 schemes during the heartbeat, are 
the subject of ongoing studies. While we have shown that the proposed loosely coupled scheme can achieve stability and 
efficiency in both idealized and realistic settings, further investigations are in order to determine optimal values for the 
Robin coefficient α when realistic geometries and constitutive laws are considered.

The computational framework for EFSI simulations discussed in this paper provides an efficient, flexible and modular 
platform for combining methods for the solution of each of the subproblems involved. The modularity, in particular, was 
demonstrated by considering different approaches to the solution of the FSI subproblem. Future studies will take into con-
sideration alternative loosely-coupled strategies for FSI, aiming at a higher order of accuracy and possibly improved stability 
properties.
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Appendix A. Solid mechanics constitutive laws

Given the solid displacement d and the associated deformation gradient F = I +∇d, the strain energy function associated 
to the Guccione constitutive law is computed as [61,120]

WG(d) = cG

2
(exp(Q ) − 1) + κG

2
( J − 1) log( J ) ,

where

Q =
∑

i,j∈{f,s,n}
ai,j (Ej · i)2 ,

E = 1

2

(
F T F − I

)
,

J = det F .

In the above equations, cG, κG and ai,j are positive parameters.
We consider for Test C (Section 4.5) a neo-Hookean material, whose strain energy function is defined as [86]

WNH(d) = μNH

2

(
J− 2

3 F : F − 3
)

+ κNH

4

(
( J − 1)2 + log2( J )

)
.

Coefficients μNH and κNH are positive parameters.

Appendix B. Model parameters

Table B.6 reports value of physical parameters used in our model for the prolate ellipsoid test cases (Tests A and B). The 
parameters used for the realistic ventricle (Test C) are reported in Table B.7. For brevity, we only report those parameters 
whose values are different from the corresponding ones in Tests A and B. For all the test cases, the electrical conductivities 
were tuned so that, with the mesh resolution considered, the conduction velocities are equal to 0.6 m/s, 0.4 m/s and 0.2 m/s
along fibers, sheets and cross-fibers, respectively [10,34,45,91], so that the activation times are consistent with physiology.

Table B.6
Model parameters used in the prolate ellipsoid test cases (Tests A, B and C).

Parameter Value Unit

Electroph.
σ f

m 1.68 m2/s
σ s

m 0.769 m2/s
σ n

m 0.248 m2/s

Force gen. Tact,max 500 kPa

Mechanics

ρs 1 g/cm3

K epi
⊥ 10 kPa/m

K epi
‖ 20 kPa/m

Cepi
⊥ 20 kPa·s/m

Cepi
‖ 2 kPa·s/m

Guccione

cG 0.88 kPa
aff 8
ass 6
ann 3
afs 12
afn 3
asn 3
κG 50 kPa

Fluid

ρf 1.06 g/cm3

μ 3.5 Pa·s
pMV 1333 Pa
p0

AV 9000 Pa
RAV 1.3 kg/(s·m4)
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Table B.7
Test D. Model parameters used in the realistic ventricle test case. 
For brevity, we only report parameters whose values are different 
from the corresponding ones in Tests A, B and C. The latter can be 
found in Table B.6.

Parameter Value Unit

Electroph.
σ f

m 2 m2/s
σ s

m 1.05 m2/s
σ n

m 0.55 m2/s

Mechanics

K epi
⊥ 200 kPa/m

K epi
‖ 20 kPa/m

Cepi
⊥ 20 kPa·s/m

Cepi
‖ 2 kPa·s/m

Neo-Hooke
μNH 5000 kPa
κNH 5000 kPa

Fluid RAV 1 kg/(s·m4)

References

[1] P.C. Africa, lifex: a flexible, high performance library for the numerical solution of complex finite element problems, SoftwareX 20 (2022) 101252.
[2] P.C. Africa, I. Fumagalli, M. Bucelli, A. Zingaro, M. Fedele, L. Dede, A. Quarteroni, lifex-cfd: an open-source computational fluid dynamics solver for 

cardiovascular applications, arXiv preprint, arXiv:2304 .12032, 2023.
[3] P.C. Africa, R. Piersanti, M. Fedele, L. Dede’, A. Quarteroni, lifex-fiber: an open tool for myofibers generation in cardiac computational models, BMC 

