
Reconfigurable Logic for Hardware IP Protection:
Opportunities and Challenges

(Invited Paper)

Luca Collini
New York University
New York, NY, USA

Benjamin Tan
University of Calgary

Calgary, Alberta, Canada

Christian Pilato
Politecnico di Milano

Milan, Italy

Ramesh Karri
New York University
New York, NY, USA

ABSTRACT
Protecting the intellectual property (IP) of integrated circuit (IC)
design is becoming a significant concern of fab-less semiconduc-
tor design houses. Malicious actors can access the chip design at
any stage, reverse engineer the functionality, and create illegal
copies. On the one hand, defenders are crafting more and more
solutions to hide the critical portions of the circuit. On the other
hand, attackers are designing more and more powerful tools to
extract useful information from the design and reverse engineer the
functionality, especially when they can get access to working chips.
In this context, the use of custom reconfigurable fabrics has re-
cently been investigated for hardware IP protection. This paper will
discuss recent trends in hardware obfuscation with embedded FP-
GAs, focusing also on the open challenges that must be necessarily
addressed for making this solution viable.

1 INTRODUCTION
Interest in hardware intellectual property (IP) protection is increas-
ing as governments now consider integrated circuits (IC) as critical
goods for national and economic security [16]. While macroeco-
nomic regions are developing plans to increase their manufacturing
capabilities in the next decade [2], the present-day supply chain is
still distributed acrossmultiple companies across different countries,
thus exposing IPs to established security threats: overproduction,
counterfeiting, andmaliciousmodifications [28]. A common denom-
inator of these threats is reverse engineering. For this reason, many
techniques for IP protection work by increasing the complexity of
IC reverse engineering.

A well-known technique to protect against reverse engineering
is logic locking. First proposed in [29], logic locking is a family
of obfuscation techniques that works by introducing additional
logic to the design. Such logic is dependent on and controlled by a
new locking key input. The obfuscated design will work with the
correct functionality if, and only if, the correct key is provided. In
this way, the design can be sent for fabrication, test, and assembly,
without exposing the key. The key will be loaded into a tamper-
proof memory onlywhen the chip returns to the design house. Logic
locking has been proposed at different abstraction levels ranging
from gate level [29, 39] up to register-transfer level (RTL) [13, 25]
and even high-level synthesis (HLS) [23, 27, 40]. Logic locking
introduces the concept of “equally-plausible” configurations to hide
the correct one with others that the attacker cannot rule out without

having any prior knowledge about the design. With an 𝑁 -bit key, it
aims at creating 2𝑛 possible IC “configurations”. In [8], the authors
propose an interesting approach for hardware IP protection that
replaces portions of the combinational logic with look-up tables
based on the same concepts.

A Field-Programmable Gate Array (FPGA) is a programmable
circuit that can be configured to implement different functionalities
through a configuration binary called the bitstream. Designers can
change the functionality by simply loading a new bitstream. FPGAs
are usually manufactured on a dedicated chip and are sometimes
paired with a micro-controller on printed circuit boards (PCBs).
Embedded FPGAs (eFPGA) are FPGAs that are physically embedded
within the same chip alongside other components or IP blocks.
Embedding the FPGA into the same chip can bring significant
benefits in terms of power, performance, and costs.

When manufacturing a chip with an embedded FPGA, only the
final user knows how the eFPGA will be programmed. Thus, de-
signers can use this approach for IP protection. They can select
parts of the design and replace them with an eFPGA. During manu-
facturing, the attacker would not have any idea of the functionality
that will be implemented, while the correct one can be simply pro-
grammed into the eFPGA before its use. This technique is called
eFPGA redaction [11, 17, 22]. An example is shown in Figure 1.

eFPGA redaction takes the notion of equally-plausible configu-
rations of logic locking to an extreme by completely replacing the
logic to be protected with an eFPGA of which the correct configu-
ration is known only by the designers. In this case, the “secret” key
is the bitstream that configures the eFPGA. This technique is gener-
ally applied at RTL as the eFPGA tools take as input RTL modules
to synthesize and create the eFPGA. For example, in [14], authors
propose a redaction flow starting from HLS. Embedding an FPGA
netlist into an ASIC design introduces high overheads in terms of
area, power, and delay. For this reason, eFPGA redaction is only ap-
plied to sensible portions of the design, keeping the rest of the logic
intact. In [6], the use of mix of static ASIC cells and configurable
interconnects, called eASIC, is proposed to reduce the overhead and
allow the obfuscation of bigger designs. In practice, eASIC offers
a good security level only when the obfuscation is close to 100%
which is when the design is fully reconfigurable, similarly to an
FPGA design. Another approach for reducing the overheads was
investigated by [33] using Field Programmable Transistor arrays
(FPTA) instead of FPGA. While FPTAs promise less overhead, all

1

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-7642-3638
https://orcid.org/0000-0002-7642-3638
https://orcid.org/1234-5678-9012


ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA Collini, Tan, Pilato, and Karri

eFPGA

eFPGA
Redaction

Figure 1: eFPGA redaction removes a module from the origi-
nal design and substitutes it with an embedded FPGA that
will be programmed after fabrication.

other challenges are the same, while the support for FTPA is not as
mature as the FPGA.

Designers need to choose FPGA fabric parameters and the mod-
ules to be redacted. These decisions play a significant role when
it comes to overhead and security. To provide insights into the
challenges and research opportunities for eFPGA redaction, this
paper is organized as follows.

