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Abstract: Energy shortage is one of the major concerns in today’s world. As a consumer of electrical
energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an
enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition,
have drawn the regard of world leaders as among the most dangerous threats at present; based on
research in this field, the transportation sector contributes significantly to this pollution. Railway
Energy Management Systems (REMS) are a modern green solution that not only tackle these problems
but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been
trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues,
considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs)
and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this
context, the first main objective of this article is to take a comprehensive review of the literature
on REMS and examine closely all the works that have been carried out in this area, and also the
REMS architecture and configurations are clarified as well. The secondary objective of this article is to
analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison
of them. In order to provide a comprehensive analysis in this field, over 120 publications have been
compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost
reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy,
and ability to handle stochastic behavior and constraints, the strengths and limitations of each
optimization method are elucidated.

Keywords: electric railway; railway energy management system; smart grid; differential evolution
algorithm; literature review; electrical vehicles; mixed-integer linear programming; nonlinear
programming

1. Introduction
1.1. Motivation

Increasing greenhouse gas (GHG) emissions is one of the biggest concerns of world
decision-makers. As a result of their contribution to air pollution and the release of green-
house gases (GHGs) and carbon dioxide (CO2) [1], modern transport systems contribute
significantly to environmental impacts. A total of 93.2% of the sector’s emissions are
caused by road transport, making up 28.3% of the total energy-related CO2 emissions in the
EU28 [2]. In addition, GHG emissions are predicted to be 28% in 2050 [3]. Greener travel
behaviors, can be promoted to reduce congestion and pollution through the introduction of
encouragements for the adoption of low-emission alternative energies and vehicles, using
public transportation, and implementing bicycle and car-sharing/pooling schemes [4].

Many countries and cities rely heavily on rail-based passenger transportation [5].
Despite producing 3.6% of global transport emissions and consuming 2.1% of global
transport energy, rail is considered one of the cleanest modes of transportation [6,7]. Despite
increased global CO2 emissions, railways are one of the few transportation modes with
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decreasing CO2 emissions. Japan and the UK have reduced greenhouse gas emissions by
encouraging and improving low-carbon rail, including electric trains (ETs) and hydrogen
trains (HTs).

Energy shortages and the contradictory nature of economic growth become increas-
ingly evident as the world’s economy continues to expand and demand for energy increases.
As many public buildings serve, at present, multiple functions, energy consumption is
also high, especially in a society with an information economy [8]. Increasing populations,
industries, and services require large-scale transportation [9]. Railway stations are large
public buildings that have the following characteristics: automation of public buildings,
modernization of communication systems, office automation, building automation, etc. [10].
Indeed, the train itself consumes a great deal of energy as it moves and operates. Devel-
oping green energy, particularly renewable energy, to displace fossil fuels is particularly
important, as is establishing a distributed smart energy station with a combination of
photovoltaic and gas power generation systems together with energy storage technology,
offering renewable sources of cold, heat, power, and water to new constructions, enabling
them to achieve ultra-low or zero energy consumption [11]. Also, high-speed railway
stations have high energy efficiency and could be utilized for generating energy from
on-site renewable sources; for instance, by the usage of an integrated renewable energy
source, an energy storage system (ESS), regenerative braking energy (RBE), and a power
grid system are installed [12].

Energy management systems play a crucial role in optimizing the energy consumption
and operational efficiency of railway systems and smart railway networks. With the grow-
ing emphasis on sustainable transportation solutions, railway operators are increasingly
adopting advanced technologies to reduce energy consumption, minimize environmental
impact, and enhance overall system performance. Energy management systems offer a com-
prehensive approach to monitor, control, and optimize energy usage in railway networks,
ensuring efficient operations and the cost-effective utilization of resources.

Figure 1 serves as a valuable visual aid, illustrating the flowchart of this paper and
facilitating a comprehensive understanding of the presented concepts.
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1.2. Literature Review

In terms of energy consumption in ERS, the authors of reference [8] categorized the
power consumption of a system in a railway station in China, as shown in Figure 2. The
system consisted of six parts, each consuming a certain amount of power. To manage
the energy efficiently, the authors applied the basic Railway Energy Management System
(REMS). In this study, Energy Storage Systems (ESSs) in the form of batteries were utilized.
The batteries were charged during off-peak hours, using the primary grid during the night
when tariffs were low, and the PV panels installed in the station at no cost around noon
when the panels produced a large amount of power. During peak hours, the batteries were
discharged via the station grid, resulting in significant reductions in electricity costs.
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The authors of reference [13] conducted a quarterly survey in Milan, Italy, to mea-
sure the active and reactive energy consumption at a railway station. The survey was
conducted at fifteen-minute intervals for different seasons. Ref. [14] introduced a prototype
implementation of an advanced automation architecture for electrical railway systems. The
objective was to transform these systems into cyber-physical systems, enabling enhanced
automation and control. As part of the prototype, two software suites were developed: the
REM-S Offline Suite and the REM-S Online Suite. Ref. [15] conducted a critical analysis
and case study on a Polish railway undertaking to identify methods for enhancing energy
efficiency. The findings revealed that organizational measures were primarily responsible
for the achieved energy efficiency improvements.

Most electric railways rely solely on pantograph-catenary systems for powering trains,
which can lead to technical issues [16,17]. However, researchers have focused on increasing
energy efficiency through the storage of regenerative braking energy on Energy Storage
Systems (ESSs) [18]. The role of an Energy Storage System in urban railway systems, partic-
ularly stationary ultracapacitors and their uncertainties, was discussed in reference [19],
where a strategy was outlined for optimizing energy management in wayside energy stor-
age systems to maximize regenerative braking efficiency benefits. In reference [20], ESS
and microgrid were proposed as hierarchical energy management strategies. An optimal
operational strategy for ERSs can be developed based on the methodology developed by
the authors of reference [21] to optimize costs along with renewable energy resources and
regenerative braking energy.