Bioinform. 24 (1) (2023) 143.
[4] D. Ambrosi, S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive issues, J. Elast. 107 (2) (2012) 199–212.
[5] H.J. Arevalo, F. Vadakkumpadan, E. Guallar, A. Jebb, P. Malamas, K.C. Wu, N.A. Trayanova, Arrhythmia risk stratification of patients after myocardial 

infarction using personalized heart models, Nat. Commun. 7 (1) (2016) 1–8.
[6] D. Arndt, W. Bangerth, B. Blais, T.C. Clevenger, M. Fehling, A.V. Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J. Pelteret, R. Rastak, 

I. Thomas, B. Turcksin, Z. Wang, D. Wells, The deal.II library, version 9.2, J. Numer. Math. 28 (3) (2020) 131–146.
[7] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J. Pelteret, B. Turcksin, D. Wells, The deal.II finite element library: 

design, features, and insights, Comput. Math. Appl. 81 (2021) 407–422.
[8] C.M. Augustin, A. Crozier, A. Neic, A.J. Prassl, E. Karabelas, T. Ferreira da Silva, J.F. Fernandes, F. Campos, T. Kuehne, G. Plank, Patient-specific modeling 

of left ventricular electromechanics as a driver for haemodynamic analysis, Europace 18 (2016), iv121–iv129.
[9] C.M. Augustin, M.A. Gsell, E. Karabelas, E. Willemen, F.W. Prinzen, J. Lumens, E.J. Vigmond, G. Plank, A computationally efficient physiologically 

comprehensive 3D–0D closed-loop model of the heart and circulation, Comput. Methods Appl. Mech. Eng. 386 (2021) 114092.
[10] C.M. Augustin, A. Neic, M. Liebmann, A.J. Prassl, S.A. Niederer, G. Haase, G. Plank, Anatomically accurate high resolution modeling of human whole 

heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation, J. Comput. Phys. 305 (2016) 622–646.
[11] S. Badia, F. Nobile, C. Vergara, Fluid–structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys. 227 (14) (2008) 

7027–7051.
[12] S. Badia, F. Nobile, C. Vergara, Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems, Comput. Methods Appl. Mech. 

Eng. 198 (33–36) (2009) 2768–2784.
[13] B. Baillargeon, N. Rebelo, D.D. Fox, R.L. Taylor, E. Kuhl, The Living Heart project: a robust and integrative simulator for human heart function, Eur. J. 

Mech. A, Solids 48 (2014) 38–47.
[14] A.A. Bakir, A. Al Abed, M.C. Stevens, N.H. Lovell, S. Dokos, A multiphysics biventricular cardiac model: simulations with a left-ventricular assist device, 

Front. Physiol. 9 (2018) 1259.
[15] J.W. Banks, W.D. Henshaw, D.W. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and 

elastic solids, J. Comput. Phys. 269 (2014) 108–137.
[16] J.W. Banks, W.D. Henshaw, D.W. Schwendeman, Q. Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimen-

sions, J. Comput. Phys. 373 (2018) 455–492.
[17] Y. Bazilevs, K. Takizawa, T.E. Tezduyar, Computational Fluid-Structure Interaction: Methods and Applications, John Wiley & Sons, 2013.
[18] L. Bennati, C. Vergara, V. Giambruno, I. Fumagalli, A.F. Corno, A. Quarteroni, G. Puppini, G.B. Luciani, An image-based computational fluid dynamics 

study of mitral regurgitation in presence of prolapse, Cardiovasc. Eng. Technol. (2023), https://doi .org /10 .1007 /s13239 -023 -00665 -3.
[19] J. Brenneisen, A. Daub, T. Gerach, E. Kovacheva, L. Huetter, B. Frohnapfel, O. Dössel, A. Loewe, Sequential coupling shows minor effects of fluid 

dynamics on myocardial deformation in a realistic whole-heart model, Front. Cardiovasc. Med. 8 (December 2021) 1–13.
[20] M. Bucelli, L. Dede’, A. Quarteroni, C. Vergara, Partitioned and monolithic FSI schemes for the numerical simulation of the heart, Commun. Comput. 

Phys. 32 (5) (2022) 1217–1256.
[21] M. Bucelli, M. Salvador, L. Dede’, A. Quarteroni, Multipatch isogeometric analysis for electrophysiology: simulation in a human heart, Comput. Methods 

Appl. Mech. Eng. 376 (2021) 113666.
[22] M. Bucelli, A. Zingaro, P.C. Africa, I. Fumagalli, L. Dede’, A. Quarteroni, A mathematical model that integrates cardiac electrophysiology, mechanics, and 

fluid dynamics: application to the human left heart, Int. J. Numer. Methods Biomed. Eng. 39 (3) (2023) e3678.
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