Section 2 introduces the threat models and attacks against eF-
PGA redaction that are usually considered in the literature. Section
3 presents the main challenges that designers need to face when
applying eFPGA redaction. We show the fabric provider alterna-
tives, including both commercial and open source solutions, how
fabric parameters affect both security and overhead, the challenge
of choosing the design portions to be redacted, and the final in-
tegration challenges. Section 4 presents an analysis of the works
that focused on applying eFPGA redaction. Section 5 reports the
experience of the CSAW Logic Locking Conquest in 2021, when the
challenge was focused on eFPGA redaction. We discuss the best
attack approaches identified by the red teams. Section 6 summarizes
the open research opportunities in the field, highlighting potential
future directions of work.

2 THREAT MODELS AND ATTACKS
2.1 Threat Models
The threat models considered for eFPGA redaction are the classical
threat models considered also for hardware obfuscation and, in
particular, for logic locking. They revolve around the concept of an
oracle. In this context, an oracle is a chip that performs the correct
functionality[30]. The scan chain also plays a role in the threat
models, especially for FPGA designs. In particular, the scan chain
is a testing interface that allows one to read and write values into

registers. In the case of eFPGA, scan chains could be used to inspect
I/O pins of the reconfigurable fabric.

In an oracle-less threat model, we assume that attackers have
access only to the obfuscated netlist. Amalicious foundry can obtain
the obfuscated netlist by reverse engineering the GDSII layout files.
This is a plausible threat model for low-volume applications where
it is safe to assume that attackers cannot access a working chip.

In an oracle-guided threatmodel, we assume that the attackers
can access an oracle chip in addition to the obfuscated netlist. The
oracle can have full, partial, or no scan chain access. This threat
model is plausible for all mass-produced chips for which we can
assume that attackers can access working chips to analyze the I/O
relationships. Depending on the presence of the scan access, the
complexity of the attacks varies a lot. Full scan access allows the
attackers to query input/output pairs at each combinational logic
cone, reducing the problem into many smaller problems. When
full scan access is not available, the obfuscated circuit becomes
sequential. Attacks on sequential circuits are more complex. Scan
access could be limited by physically connecting fewer registers to
the scan chain or by the use of scan-limiting techniques such as
[21]. A similar approach in [20] fortifies RTL locking.

2.2 Oracle-less Attacks
Many oracle-less attacks have been proposed for logic locking.
These attacks can only infer information from the obfuscated netlist.
Modern attacks are based on machine learning [35] and require
logic locking methods to create “balanced” designs that avoid struc-
tural biases which are used to recover the correct functionality [34].
Since eFPGA redaction completely removes the logic that is being
obfuscated and replaces it with generic configurable blocks, the
only part of the design that can leak information is around the eF-
PGA. To the best of our knowledge, there are not yet any oracle-less
attacks specifically aimed at eFPGA redaction.

2.3 Oracle-guided Attacks
In the oracle-guided threat model, eFPGA redaction has been first
evaluated against state-of-the-art SAT attacks, a powerful attack
against logic locking [36]. It works by identifying distinguishing
input patterns (DIP) through an SAT solver. DIPs are input patterns
for which at least two keys will yield a different value. This is pow-
erful because giving as input a DIP to the oracle allows one to rule
out incorrect keys. In most cases, applying a DIP allows attackers
to rule out several keys because many keys can be equivalent to
each other and thus ruled out simultaneously [36]. Many variations
of the SAT attack have been proposed through the years. The most
relevant are the attacks that can handle also the combinational cy-
cles, which are present in eFPGA fabrics. For example, CycSAT [41]
solves the problem of cycles by assuming that the correct circuit
will not have combinational cycles and adds constraints to the SAT
solver to guarantee this condition. BeSAT [32] works by pruning
out the keys that create stateful cycles. IcySAT [31] identifies a
subset of feedback nets that make the netlist acyclic when removed.
It then unrolls the netlist on those nets to obtain an acyclic circuit
on which a classic SAT attack can be executed.

These attacks require full scan chain access. If scan chain access
is limited, it may be possible to use the technique proposed in [18]

2



Reconfigurable Logic for Hardware IP Protection: Opportunities and Challenges ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA

to perform SAT attacks on sequential circuits. The technique works
by unrolling sequential loops to obtain a combinational netlist.
Since unrolling an eFPGA fabric significantly increases the amount
of logic to be analyzed, it is likely that this attack would become
unfeasible. However, to the best of our knowledge, this problem
has not been investigated in detail.

A novel attack specifically aimed at breaking eFPGA redaction
was proposed in [15]. The attack works by sampling input, output,
and latency triplets from the oracle netlist on some samples and
then using this information to create a function that would fit on
the eFPGA fabric. On one hand, this attack requires scan access only
to the interface of the eFPGA and not to its internal registers. On
the other hand, this approach allows the attacker to retrieve only a
partial functionality since it is unpractical to query an exhaustive
number of samples.

3 CHALLENGES
3.1 Commercial vs. Open-Source (e)FPGAs
To date, there are limited options for eFPGA fabrics, so the first
challenge is to identify a suitable fabric provider and the associated
tool flow. It is also important to understandwhether the FPGA fabric
can be customized, i.e., it is possible to create instances by varying
the FPGA fabric parameters (e.g., number of inputs and outputs of
the configurable blocks, size of them multiplexers, etc.) Looking at
commercial solutions for eFPGA fabrics, we identified Flex logix [3],
Menta eFPGA [4], Achronix [1], and QuickLogic [5]. For open-
source solutions, we can find OpenFPGA [37] and FABulous [19].