The integration of metro and electric vehicles into a sustainable transportation system
was analyzed in reference [22]. In reference [23], a DC microgrid incorporating PV, regen-
erative braking energy, and an ESS for charging electric vehicles near train stations was
proposed. The paper examined power management and the effect of ESS size on conversion
efficiency to maximize renewable energy utilization. However, renewable energy was only
used for charging electric vehicles, and station loads and passengers’ changes were not
considered. Ref. [24] suggested a charging method that utilizes regenerative braking energy
from trains to recharge Electric Vehicle (EV) batteries. Additionally, the energy stored in
the batteries can provide auxiliary power to trains during acceleration. Ref. [25] presented
a study on integrating Electric Vehicle Parking lots (EVPLs) with Photovoltaic (PV) systems
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in railways to minimize line losses. The optimal management of EVPLs can reduce line
losses and alleviate load flows. Refs. [26,27] modeled a region with metro, electric vehicles,
and distributed generation, studying how to best utilize regenerative braking energy to
power other trains or EVs. However, issues related to operating over the nominal power
of traction transformers, economic operation problems, and charging units for electric
buses were not addressed. Refs. [28,29] utilized travel profiles to optimize the energy
consumption of electric vehicles. An energy management algorithm for a grid-connected
EV charging park was presented in reference [30], but EV arrival and departure times were
not included. Refs. [31,32] studied the integration of smart parking systems with RESs and
EVs in a virtual microgrid. Ref. [33] proposed a hybrid algorithm for designing energy
management systems, considering an artificial neural network and approximate dynamic
programming. They also researched charging times of electric vehicles to reduce costs for
EV parking lot owners.

Ref. [27] presented an integrated power management system that takes into account
regenerative braking energy to integrate wind, solar, and electric vehicle charging infras-
tructures into MVDC railway microgrids. MVDC ERSs offer promising architectures for
utilizing renewable energy sources and achieving sustainable transportation systems. An
optimal sizing method for storage energy systems and an optimal method for traction
power supply system operation for electric railways were developed in reference [34]. The
control of electrical power over parallel power supply segments was made possible using
an upgraded AC TPSS with power transfer devices in parallel with a neutral section [35].
Ref. [36] presented TPSS energy consumption optimization and power flow optimization
using a hierarchical control model. Ref. [37] explored the coordination of distributed energy
resources and electric urban transportation, as well as cost savings potential. Ref. [38] pro-
posed an energy-saving and voltage-stabilizing control concept for reversible substations
and storage systems. Ref. [39] introduced the integration of Digital Twin (DT) concepts into
Electric Railway Power Systems (ERPSs), highlighting their importance in resolving ERPS
issues. Ref. [24] focused on fuel cell hybrid locomotives (FCHL) and their components,
including fuel cells, batteries, motors, and energy management systems, resulting in a
reduction in hydrogen consumption. Ref. [40] presented several control strategies for ESS
applications, including batteries, flywheels, and electric double-layer capacitors.

Optimization techniques have been explored in various domains like electric vehi-
cles [41], but specific investigations and improvements are necessary for addressing the
challenges and issues in railway systems. Surprisingly, no review paper dedicated to the
application of Railway Energy Management Systems in RS optimization has been identified,
indicating a gap in the existing literature. Accordingly, this review paper is prepared to
make valuable scientific and practical contributions. Through a comprehensive literature
review, it consolidates existing research on integrating renewable energy sources, EV charg-
ing structures, and optimization techniques in smart railways. The paper provides insights
into integration architectures, highlighting the holistic approach needed to enhance energy
efficiency. By exploring various optimization methods, their strengths, limitations, and
applications, it guides future research and decision-making processes. The identification
of challenges and opportunities, along with practical implications for implementation,
offers valuable guidance to practitioners and decision-makers. Moreover, the focus on
sustainability and environmental impact reinforces the potential of these systems to reduce
carbon emissions and promote sustainable transportation solutions. Overall, this review
paper significantly advances knowledge, informs decision-making, and supports the devel-
opment of efficient and sustainable smart railway systems. It can provide a roadmap for
experts and researchers, guiding future studies and method selection, particularly in the
context of multi-objective and multi-functional optimization.

The subsequent sections of the paper are structured in the following manner: The
Architecture of the REM-S Network is given in Section 3. In Section 4, the methodology
and optimization methods are explained. In Section 5, the discussion and comparison,
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considering all the modern (practical) methods in the field of REMS, are presented. Finally,
Section 6 concludes the paper with the overall remarks and results.

2. REMS Modeling Review

Ref. [42] presented an optimal energy management strategy using the MILP method.
The strategy considers the actual installed capability of the rail system, including potential
RBE and ESS, along with a PV generation unit in the parking area. The aim is to meet the
demand for EV and electric bus charging spaces. A stochastic approach is used to account
for uncertain EV behaviors and electricity market prices.

The proposed model shown in Figure 3, includes AC and DC fast charging units and
addresses the energy needs of EVs purchased from the day-ahead market. The analysis
examines the available capacity in lightly loaded railway transformers (150% power for
two hours, based on EN50329 standard [43]) to meet parking lot charging demands and
reduce infrastructure installation costs. Not considering PV, ESS, and RBE results in an
approximately 80% increase in charging costs compared to the case where everything is
considered. Thus, integrating RBE and ESS instead of PV systems reduces costs.
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The study achieves a reliable power system by utilizing traction transformer power at
its rated capacity. However, the study focuses on EV charging as the objective function and
aims to minimize costs from day-ahead electricity markets through service and traction
transformers. Train station energy use and train power demands are not taken into account,
requiring expensive power supply from the main grid. Additionally, the study overlooks
the waste of train regenerative braking energy due to train resistance, which represents a
significant loss. Furthermore, wind turbines are not considered in this study.