Flex Logix aims for high-performance fabrics for large IPs, where
the smallest building block counts over a thousand LUTs. So, it is
not feasible to redact small portions of the designs. Menta eFPGA
offers solutions that range from hundreds to tens of thousands of
LUT, along with optional SRAMs and DSPs. The company mentions
IP security among its objectives. Achronix provides both traditional
and embedded FPGAs. The architecture of the basic blocks can-
not be customized. They seem to offer from 10k LUTs to millions
of LUTs solutions, which do not seem practical for eFPGA redac-
tion. QuickLogic offers an eFPGA IP generator that is based on
the open-source OpenFPGA project. Rapid Silicon also builds upon
OpenFPGA, offering a system-on-chip with eFPGA fabric and an
EDA environment for development.

OpenFPGA is a mature framework for rapidly prototyping cus-
tomizable FPGA architectures [37]. OpenFPGA allows the cus-
tomization of the FPGA fabric, where the parameters are specified
through an XML file. It can also be used for eFPGAs and eFPGA
redaction, as shown in [11]. OpenFPGA was not initially created
for eFPGAs. So it requires additional steps to integrate the newly-
created FPGA into the original design. However, this process can
be automated, as shown in [38] for eFPGA redaction.

FABulous [19] is a novel framework that simplifies the use of
eFPGAs. It also allows for the customization of eFPGA fabrics and
covers the whole flow. Since it is in early development stages, the
documentation lacks some details and the flow does not appear to
be fully automated yet. Table 1 summarizes the characteristics of
the different eFPGA providers.

Table 1: Summary of eFPGA providers

Tool LUT # Customizable
LB Architecture DS-blocks

Flex Logix 1k-500k ✗ MAC, BRAM
Menta eFPGA 100-200k ✗ DSP, RAM
Achronix 1k-1m ✗ DSP, MLP, LRAM, BRAM
QuickLogic * ✓ DSP, BRAM
Rapid Silicon * *
OpenFPGA 100-1m ✓ DSP, Memory
FABulous 100-1m ✓

* details were not clear to the authors at the time of writing

3.2 eFPGA Fabric Configuration
Another important challenge is the selection of the fabric configu-
ration. Indeed, the choice of the eFPGA fabric parameters plays a
major role in terms of security, as they determine the complexity
of the fabric, the “capacity” of the fabric (i.e., the scope of function-
ality that the fabric can implement), and its bitstream length. For
example, OpenFPGA offers a tile-based architecture composed of
I/O tiles, Connection Blocks, and Configurable Logic Blocks (CLB).
The tiles are arranged into a grid. The outer layer is composed of
I/O tiles with missing tiles in the angles. Figure 2 illustrates the tile
architecture of OpenFPGA.

I/O Tile

Figure 2: Tile architecture of of a 5x5 FPGA from OpenFPGA

A CLB is composed of 𝑁 Basic Logic Elements (BLE), each of
them implementing a primitive logic function through a Look-
Up Table (LUT), a Flip-Flop (FF), and a 2-input multiplexer. The
numbers of BLEs (𝑁 ), the size of LUTs (𝐾 ), and the number of inputs
to the CLB (𝐼 ) are parameters that can be specified to customize the
fabric architecture. Figure 3 shows a simplified scheme of a CLB
and BLE from OpenFPGA [10, 37].

3



ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA Collini, Tan, Pilato, and Karri

BLE 0

Local Routing

CLB

BLE N-1

K-LUT

CLK

SRAM

BLE

MUX

FF

i1 iK

Figure 3: Simplified architectures of Configurable Logic Block
and Basic Logic Element.

3.3 eFPGA Parameters and Security
The different parameters determine the programmability of the fab-
ric and, thus, the overall bitstream size. Note that only considering
the bitstream (key) size is not appropriate as a security metric (in
the context of an oracle-guided attack). Indeed, as shown in [10],
the different programmable parts of a fabric (e.g., routing configu-
ration, LUT contents) affect SAT attack resistance in different ways.
In the same work, the authors studied how security and overheads
change when varying 𝑁 and 𝐾 , while 𝐼 was defined as 𝐼 = 𝐾 (𝑁+1)

2
since this value was able to yield good Power, Performance, Area
(PPA) metrics [7]. This work also shows that 𝑁 (i.e., the number of
BLEs) increases the complexity of the cyclic networks, hardening
SAT resilience more than 𝐾 (e.g., the LUT size). It must be noted
that 𝐾 also increases SAT resilience. Another important is that also
resource utilization of the eFPGA fabric plays a role in terms of
security. Indeed, since the fabric is customized for the specific mod-
ules to be redacted, eFPGAs with low utilization will contain large
portions of the logic that are optimized. This effect may result in a
simplification of the corresponding SAT attacks. On the contrary,
highly-utilized eFPGAs will result in large bitstreams to be recov-
ered without any simplification that may help the attacker. The
existing study only focused on the parameters 𝑁 and 𝐾 , leaving
unexplored the effects of the parameters for connecting blocks and
global routing.

3.4 Module Selection
When applying eFPGA redaction, it is important to carefully select
which module(s) should be “moved” to the eFPGA based not only
on the designer’s security objectives but also on the PPA effects.
In the context of naive oracle-guided SAT attacks, the nature of
the redacted module was shown not to play a large role in terms
of resistance [11]. This key observation allows designers to freely
choose the parts of the IC to be redacted. However, most of the
times, it is not possible to redact the entire IP module as the re-
sulting overhead would be too high. In addition, some parts of the
IP may not be worth being protected as they implement public or
well-known functions (i.e., I/O management and synchronization).

ALICE [38] is a framework proposed to address this challenge. It
automatically identifies a set of modules that satisfy overhead re-
quirements while maximizing I/O utilization. To make sure that the
redacted modules are worth being protected, ALICE requires the
designers to specify which outputs are relevant to be “obfuscated”.
It then identifies which modules affect those signals and flags them
as security relevant.

3.5 eFPGA Integration
Once the modules to be redacted are defined and the corresponding
eFPGA fabric is created, designers need to integrate it with the rest
of the chip, routing to/from it the signals used by the redacted mod-
ules. The integration of the obtained eFPGA varies depending on
the tool used to create the eFPGA. When using an eFPGA-specific
tool like FABulous, this process is done by the tool. This also means
that the designer has limited control over this process. When using
a more generic FPGA customization tool (e.g., OpenFPGA), this
process is left to the designer. Depending on the number of redacted
submodules, this process can offer different alternatives. In general,
the eFPGA is instantiated in the top module and signals must be
rerouted. Using clever approaches, like the one proposed in [38]
that is based on the concept of dominator trees, reduces the signal
propagation and, in turn, routing issues. The same approach has
been used in HLS to allocate internal memories closer to the mod-
ules where they are accessed [26]. However, the trade-off between
security and overhead effects has not been investigated yet.

3.6 Security Validation
There have been many attacks for logic locking techniques [12].
While researchers started to formalize notions of logic locking, in-
cluding redaction, only recently [9], scrutiny of eFPGA redaction
is still in its infancy. Currently, the security of eFPGA redacted
modules is evaluated with the same approaches used for logic lock-
ing, aiming at recovering the bitstream especially with SAT attacks.
Thus, a definitive evaluation of the security of a given integration
between module and fabric remains an open challenge. Progress
towards this challenge would also foster the development of design
space exploration to trade off security and integration costs (i.e.,
the added resources needed for the fabric, impacts on timing, etc.).

4 EXISTING REDACTION APPROACHES
In [17], authors explored eFPGA redaction using a predefined and
fixed eFPGA. This is compatible to taking an eFPGA from a vendor
listed in Section 3.1. This approach showed the feasibility of an
HLS flow supporting pragmas to select the portions of designs to
be redacted on an eFPGA provided by the designer. The limitations
of this work were in the manual work for the designer to select the
parts to be redacted and provide a proper eFPGA fabric.

In [22], the authors advanced the work in eFPGA redaction by
providing a tool based on Chisel HDL to generate a custom eFPGA
fabric fitted for the redacted logic. Another work proposed the use
of OpenFPGA to obtain the fitting FPGA to be used for eFPGA
redaction [11] . Both works evaluated the security of the obfuscated
solutions applying the state-of-the-art cyclic SAT attacksmentioned
in Section 2, showing good resilience. Common challenges for both

4



Reconfigurable Logic for Hardware IP Protection: Opportunities and Challenges ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA

Table 2: Summary of eFPGA architecture provided

instance #clbs #clbluts #lutins #luts instance #clbs #clbluts #lutins #luts

set1_1 4 2 3 8 set3_1 4 2 5 8
set1_2 4 3 3 12 set3_2 4 3 5 12
set1_3 4 4 3 16 set3_3 4 4 5 16
set1_4 4 5 3 20 set3_4 4 5 5 20
set1_5 4 6 3 24 set3_5 4 6 5 24
set1_6 4 7 3 28 set3_6 4 7 5 28
set1_7 4 8 3 32 set3_7 4 8 5 32
set2_1 4 2 4 8 set4_1 4 2 6 8
set2_2 4 3 4 12 set4_2 4 3 6 12
set2_3 4 4 4 16 set4_3 4 4 6 16
set2_4 4 5 4 20 set4_4 4 5 6 20
set2_5 4 6 4 24 set4_5 4 6 6 24
set2_6 4 7 4 28 set4_6 4 7 6 28
set2_7 4 8 4 32 set4_7 4 8 6 32

works included the choice of the logic to be redacted to properly fit
onto an eFPGA which respects overhead constraints.

HLock [14] is a framework to apply eFPGA redaction during HLS.
This flow automatically identifies the security relevant parts of the
design from an IP perspective. It works by taking two high-level
descriptions of the same design, one with a standard implementa-
tion (𝐻𝐷𝐿𝑘𝑛𝑜𝑤𝑛) and the other with an improved implementation
(𝐻𝐷𝐿𝑛𝑒𝑤 ). The claim is that the difference between these two de-
signs is the security relevant logic from an IP perspective. The
framework synthesizes the two design with HLS and proceed by
extracting the Data Flow Graph (DFG) of 𝐻𝐷𝐿𝑘𝑛𝑜𝑤𝑛 and 𝐻𝐷𝐿𝑛𝑒𝑤 .
It then finds the maximum subgraph in common between the two
DFGs. The logic corresponding to this subgraph is considered as
not security relevant as it is available in known implementations.
The remaining logic is considered security relevant and is mapped
onto an FPGA. The framework was not evaluated with an actual
eFPGA, but instead traditional, off-the-shelf FPGAs are used for
redaction. One major limitation of this work is that it requires
two different implementations of the same design to identify the
security-relevant parts. This situation is however uncommon for
new IC designs.

ALICE [38] proposes an end-to-end flow to analyze a single
design at RTL and identify which modules affect selected outputs.
These modules are candidates for eFPGA redaction. ALICE includes
also a cluster and pruning step to place more independent modules
onto the same eFPGA and to eliminate unfeasible implementations
(e.g., modules that require more I/O pins that the ones allowed by
the designer). This approach also performs an automatic integration
of the eFPGA fabric (generated with OpenFPGA) and the rest of
the chip. the major limitation is that the eFPGA parameters (and
so the security level of the eFPGA) are given and not co-explored
with the modules to be redacted.