Reference [44] proposes a heuristic mixed-integer linear programming model for
railway station energy management. The model utilizes regenerative braking energy (RBE)
and incorporates a stochastic approach. As shown in Figure 4, the study introduces a REMS
model that includes an energy storage system (ESS), RBE utilization, a solar photovoltaic
generator, and an external grid. The objective is to minimize the daily cost of electricity
consumption at railway stations.
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The paper explores bidirectional power flow, allowing the ESS and PV system to
supply power back to the grid. Smart meters installed at the station provide the necessary
communication infrastructure for the REMS to take dynamic action. Three pricing schemes
are investigated, and the pricing signal significantly impacts the station’s daily operational
cost. Additionally, the study considers the station’s internal demand, which is partially
met using RBE obtained from trains. The calculated RBE is influenced by variations in
passenger intensity throughout the day. The model also accounts for the stochastic nature
of PV generation units.

The study highlights that the initial SOE of ESS and PV generation has a significant
impact on grid power. By adopting a stochastic approach, the total daily operational cost of
a smart railway station can be significantly reduced by utilizing ESS, PV, or a combination
of ESS, PV, and RBE. Implementing the REMS model with dynamic pricing signals can
lead to cost reductions of approximately 2–3%, even with ESS alone. Combining RBE,
ESS, and PV proves to be the most efficient option, resulting in cost reductions of over
35%. However, it is worth noting that the study only considers the internal demand of the
station, neglecting wind turbines, transformers, and the charging of electric cars and buses
in EV parking lots.

Reference [45] presents an optimization study focused on a railroad electrical system
that incorporates renewable energy resources (wind and solar PV systems), regenerative
braking capabilities, and hybrid energy storage (batteries and supercapacitors) as shown
in Figure 5. The uncertainties associated with wind and solar PV power are addressed
using probability distribution functions. The optimization problem is solved using a
differential evolution algorithm (DEA). The objective of the study is to minimize the total
operating costs (TOC) of the railroad electrical system while considering various equality
and inequality constraints. The amount of power produced by wind energy generators
(WEGs) varies depending on wind speed, and the efficiency of solar PV is influenced by
natural conditions such as solar irradiation and temperature.

The findings reveal that operating railroad electrical systems in a multi-source envi-
ronment with RERs, regenerative braking, and hybrid storage systems leads to increased
electrical energy returned to the main utility grid, resulting in significant cost reductions.
However, the study does not account for uncertainties related to RBE, which is influenced
by the number of passengers throughout the day and has a substantial impact on electricity
production from RBE. Furthermore, the study does not explore train demand, station load
consumption, EV charging, and the operation of transformers. These factors were not
considered in the analysis.
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In reference [46], optimal railway systems with regenerative braking are studied within
the smart grid framework using a non-linear programming approach. The model incorpo-
rates renewable energy resources (RERs) like wind and solar PV power, along with electrical
storage systems and supercapacitors. The aim is to enhance energy efficiency through
regenerative braking and to optimize the design of railway electric infrastructure, including
energy storage systems and reversible substations. The study shares similar characteristics
with reference [45]. The results show that the incremental integration of RERs, electrical
storage systems, and regenerative braking energy improves optimization and reduces the
total operating cost (TOC). The simulation results also compare the performance of the
GAMS solver for non-linear programming with the differential evolution algorithm (DEA).
The GAMS v.24.1.3 software proves more effective in solving the optimization problem.
However, the study overlooks the uncertainties related to regenerative braking energy,
the operation of transformers, and EV charging, despite examining PV and wind power
generation.

Reference [47] introduces an electrical railway system (ERS) that utilizes clustering
algorithms for optimal stochastic energy management in AC railway system as shown in
Figure 6. The study employs a backward scenario reduction algorithm and explores energy
management systems and regenerative braking energy (RBE). The interaction between the
utility grid and ERS is examined, considering fluctuations in passenger numbers.

The objective function in the proposed method is to minimize the energy production
cost of power plants supplying energy to the integrated energy systems. To address
computational efficiency, a scenario reduction strategy is proposed, which takes into
account the probabilistic behaviors of renewable energy resources (RERs). Figure 7 presents
a flowchart illustrating the scenario reduction process.

According to the comparative analyses, the proposed method performed well in
studying the uncertainty of ERSs. The results of the tests also revealed the advantages
of various ESSs. In simulations, the proposed energy management scheme is shown to
have effective control over the interplay between the utility grid and the ERS. Furthermore,
sensitivity analyses were conducted to determine how an ERS’s operation cost varies
with the number of passengers. Although uncertainties of PV, wind turbine, and ESS are
examined, the stochastic behavior of RBE was not considered, which has a great impact on
the power generated by train and power balance in the grid. The operation of transformers,
EV charging, station load, train demand, and pricing scheme are neglected as well.
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Reference [48] proposes a stochastic bi-objective model for a multi-energy hub system
in a smart railway station shown in Figure 8. The aim is to reduce operational costs and
carbon emissions. The energy hub system (EHS) as shown in Figure 9 consists of three sub-
energy hubs for power, heating, and cooling. Regenerative braking captures energy during
train deceleration to power the EHS. The model considers uncertainty in photovoltaic and
regenerative braking power generation. To increase flexibility, a demand response program
(DRP) is incorporated, and a fuzzy logic-based algorithm is used to identify the optimal
solution. The proposed energy hub system supplies power, heating, and cooling to the
railway station’s commercial building and fulfills the internal demands of both facilities.
Conversion devices like electrical absorption, gas boilers, gas turbines, and storage systems
(ES, HS, and CS) are employed to ensure a reliable energy supply for the EHS.

The proposed model in reference [48] has two objective functions: minimizing energy
exchange costs with external resources and reducing carbon emissions. The model demon-
strates significant reductions in operating costs and carbon emissions through case studies.
For example, implementing a demand response program (DRP) reduced operation costs by
4.7% and carbon emissions by 2.6%. Utilizing recovered energy reduced operating costs by
14.2% and carbon emissions by 11.6%. However, the model neglects uncertainties in energy
storage systems (ESS) and does not consider wind turbine power generation, operation of
transformers, EV charging, train demand, and pricing schemes.
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Several studies, such as references [49,50], have investigated these issues. The authors
of reference [51] propose a power optimization controller that integrates a hybrid energy
storage system (HESS) and photovoltaic (PV) generation system with AC railway traction
substations as shown in Figure 10. Their approach uses high-level and low-level strategies
to control energy flow and power distribution. Reference [52] focuses on the power supply
system for high-speed rail (HSR) and heavy-haul railroads. Traditional power supply
systems face limitations due to neutral sections (NS), causing issues like overvoltage and
speed loss.