In conclusion, all approaches focus on specific aspects of the
eFPGA redaction problem, while an holistic approach that optimizes
both security and EDA aspects is still missing.

5 A RED-BLUE TEAM EXERCISE: LESSONS
5.1 Scenario
To encourage more engagement and scrutiny of eFPGA redaction,
the CSAW 2021 Logic Locking Conquest [24] provided the oppor-
tunity for a Red-Blue team exercise. Red teams were given a set of

modules redacted in eFPGA fabrics and were asked to recover the
original functionality under the oracle-guided attack model. The
redacted design (a simple adder) was kept common and the different
fabrics varied in terms of LUT number and sizes in the CLBs. The
competition was divided into two phases, the first one spanning
from August to October and the second one lasting two weeks from
the second half of October to the early November. In the second
phase, additional, more complicated fabrics were provided to the
red teams. Table 2 reports the fabric characteristics of each design.
The table reports the size of the fabric along with the number of
LUTs and other configurable blocks.

Proposed attack approaches ranged from applying existing SAT
techniques and through to interesting variations or completely
new attacks to retrieve the correct bitstream. We now discuss our
observations of the attacks proposed by the participants.

5.2 Experiences
One team came up with an interesting new functional recovery
attack exploiting some knowledge on the distribution of the Primary
Implicants (PI) in the Primary Implicants Table (PIT). They noted
that in many circuits, including the redacted one, the PI are close
together in the PIT. They exploited this by first finding a PI by
performing a set of queries and then searching for PIs close-by.
Once all PIs are identified they can synthetize the functionality for
the eFPGA architecture at hand and obtain a working bitstream
They implemented the attack and showed an average accuracy
greater than 99%.

Another team came up with a different approach, based on the
idea that the eFPGA is a universal circuit and can be substituted
with a simpler but equivalent universal circuit to recover functional-
ity. The first step of their attack was to identify the “logic capacity”
of the eFPGA fabric and create a simple universal circuit with the
same capacity. Then they launched a SAT attack on the generated
circuit and once the functionality is retrieved they can resynthesize
it for the architecture of the eFPGA obtaining the unlocking bit-
stream. The team implemented the attack which was only partially
successful due to some fabrics being big enough to make the attack
fall into a brute force attack.

Some teams tried existing SAT attacks and proposed variations
to circumvent the challenges in applying SAT attacks to eFPGA
fabrics. The main problem when applying SAT attacks to eFPGA
fabrics is the presence of combinational cycles introduced by the
reconfigurable routing network. In some instances these cycles
can be resolved by adding constraints to brake the loops (CycSAT)
and SAT attacks can be performed. When the eFPGA fabrics often
present some intertwined loops that are hard to break and lead to
exponential complexity.

Other teams tried existing publicly available implementations
of SAT attacks and were able to break only a limited number of
designs. This was due to the lack of out-of-the-box support for
the combinational loops present in the eFPGA fabrics. One team
tried to modify the SAT attack in an incremental manner to break
portions of the design at a time, but the technique did not prove
effective.

5



ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA Collini, Tan, Pilato, and Karri

5.3 Lessons Learned
The big obstacle in breaking eFPGA fabrics proved to be the pres-
ence of hard cycles. In fact the most successful teams were the ones
that managed to circumvent the hard cycles by focusing on the
functionality itself. Even though these attacks have a more lim-
ited scope (require knowledge on the PI distribution) it highlights
how “just making the fabric more complex” could not be the solu-
tions to all problems. Oracle-less attacks were not successful in the
competition as the red teams were provided with only the eFPGA
fabric without the surrounding logic of the final IC. Some teams
rightfully speculated that when integrated in a bigger design some
information about the surroundings could allow further leverage
for attacks, so this is open for future exploration. Results showed
that almost all finalists were able to break the bitstreams of the
first phase designs, while the second phase designs, which included
more hard cycles, were only partially retrieved from the first team.
This indicates that the presence of hard cycles drastically increases
the attack complexity in accordance with the findings in [10].

6 OPPORTUNITIES
An interesting research direction that remains open is the multi-
objective optimization to explore different combinations of fabric
parameters and number of redacted modules. In general the more
secure eFPGA fabric parameters introduce higher overheads. If we
put ourselves in the perspective of a hardware designer, we may
be willing to spend up to a pre-fixed overhead to secure our IP. In
this scenario we may be face a situation where we could have a
very strong fabric that allows us to redact a small portion of logic,
or some weaker fabric that allows us to redact a bigger portion
of logic. Design space exploration could help us in this scenario
by identifying a sweet spot between fabric parameters and logic
capabilities.

The novel attacks (see Section 5.2) proposed by red teams at
CSAW Locig Locking Conquest in 2021 showed interesting takes
on new eFPGA-specific attacks and we expect to see further achieve-
ments from the respective research groups. It was also shown that
there might be a space for SAT-based attacks but the problem of
hard cycles would need to be resolved. The space for oracle-less
attacks is also still open even though the challenge complexities
raise drastically. As eFPGA redaction removes all the information
of the redacted logic from the design, oracle less attacks need to
rely on the sorrunding logic and on the logic capacity of the eFPGA
fabric. Guidelines on how not to leak information when using eF-
PGA redaction for a provably secure scheme at least in the oracle
less threat model would be very precious for the community.

It has been shown that the fabric structure affects the resilience
towards oracle guided attacks, though many architectural choices
remain unexplored. With the rise of FABulous it would be interest-
ing to evaluate its use for eFPGA redaction and what architectural
choices can improve the security.

7 CONCLUSIONS
This paper discusses the recent trend for hardware IP protection
that involves reconfigurable devices to hide critical parts of a design.
This approach, called eFPGA redaction, can be considered a natural
evolution of logic locking. We discuss the common challenges for

this problem, including the selection of the (e)FPGA provider, the
potential customization of the reconfigurable fabric, and the secu-
rity/EDA implications. We also discussed an experience, the CSAW
2021 logic locking contest, where groups were requested to break
eFPGA redacted modules.

ACKNOWLEDGMENTS
The authors would like to thank Jitendra Bhandari and Abdul
Khader Thalakkattu Moosa, the student leads of CSAW LLC 2021,
and all the participants of the contest.

REFERENCES
[1] 2022. Achronix Semiconductor Corporation. https://www.achronix.com/

speedcore-architecture
[2] 2022. Digital sovereignty: Commission proposes Chips Act. https://ec.europa.

eu/commission/presscorner/detail/en/ip_22_729
[3] 2022. Flex Logix. https://www.flex-logix.com/efpga/what-is-efpga.html
[4] 2022. Menta eFPGA. https://www.menta-efpga.com/efpga-ip-cores-v5
[5] 2022. QuickLogic Corporation eFPGA IP 2.0. https://www.quicklogic.com/

products/efpga/efpga-ip2/
[6] Zain Ul Abideen, Tiago Diadami Perez, and Samuel Pagliarini. 2021. From

FPGAs to Obfuscated eASICs: Design and Security Trade-offs. In 2021 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST). 1–4. https:
//doi.org/10.1109/AsianHOST53231.2021.9699758

[7] Elias Ahmed and Jonathan Rose. 2004. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 12, 3 (March 2004), 288–298. https://doi.org/10.
1109/TVLSI.2004.824300 Conference Name: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems.

[8] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. 2010. Preventing IC
Piracy Using Reconfigurable Logic Barriers. IEEE Design & Test of Computers 27,
1 (Jan. 2010), 66–75. https://doi.org/10.1109/MDT.2010.24 Conference Name:
IEEE Design & Test of Computers.

[9] Peter Beerel, Marios Georgiou, Ben Hamlin, Alex J. Malozemoff, and Pierluigi
Nuzzo. 2022. Towards a Formal Treatment of Logic Locking. IACR Transactions
on Cryptographic Hardware and Embedded Systems (Feb. 2022), 92–114. https:
//doi.org/10.46586/tches.v2022.i2.92-114

[10] Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian
Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel Gaillardo, and
Ramesh Karri. 2021. Not All Fabrics Are Created Equal: Exploring eFPGA Parame-
ters For IP Redaction. https://doi.org/10.48550/arXiv.2111.04222 arXiv:2111.04222
[cs].

[11] Jitendra Bhandari, Abdul Khader Thalakkattu Moosa, Benjamin Tan, Christian
Pilato, Ganesh Gore, Xifan Tang, Scott Temple, Pierre-Emmanuel Gaillardon,
and Ramesh Karri. 2021. Exploring eFPGA-based Redaction for IP Protection.
In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
1–9. https://doi.org/10.1109/ICCAD51958.2021.9643548 ISSN: 1558-2434.

[12] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yun-
tao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava, Yang Xie,
Muhammad Yasin, and Michael Zuzak. 2019. Keynote: A Disquisition on Logic
Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2019), 1–1. https://doi.org/10.1109/TCAD.2019.2944586 Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

[13] Rajat Subhra Chakraborty and Swarup Bhunia. 2010. RTL Hardware IP Protection
Using Key-Based Control and Data Flow Obfuscation. In 2010 23rd International
Conference on VLSI Design. 405–410. https://doi.org/10.1109/VLSI.Design.2010.54
ISSN: 2380-6923.

[14] Jianqi Chen, Monir Zaman, Yiorgos Makris, R. D. Shawn Blanton, Subhasish
Mitra, and Benjamin Carrion Schafer. 2020. DECOY: DEflection-Driven HLS-
Based Computation Partitioning for Obfuscating Intellectual PropertY. In 2020
57th ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.
1109/DAC18072.2020.9218519 ISSN: 0738-100X.

[15] Prattay Chowdhury, Chaitali Sathe, and Benjamin Carrion Schaefer. 2022. Pre-
dictive Model Attack for Embedded FPGA Logic Locking. In Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED ’22). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/3531437.3539728

[16] Alan R. Honorable Shaffer. 2021. A Microelectronic “Canary in a Coal Mine”.
(2021), 12. https://www.potomacinstitute.org/steps/featured-articles/96-a-
microelectronic-canary-in-a-coal-mine

6

https://www.achronix.com/speedcore-architecture
https://www.achronix.com/speedcore-architecture
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_729
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_729
https://www.flex-logix.com/efpga/what-is-efpga.html
https://www.menta-efpga.com/efpga-ip-cores-v5
https://www.quicklogic.com/products/efpga/efpga-ip2/
https://www.quicklogic.com/products/efpga/efpga-ip2/
https://doi.org/10.1109/AsianHOST53231.2021.9699758
https://doi.org/10.1109/AsianHOST53231.2021.9699758
https://doi.org/10.1109/TVLSI.2004.824300
https://doi.org/10.1109/TVLSI.2004.824300
https://doi.org/10.1109/MDT.2010.24
https://doi.org/10.46586/tches.v2022.i2.92-114
https://doi.org/10.46586/tches.v2022.i2.92-114
https://doi.org/10.48550/arXiv.2111.04222
https://doi.org/10.1109/ICCAD51958.2021.9643548
https://doi.org/10.1109/TCAD.2019.2944586
https://doi.org/10.1109/VLSI.Design.2010.54
https://doi.org/10.1109/DAC18072.2020.9218519
https://doi.org/10.1109/DAC18072.2020.9218519
https://doi.org/10.1145/3531437.3539728
https://www.potomacinstitute.org/steps/featured-articles/96-a-microelectronic-canary-in-a-coal-mine
https://www.potomacinstitute.org/steps/featured-articles/96-a-microelectronic-canary-in-a-coal-mine