By considering electric multiple unit (EMU) operation errors and photovoltaic panel
performance, an optimal configuration and power exchange for the power supply arms and
HESS charging/discharging are determined. The proposed power optimization controller
facilitates power exchange and regenerative braking energy utilization, reducing operation
and management costs.

The objective in reference [51] is to minimize electricity costs, demand costs, and
punishment costs in an operating cycle. High-level optimization aims to reduce the gap
between purchased power and optimization outcomes, while low-level optimization aims
to decrease power fluctuations and compensate for mismatches between PV generation
and load through power flow controllers (POC) and hybrid energy storage systems (HESS).
The effective utilization of regenerative braking power led to a 47% reduction in substation
operation costs. However, wind turbines, EV charging, station load demand, and uncer-
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tainties of PV, regenerative braking energy (RBE), and energy storage systems (ESS) were
not considered.
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As demonstrated in Figure 11, reference [52] discusses energy management for co-
phase traction substations (CTSSs) by coordinating PV, HESS, power flow controllers
(PFCs), and energy transactions with the power grid to minimize operating costs and
handle uncertainties. A two-stage robust optimization model is proposed to address PV
and traction load uncertainties, aiming to reduce daily operating costs and maximize the
revenue from excess energy sales. The model considers HESS charging/discharging, grid
energy transactions, and power flow variables. The proposed scheme ensures robustness
against PV output and traction load uncertainties. However, the study does not consider
wind turbines or EV charging.
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According to reference [49], SRSs can be optimally operated using probabilistic clus-
tering. The k-means algorithm is applied to generate several scenarios using Monte Carlo
Simulations (MCS). Using this method, the Tehran Urban and Suburban Railway Operation
Company implements an actual SRS. As shown in Figure 12, the SRSs studied have the
following structures. In the illustration, the SRS is shown to be able to exchange energy
with the utility grid and participate in the daily power market. In order for the SRS to
operate optimally, it is controlled by the energy management system (EMS). Historical data
from the EMS database, the technical specifications of the elements, demand for power, etc.,
are communicated with the utility grid to calculate the amount of power exchanged.
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AC and DC energy systems can benefit from multi-level energy management systems
(EMS) that can enhance control accuracy and economic energy management [50,53]. Indeed,
in the future, railway power supply systems will use DC and AC microgrids along with
the energy hub concept [54]. EMS should utilize primary, secondary, and tertiary control
strategies. In this study, in order to minimize the daily operating costs (DOC) of the SRS,
energy prices are considered as the objective function. Based on test results, the scenario-
based method’s related error is less than 4.4% under real-time pricing, and computation
time is dramatically reduced. Additionally, sensitivity analysis has been performed in order
to determine the potential influence of exchange power constraints and ESS capacity on
SRS performance. However, this paper did not address wind turbines and transformer
operations, as well as EV charging and ESS stochastic behavior.

According to Table 1, the studies in the specified literature are compared in detail. A
better understanding of the gap in the existing literature has been gained as a result.
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Table 1. Different REMS architectures review.

Research Concern Elements Stochastic Behavior (Uncertainties)

Ref. Year Optimization
Method PV Wind RBE ESS Operation of

Transformers
EV

Charging
Station
Load

Train
Demand

Pricing
Scheme PV Wind RBE ESS

[42] 2022 MILP 3 5 3 3 3 3 5 5 3 3 5 3 3

[44] 2018 Heuristic MILP 3 5 3 3 5 5 3 5 3 3 5 3 3

[45] 2019 DEA 3 3 3 3 5 5 5 3 3 3 3 5 3

[46] 2021 NLP/DEA 3 3 3 3 5 5 5 3 3 3 3 5 3

[47] 2022 MCS 3 3 3 3 5 5 5 5 5 3 3 5 3

[48] 2021 DRP/MILP 3 5 3 3 5 5 3 5 5 3 5 3 5

[51] 2020 MILP 3 5 3 3 3 5 5 3 3 5 5 5 5

[52] 2022 MILP/C&CG 3 5 5 3 3 5 3 3 5 3 5 5 5

[49] 2022 MCS 3 5 3 3 5 5 3 3 3 3 5 3 5

[8] 2018 ------ 3 5 3 3 5 5 3 5 5 5 5 5 5

[13] 2018 ------ 5 5 5 5 5 5 3 5 5 5 5 5 5
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3. Architecture of the REM-S Network

Due to the dramatic increase in electricity usage from distributed resources in Eu-
ropean railways [55], it is essential to update energy management methods consistently.
In smart grid solutions (SGs), distributed energy management systems (EMSs) are com-
monly employed [56]. Several distributed systems, such as home energy management
systems [57,58], smart city districts, and smart cities, are attempting to optimize energy
scheduling. For instance, in reference [59], SGs are optimized to meet various load re-
quirements and DERs, and reference [56] proposes a platform for smart buildings. In
reference [56], the authors demonstrate the SG concept and its tools and framework can be
applied to railway systems through the REM-S architecture.

The automation architecture implemented by REM-S is divided into two types: cen-
tralized and decentralized. It is possible to divide the railway system into local sections
based on its specifications. Additionally, optimization targets can be defined locally or
globally. A hybrid centralized–decentralized concept for REM-S was chosen based on these
two major elements, together with other factors such as the degree of system complexity,
the size of the system, and the structure and dependability of the different layers of the
system. Hybrid centralized–decentralized REM-S architecture executes global EMS in a
control center based on the entire railway network for the following day; at the same time,
local EMS takes place in local subnetworks every 15 min.