Reconfigurable Logic for Hardware IP Protection: Opportunities and Challenges ICCAD ’22, October 30–November 3, 2022, San Diego, CA, USA

[17] Bo Hu, Jingxiang Tian, Mustafa Shihab, Gaurav Rajavendra Reddy, William
Swartz, Yiorgos Makris, Benjamin Carrion Schaefer, and Carl Sechen. 2019. Func-
tional Obfuscation of Hardware Accelerators through Selective Partial Design
Extraction onto an Embedded FPGA. In Proceedings of the 2019 on Great Lakes
Symposium on VLSI (GLSVLSI ’19). Association for Computing Machinery, New
York, NY, USA, 171–176. https://doi.org/10.1145/3299874.3317992

[18] Yasaswy Kasarabada, Suyuan Chen, and Ranga Vemuri. 2019. On SAT-Based
Attacks On Encrypted Sequential Logic Circuits. In 20th International Symposium
on Quality Electronic Design (ISQED). 204–211. https://doi.org/10.1109/ISQED.
2019.8697421 ISSN: 1948-3287.

[19] Dirk Koch, Nguyen Dao, Bea Healy, Jing Yu, and Andrew Attwood. 2021. FABu-
lous: An Embedded FPGA Framework. In The 2021 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA ’21). Association for Computing
Machinery, New York, NY, USA, 45–56. https://doi.org/10.1145/3431920.3439302

[20] Nimisha Limaye, Animesh B. Chowdhury, Christian Pilato, Mohammed T. M.
Nabeel, Ozgur Sinanoglu, Siddharth Garg, and Ramesh Karri. 2021. Fortifying RTL
Locking Against Oracle-Less (Untrusted Foundry) and Oracle-Guided Attacks.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). 91–96. https:
//doi.org/10.1109/DAC18074.2021.9586314

[21] Nimisha Limaye, Emmanouil Kalligeros, Nikolaos Karousos, Irene G. Karybali,
and Ozgur Sinanoglu. 2021. Thwarting All Logic Locking Attacks: Dishonest
Oracle With Truly Random Logic Locking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 40, 9 (Sept. 2021), 1740–1753. https:
//doi.org/10.1109/TCAD.2020.3029133 Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

[22] Prashanth Mohan, Oguz Atli, Joseph Sweeney, Onur Kibar, Larry Pileggi, and
Ken Mai. 2021. Hardware Redaction via Designer-Directed Fine-Grained eFPGA
Insertion. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1186–1191. https://doi.org/10.23919/DATE51398.2021.9473910 ISSN:
1558-1101.

[23] Md RafidMuttaki, RoshanakMohammadivojdan, Mark Tehranipoor, and Farimah
Farahmandi. 2021. HLock: Locking IPs at the High-Level Language. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). 79–84. https://doi.org/10.1109/
DAC18074.2021.9586159 ISSN: 0738-100X.

[24] NYU. 2021. CSAW LLC 2021. https://sites.google.com/nyu.edu/csaw-llc-2021
[25] Christian Pilato, Animesh Basak Chowdhury, Donatella Sciuto, Siddharth Garg,

and Ramesh Karri. 2021. ASSURE: RTL Locking Against an Untrusted Foundry.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 7 (July 2021),
1306–1318. https://doi.org/10.1109/TVLSI.2021.3074004 Conference Name: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.

[26] Christian Pilato, Fabrizio Ferrandi, and Donatella Sciuto. 2011. A design method-
ology to implement memory accesses in High-Level Synthesis. In 2011 Proceedings
of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS). 49–58. https://doi.org/10.1145/2039370.
2039381

[27] Christian Pilato, Francesco Regazzoni, Ramesh Karri, and Siddharth Garg. 2018.
TAO: techniques for algorithm-level obfuscation during high-level synthesis. In
Proceedings of the 55th Annual Design Automation Conference (DAC ’18). Associ-
ation for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.
1145/3195970.3196126

[28] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A Primer on
Hardware Security: Models, Methods, and Metrics. Proc. IEEE 102, 8 (Aug. 2014),
1283–1295. https://doi.org/10.1109/JPROC.2014.2335155

[29] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. 2010. Ending Piracy of
Integrated Circuits. Computer 43, 10 (Oct. 2010), 30–38. https://doi.org/10.1109/
MC.2010.284 Conference Name: Computer.

[30] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z. Pan, and Yier
Jin. 2019. IP Protection and Supply Chain Security through Logic Obfuscation:
A Systematic Overview. ACM Transactions on Design Automation of Electronic
Systems 24, 6 (Sept. 2019), 65:1–65:36. https://doi.org/10.1145/3342099

[31] Kaveh Shamsi, David Z. Pan, and Yier Jin. 2019. IcySAT: Improved SAT-based
Attacks on Cyclic Locked Circuits. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 1–7. https://doi.org/10.1109/ICCAD45719.
2019.8942049 ISSN: 1558-2434.