A centralized–decentralized automation architecture can be designed using existing
SG standards, communication protocols, and ICT technologies. Based on this, the railway
distribution system is modelled as an SG in the architecture presented here [60]. Fur-
thermore, it provides flexibility in terms of time horizons. The Smart Grid Architecture
Model (SGAM) was initially created to assist in the standardization procedure for the SG,
to possibly be applied to design SG architectures based on five types of interoperable layers
(business, function, information, communication, and components), as well as zones and
domains [61]. SGAM is illustrated through layers, zones, and domains in Figure 13.
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REM-S Automation Concept

Consumption optimization is one of the main purposes of REMS. The idea behind
consumption optimization is to reduce electricity consumption on the public grid by
regenerating or sparing energy by certain actors involved in the railway system and
distributing it to other actors. Considering the large, complex, uncertain, and dynamic
nature of railway loads, energy management must be based on subnetwork segmentation
to address the distributed essence of the railroad system [56], and hybrid centralized–
decentralized implementation is required.
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By using an intelligent interface substation, each subnetwork is linked to the control
center, which, in turn, connects it to the electricity market. Upon receiving the global opti-
mization plan from the control center, subnetworks implement it locally in their own areas,
and adjust for any unforeseen discrepancies. Regarding power and energy optimization in
the border area, each subnetwork coordinates with neighboring subnetworks. Subnetwork
automation and control are developed using multiagent systems (MAS) technology [62].
There is an intelligent entity for each energy-related component, called agent, which is
capable of communicating with ISST, and is intelligent enough to decide whether to follow
the directives or suggestions it receives.

Subnetworks consist of the following operational entities:

1. intelligent substation (ISST): To send commands or suggestions to all elements asso-
ciated with energy within the subnetwork, ISST is in communication with them. In
every elements associated with energy, there is an intelligent entity, called an agent,
that can communicate and make decisions in response to commands from ISST.

2. Reversible Substations (RSST) and Nonreversible Substations (SST): Several of them
negotiated with the main subnetwork agent to connect to the public grid as fixed
agents.

3. Wayside energy storage systems (ESSs): Assumed to be fixed agents.
4. Distributed Energy Resources (DERs): Rail-related renewable resources situated

within the subnetwork areas are also considered fixed agents.
5. Dynamic On-Board Energy Managers (DOEMs) Installed on the Trains: Their respon-

sibilities include energy management in trains along with contacting subnetworks
ISST for recommendations. It traverses through subnetworks and maintains commu-
nication with each individual subnetwork’s main agent.

6. External Consumers (ECs): In advanced multi-agent systems (MAS), fixed agents
are established as workshops, stations, or other loads, such as electric vehicle (EV)
charging stations.

It makes sense to adopt a similar time structure for optimization, yielding three
approaches, given that the “railway system” interacts with the public grid and its market
(electricity market) which is depicted in Figure 14.
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1. Day Ahead Optimization (DAO): Analyzes the performance of the network for the
next day, and encompasses power profiles, energy and power procurement, as well as
power sales, in the next 24 h.

2. Minutes Ahead Optimization (MAO): Predicts and optimizes the subnetwork status
for the next 15 min. In the same manner as the DAO profile, MAO interacts with
all agents in the subnetwork, considering power limitations within the subnetwork,
as well as excess supply and demand from neighboring subnetworks, the system
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proposes actions to subnetwork agents, such as SSTs, RSSTs, DERs, ESSs, or DOEMs,
for the upcoming 15 min interval.

3. Real-Time Operation (RTO): By leveraging the real-time status and behavior of all
subnetwork elements, it successfully meets the calculated 15 min MAO profiles.

4. Optimization and Mathematical Methods

Power industry operations are strongly affected by the move to a competitive market.
To run the system and control it efficiently, fast and robust optimization tools are more criti-
cal than ever. Optimization methods are widely used in power system analysis, planning,
and operation. Optimized power flow (OPF) is an important application for dispatching
engineers to handle large-scale power systems efficiently and effectively. Mathematical
algorithms are utilized to solve global power system optimization problems so that the
power system can be kept at the desired constraints. According to mathematic definitions,
OPF is modelled as a nonlinear programming (NLP) problem whose output is usually
minimized based on equality and inequality constraints applied to the expenses related
to fuel consumption for thermal generating units and the deviation in voltage at the load
bus [63].

As a computational problem, OPF represents a large-scale non-convex NLP with
both nonlinear constraints and a nonlinear objective function. Discrete control parameters
such as transformer taps and shunt capacitor banks transform the OPF problem into a
mixed-integer NLP problem. The differential algorithm equations are also expressed if
transient stability constraints are taken into account.

Some traditional optimization methods were used to solve the OPF problem in the
past, including quadratic programming, Newton method, dynamic programming, de-
composition technique, and interior point method, which are not used that much today.
Nevertheless, they present some difficulties when it comes to handling non-linear, discrete-
continuous functions and constraints. Additionally, traditional techniques have several
disadvantages such as being time-consuming and containing more constraints in the math-
ematical formulation.

The application of evolutionary algorithms (EA) in various engineering fields is exten-
sive [64–67], and they have proven to be particularly useful in electric railway systems [68].
Also, OPF problems have been solved using several modern stochastic algorithms to over-
come these shortcomings. An evolutionary optimization technique that is commonly used
is the Genetic Algorithm (GA) [69]. Similarly, it happens in Particle Swarm Optimization
(PSO), which uses inertia weights, as well as social and cognitive parameters [70,71]. In
the same way, Artificial Bee Colony (ABC) requires optimal controlling parameters of a
limited number of bees (employed, scout, and onlookers) [72]. Harmonic Search (HS) takes
into account the rate at which harmony memory is considered, the rate at which pitch is
adjusted, and the number of improvisations [73].

In Table 2, optimization methods are classified into two categories: traditional and
modern (practical) methods. We will discuss a few of the traditional methods, and explain
the modern methods in detail. Since the system in REMS is nonlinear and time-varying,
we choose modern methods which are entirely used in Energy Management Systems for
Smart Electric Railway Networks in the following subsections.

Table 2. Optimization methods in REMS.

Traditional Modern (Practical)

Quadratic Programming Differential Evolution Algorithm
Newton Method Demand Response Program

Dynamic Programming Monte Carlo Simulation
Decomposition Technique Mixed integer linear programming

Interior Point Method Nonlinear Programming
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4.1. Traditional Optimization Methods

Quadratic Programming (QP) Methods can be classified as shared characteristics with
linear and nonlinear programming algorithms. It is necessary to evaluate and compare
a variety of QP algorithms to select the most promising method for solving Quadratic
Reactive Power Dispatch (QRPD) [74]. In railway energy management systems, QP can be
employed to optimize the distribution of energy resources, such as power allocation, based
on predefined objectives and constraints. It helps find the optimal solution that minimizes
energy consumption while satisfying operational requirements.

In Newton’s method, in every iteration, the Lagrangian function is solved by a direct
simultaneous solution for all unknowns. The Lagrangian is approximated by a quadratic
approximation each time it is iterated. It takes several iterations for any set of binding
constraints to reach the Kuhn–Tucker conditions. The identification of binding inequalities
is the hardest challenge in algorithm development [75]. Newton’s method is an iterative
numerical technique used to find the roots of equations or optimize functions. In the
context of railway energy management, Newton’s method can be applied to optimize
energy-related parameters, such as train speed profiles, acceleration/deceleration patterns,
and traction control systems. By iteratively refining these parameters, it aims to minimize
energy usage while maintaining operational requirements.

Mathematically optimal solutions are generated by dynamic programming. Further-
more, dynamic programming aligns sequences that are not related. Statistics also require
clever theory to determine when a score is statistically significant [76]. An economic dis-
patch problem can be solved mathematically using a Decomposition Technique. Several
subproblems concerning specific power system areas are decomposed from the system’s
optimization problem [77]. In some optimal power flow applications, the interior point
method was found to be very effective due to the primal-dual algorithm and the numerical
results for large-scale networks (1832 and 3467 bus systems) in the past [78].

4.2. Modern (Practical) Optimization Methods
4.2.1. Modified Differential Evolution Optimization Algorithm

Differential evolution (DE) is a stochastic direct search optimization method and it
was presented as a heuristic optimization method [79]. With differential evolution, a special
differentiation operator encodes the evolution algorithm in a floating point for global
optimization. By employing this operator, independent offspring were created instead of
classical crossovers or mutations [79–84].

DE solves real-valued problems using a population ‘P’ of population size ‘NP’ floating
point-encoded individuals where the individuals are D-dimensional variable vectors that
evolve over ‘G’ generations to reach an optimal solution [63], which means:

P = [x1(G), . . . . . . . . . . . . . . . , xNP(G)] (1)

xi(G) = [x1i(G), x2i(G . . . . . . . . . , xDi(G)] i . . . , 2, . . . . . . , NP (2)

It is recommended to uniformly randomize individuals within the defined minimum
and maximum parameters as constraints in order to better cover the entire search space by
the initial population.

xmin
j =

{
xmin

1 , . . . . . . . . . , xmin
D

}
and xmax

j = {xmax
1 , . . . . . . . . . , xmax

D } (3)

During optimization, mutations, crossovers, and selections are carried out. It is also
necessary to tune a number of optimization parameters. They are commonly referred to
as control parameters. Essentially, there are only three main parameters in the algorithm,
which are the mutation constant ‘F’, crossover rate ‘CR’, and population size ‘NP’. There
are two other parameters, the dimension of problem ‘D’, which scales the difficulty of the
optimization task; the number of generations (or iterations) ‘G’, which can act as a stopping
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condition; and the lower (xL
j ) and upper (xU

j ) bounds of the jth decision parameter, which
limit the possible areas [63].

The Computational Flow of DE

As shown in Figure 15 [35], DE follows a simple cycle of stages. These stages can be
accomplished as follows:
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Step 1: Initialization

Problem-independent variables are initialized in their feasible ranges at the beginning
of a DE run. In other words, if the jth variable of the given problem has its lower and upper
bounds as xL

j and xU
j , respectively, then initializing the jth component of the ith population

may be carried out as follows:

xi,j(0) = xL
j + rand(0, 1).

(
xU

j − xL
j

)
(4)

Each value of j generates a random number between 0 and 1 that is uniformly dis-
tributed between 0 and 1.

Step 2: Mutation

Evolution is carried out through mutation, crossover, and selection operators after
the population is initialized. Different strategies are employed for crossover and mutation.
How the scheme works in its simplest form is explained here in detail. Introducing new
parameters into the population is the responsibility of the mutation operator. Equation (5)
explains the process of the mutation operator, which generates mutant vectors by modifying
a vector (xi1) chosen randomly using the difference between two other randomly selected
vectors (xi2 and xi3).

This condition requires at least four individuals to satisfy since all these vectors must
be different. A user-defined constant (F) is applied to the difference vector in the range of
0.4–1.0 to control the perturbation and improve convergence. The scaling constant is also
known as a differentiation (or mutation) constant. xi(G) (i = 1, 2, . . .. . ., NP) of generation
G (G = 1, 2, . . ., G), of the population is changed by mutating the target vector. When a
population member, xi(G) of generation G is changed, a trial vector, Vi(G + 1) is created
by mutating a target vector [84].