[32] Yuanqi Shen, You Li, Amin Rezaei, Shuyu Kong, David Dlott, and Hai Zhou. 2019.
BeSAT: behavioral SAT-based attack on cyclic logic encryption. In Proceedings
of the 24th Asia and South Pacific Design Automation Conference (ASPDAC ’19).
Association for Computing Machinery, New York, NY, USA, 657–662. https:
//doi.org/10.1145/3287624.3287670

[33] Mustafa M. Shihab, Jingxiang Tian, Gaurav Rajavendra Reddy, Bo Hu, William
Swartz, Benjamin Carrion Schaefer, Carl Sechen, and Yiorgos Makris. 2019. De-
sign Obfuscation through Selective Post-Fabrication Transistor-Level Program-
ming. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
528–533. https://doi.org/10.23919/DATE.2019.8714856 ISSN: 1558-1101.

[34] Dominik Sisejkovic, Luca Collini, Benjamin Tan, Christian Pilato, Ramesh Karri,
and Rainer Leupers. 2022. Designing ML-Resilient Locking at Register-Transfer
Level. In Proceedings of the 59th Annual Design Automation Conference.

[35] Dominik Sisejkovic, Farhad Merchant, Lennart M. Reimann, Harshit Srivastava,
Ahmed Hallawa, and Rainer Leupers. 2021. Challenging the Security of Logic
Locking Schemes in the Era of Deep Learning: A Neuroevolutionary Approach.
J. Emerg. Technol. Comput. Syst. 17, 3, Article 30 (may 2021), 26 pages. https:
//doi.org/10.1145/3431389

[36] Pramod Subramanyan, Sayak Ray, and SharadMalik. 2015. Evaluating the security
of logic encryption algorithms. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). 137–143. https://doi.org/10.1109/HST.2015.
7140252

[37] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere, and
Pierre-Emmanuel Gaillardon. 2019. OpenFPGA: An Opensource Framework
Enabling Rapid Prototyping of Customizable FPGAs. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 367–374. https:
//doi.org/10.1109/FPL.2019.00065 ISSN: 1946-1488.

[38] Chiara Muscari Tomajoli, Luca Collini, Jitendra Bhandari, Abdul Khader Tha-
lakkattuMoosa, Benjamin Tan, Xifan Tang, Pierre-Emmanuel Gaillardon, Ramesh
Karri, and Christian Pilato. 2022. ALICE: An Automatic Design Flow for eFPGA
Redaction. https://doi.org/10.1145/3489517.3530543 arXiv:2205.07425 [cs].

[39] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan (JV) Rajendran, and Ozgur Sinanoglu. 2017. Provably-Secure
Logic Locking: From Theory To Practice. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 1601–1618. https://doi.org/10.1145/
3133956.3133985

[40] Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan JV Rajendran. 2019. SFLL-
HLS: Stripped-Functionality Logic Locking Meets High-Level Synthesis. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–4.
https://doi.org/10.1109/ICCAD45719.2019.8942150 ISSN: 1558-2434.

[41] Hai Zhou, Ruifeng Jiang, and Shuyu Kong. 2017. CycSAT: SAT-based attack on
cyclic logic encryptions. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 49–56. https://doi.org/10.1109/ICCAD.2017.8203759 ISSN:
1558-2434.

7

https://doi.org/10.1145/3299874.3317992
https://doi.org/10.1109/ISQED.2019.8697421
https://doi.org/10.1109/ISQED.2019.8697421
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1109/DAC18074.2021.9586314
https://doi.org/10.1109/DAC18074.2021.9586314
https://doi.org/10.1109/TCAD.2020.3029133
https://doi.org/10.1109/TCAD.2020.3029133
https://doi.org/10.23919/DATE51398.2021.9473910
https://doi.org/10.1109/DAC18074.2021.9586159
https://doi.org/10.1109/DAC18074.2021.9586159
https://sites.google.com/nyu.edu/csaw-llc-2021
https://doi.org/10.1109/TVLSI.2021.3074004
https://doi.org/10.1145/2039370.2039381
https://doi.org/10.1145/2039370.2039381
https://doi.org/10.1145/3195970.3196126
https://doi.org/10.1145/3195970.3196126
https://doi.org/10.1109/JPROC.2014.2335155
https://doi.org/10.1109/MC.2010.284
https://doi.org/10.1109/MC.2010.284
https://doi.org/10.1145/3342099
https://doi.org/10.1109/ICCAD45719.2019.8942049
https://doi.org/10.1109/ICCAD45719.2019.8942049
https://doi.org/10.1145/3287624.3287670
https://doi.org/10.1145/3287624.3287670
https://doi.org/10.23919/DATE.2019.8714856
https://doi.org/10.1145/3431389
https://doi.org/10.1145/3431389
https://doi.org/10.1109/HST.2015.7140252
https://doi.org/10.1109/HST.2015.7140252
https://doi.org/10.1109/FPL.2019.00065
https://doi.org/10.1109/FPL.2019.00065
https://doi.org/10.1145/3489517.3530543
https://doi.org/10.1145/3133956.3133985
https://doi.org/10.1145/3133956.3133985
https://doi.org/10.1109/ICCAD45719.2019.8942150
https://doi.org/10.1109/ICCAD.2017.8203759

	Abstract
	1 Introduction
	2 Threat Models and Attacks
	2.1 Threat Models
	2.2 Oracle-less Attacks
	2.3 Oracle-guided Attacks

	3 Challenges
	3.1 Commercial vs. Open-Source (e)FPGAs
	3.2 eFPGA Fabric Configuration
	3.3 eFPGA Parameters and Security
	3.4 Module Selection
	3.5 eFPGA Integration
	3.6 Security Validation

	4 Existing Redaction Approaches
	5 A Red-Blue Team Exercise: Lessons
	5.1 Scenario
	5.2 Experiences
	5.3 Lessons Learned

	6 Opportunities
	7 Conclusions
	Acknowledgments
	References