DE schemes are differentiated by the method used to create these donor vectors. An ith
member’s trial vector Vi(G + 1) is created based on three-parameter vectors x1, x2, and x3,
selected randomly from the current population but not matching xi. Once the trial vector
Vi(G + 1) is obtained, a scalar number F is used to scale the difference between any two of
the three vectors. In most cases, F is between 0.4 and 1.0. In other words, for each vector,
the jth component is expressed as follows:

Vi,j(G + 1) = xi1,j(G) + F.
[
xi2,j(G)− xi3,j(G)

]
(5)
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Step 3: Crossover

Crossover operators increase the diversity of the population by exchanging parts of
the donor vector with those of the current member xi,j(G). No crossover is performed
when a randomly picked number goes beyond the first CR value and the remaining vari-
ables remain unchanged. The literature offers two types of crossover operators: binomial
crossover and exponential crossover. As a result of binominal crossover, the generated
child Ui,j(G) is [84]:

xi,j(G + 1) = xi,j(G) if randj,i ≤ CR (6)

Ui,j(G) = xi,j(G) if randj,i > CR (7)

In this case, CR is the crossover rate, whereas Ui,j(G) is the child that will compete
against the parent xi,j(G).

Step 4: Selection

Comparing the trial individual Ui,j(G + 1) with the corresponding Vi,j(G + 1) deter-
mines whether it should enter the next generation. During the selection process, the trial
individual is assessed against the corresponding one on the basis of fitness survival:

xi,j(G + 1) = Ui,j(G + 1) if Ui,j(G + 1) ≤ xi,j(G) (8)

xi,j(G + 1) = xi,j(G) otherwise (9)

Ref. [47] utilizes the Differential Evolution Optimization Algorithm in Electrical Rail-
way Systems.

4.2.2. Demand Response Program

There are a number of Demand Side Management (DSM) activities, including Demand
Response (DR), which is considered a subset of the broader category of DSM [85–87].
According to the US Department of Energy, DR is a tariff or program intended to motivate
customers to reduce their electric consumption based on changes in the cost of electricity. It
is also intended to provide incentive payments intended to reduce electricity consumption
at times of high market prices or in times of impaired grid reliability [88].

According to this definition, DR should be appealing to consumers. In this way, they
can manage their power consumption preferences so that consumers and the power grid
will benefit [89]. It also improves the efficiency and reliability of the power grid by allowing
power demand to be adapted to time pricing or incentives [90,91]. It is crucial to design an
efficient DR program in order to deploy a smart grid [92].

There are three categories of DR schemes, as illustrated in Figure 16 [93]. DR schemes
are classified into centralized and distributed in the first category based on the control
mechanism. During the distribution mode, utility information is collected from interactions
between users, while in the centralized mode, consumers communicate directly with the
utility [94].
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According to their motivations for reducing power consumption, DR schemes are
classified into the second category [95]. Generally, these motivations can be classified
as time-based DR and incentive-based DR. Time-based DR (also known as price-based
DR [96]) engages consumers in time-varying payments based on the price of electricity at
different times. Meanwhile, incentive-based DR schemes offer fixed or variable payments
to customers to motivate them to reduce their electricity consumption during times of
stress [97], but customers are also subject to specific restrictions or penalized for not
participating.

As a final category, task-scheduling DR schemes (also known as energy or power
scheduling DR schemes) employ the decision variable to identify DR schemes [98]. The key
function of task scheduling DR is to control the activation time of requested loads, which
can be moved to peak periods [99]. It is possible to reduce power consumption during
peak-demand hours by using energy management-based DR schemes [98].

It is not enough to just implement DRP in Energy Management for Smart Railways.
As ref. [48] mentions, in order to enhance the adaptability of the energy hub system (EHS),
DRP is integrated into the model. Afterwards, a fuzzy technique can be employed to choose
the best solution.

4.2.3. Monte Carlo Simulation

In a process where random variables interfere, Monte Carlo simulation is used to
model the probability of different outcomes. Uncertainty and risk are understood using this
technique. A variety of problems can be solved using a Monte Carlo simulation, including
in the fields of investing, business, physics, and engineering. It is also known as a multiple
probability simulation. Forecasting or estimating with significant uncertainty can use an
average instead of an uncertain variable. Instead, Monte Carlo Simulation uses multiple
values and averages them.

Monte Carlo acknowledges a problem for any simulation method: random variables
interfere with pinpointing the probability of varying outcomes. As a result, Monte Carlo
simulations focus on repeatedly taking random samples. The Monte Carlo simulation
assigns a random value to the variable that is under uncertainty. This is followed by
running the model and providing a result. As the variable is assigned many different
values, this process is repeated numerous times. Estimates are obtained by averaging the
results after the simulation is complete [100].

Random Number Generators Based on Linear Recurrences

The core of all Monte Carlo methods requires a uniform random number generator,
which generates an infinite stream of random numbers U1, U2, . . . in the interval (0, 1). The
prevalent approach for generating uniformly distributed random numbers is to use recur-
rence relations based on simple linear equations [101]. Linear congruent generators (LCGs)
produce output streams with the form Ut = Xt/m, where Xt is a linear recurrence state:

Xt = (aXt−1 + c) mod m, t = 1, 2, . . . (10)

A modulus, multiplier, and increment are defined as m, a, and c, respectively. Applying
the modulo-m operator in Equation (1) means that aXt−1 + c is divided by m, and the
remainder is taken as the value for Xt.

Multi-recursive generators (MRG) of order k produce defined by a k-dimensional
vector Xt =

(
Xt−k+1 + . . . + Xt)T that satisfies the linear recurrence rule of Xt:

Xt = (a1Xt−1 + . . . + akXt−k) mod m, t = k, k + 1, . . . (11)

In the case of some moduli and multipliers I = 1, . . ., k.
Almost all multipliers should be zero in order to produce fast algorithms. As in the

LCG case, when m is a large integer, Ut = Xt/m yields a stream of random numbers.
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Additionally, m = 2 makes the generator state represented by a binary vector of length k.
This produces the following output function:

Ut = ∑w
i=1 Xtw+i−12−i (12)

For some w < k, for instance, w = 32 or 64. There are various modulo 2 generators, most
notably Mersenne twisters, which use feedback shift registers [102,103]. It is possible to
combine several simpler MRGs to produce MRGs with excellent statistical properties [104].

1. Generating Random Variables: Inverse–Transform Method

Assume X is a random variable with a cumulative distribution function (cdf). Then
F−1 represents the inverse of F and U represents the uniform random number (0, 1), which
means U ∼ U(0, 1). Therefore:

P
(

F−1(U) ≤ x
)
= P(U ≤ F(x)) = F(x) (13)

An inverse–transform method is employed to generate a random variable X using cdf
F: draw U ∼ U(0, 1) and return X = F−1 (U).

â Generating Random Variables: Acceptance–Rejection Method

1. Generate X ∼ g; that is, draw X from pdf g.
2. Generate U ∼ U(0, 1), independently of X.
3. If U ≤ f (x)/(Cg(x)) output X; otherwise return to step 1.

1/C is the probability of acceptance in the acceptance–rejection method. The acceptance–
rejection method can also be used to generate random vectors in X ∈ Rd.

2. Generating a Markov Chain

1. Draw X0 from its distribution. Set t = 0.
2. Draw Xt + 1 from the conditional distribution of the Xt + 1 given Xt.
3. Set t = t + 1 and repeat from Step 2.

As a result, the conditional distribution of (Xt+s|Xt) is time-homogeneous in a vast
majority of cases of relevance. There are various types of diffusion processes, all of which
satisfy the Markov property and are random processes with continuous paths and continu-
ously varying time parameters.

â Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is a general method for sampling
from any type of distribution. In this technique, we generate a Markov Chain whose
limiting distribution is the desired distribution.

Referring to reference [105], the MCMC method can be applied to the following
settings. In the case of arbitrary multidimensional PDFs, let us attempt the following:

f (x) =
p(x)

Z
, x ∈ X (14)

A positive function p(x) is represented by a known or unknown normalizing constant
Z. Considering q(y|x)) as an instrumental density or proposal, describes how to move from
state x to state y using a Markov transition density.

Monte Carlo for Optimization: Stochastic Approximation

• Initialize x1 ∈ X. Set t = 1.
• Obtain an estimated gradient ∇S(xt) of S at xt.
• Determine a step size βt.
• Set xt+1 = Πx(xt − βt∇S(xt)).

If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from Step 2.
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In stochastic approximation algorithms, many theorems exist about convergence.
Specifically, for arbitrary deterministic positive sequences β1, β2, . . . such that:

∑∞
t=1 βt = ∞ , ∑∞

t=1 β2
t < ∞ (15)

A random sequence x1, x2, converges to the minimizer x∗ of S(x) in the mean square
sense if there are certain regularity conditions [106]. If ∇S(xt) is an unbiased estimator of
∇S(xt) in xt+1 = Πx(xt − βt∇S(xt)), an algorithm for stochastic approximation is known
as the Robbins–Monro algorithm.

An algorithm called the Kiefer–Wolfowitz algorithm is used to estimate ∇S(xt) using
finite differences. Stochastic counterparts (also called sample average approximations) are
an alternative approach to stochastic approximation if:

min
x∈Rn

S(x) (16)

where
S(x) =

1
N ∑N

i=1 S(x, ξi) (17)

is a sample average estimator of S(x) = ES(x, ξ) on the basis of N samples ξ1,. . .,ξN . An
estimate of the solution x∗ to the original problem min

x∈X
S(x), is taken as a solution x∗ to this

sample average version. It should be noted that min
x∈Rn

S(x) is a deterministic optimization

problem that can be solved with any of the standard deterministic optimization methods.
The authors of refs. [42,44] applied this method in order to implement their electrical
railway model.

4.2.4. Mixed Integer Linear Programming

â LP Computability

While Quadratic Programming (QP) models are relatively straightforward in solving
the problems, Linear Programming (LP) models are generally considered more computa-
tionally practical. The software designed specifically for solving Linear programming (LP)
models exhibit a higher level of sophistication when compared to quadratic programming
(QP) models. As a result, there are numerous commercial LP solvers available, and they are
generally considered to be more reliable than QP solvers. In general, LP solvers are capable
of finding solutions within a short time frame, typically in seconds, whereas QP solvers
may require more time [107].

A scenario refers to a potential situation that could occur at the specified time. Specif-
ically, it represents a plausible outcome of asset returns at the designated time. Taking
into account events and circumstances between the investment period and the target time,
various alternative scenarios may unfold. Scenarios have different probabilities and may
be more or less likely to happen. Here, the basis of an accurate preliminary analysis is
assumed. We consider T different scenarios St, t = 1, . . ., T, that are possible at the target
time.

The probability scenario t will happen in time represented as Pt and has the following
cumulative relation:

∑T
t=1 Pt = 1 (18)

For each random variable RJ , J = 1. . ., n, its realization rJt under scenario t exists and
is known. Indeed, a scenario is defined by the set of return of all assets (rJt). In the same
way, the correlation among the rates of return of the assets are captured by the concept of
scenario.

The expected return of asset j is calculated as Equation (19):

µJ = ∑T
t=1 Pt.rJt (19)
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Determining the scenarios and their probabilities and calculating the values of the
rate of return rJt of each asset j under each scenario t is essential. One of the most vital
notes that we have to consider while solving an LP is that the number of scenarios has to
be sufficiently large, until the statistical conditions are satisfied.

Each portfolio x represents a corresponding random variable Rx which characterizes
the portfolio rate of return and can be obtained by following equation:

Rx = ∑n
J=1 RJ .XJ (20)

The step-wise cumulative distribution function (cdf) of Rx is defined as:

Fx(ξ) = P(RX ≤ ξ) (21)

is the return of a portfolio x in scenario t that is computed as Equation (22). This parameter
is a kind of efficiency.

yt = ∑n
i=1 rJt.xJ (22)

Equation x indicates the expected return of the portfolio µx as a linear function of (23).

µx = E{Rx} =
T

∑
t=1

Pt.yt =
T

∑
t=1

Pt(
n

∑
J=1

rJt.xJ) =
n

∑
J=1

xJ

T

∑
t=1

PtrJt =
n

∑
J=1

µJ .xJ (23)

In the given context, the scenario can be described as an instance of a multivariate
random variable that represents the rates of return of various assets. We can view the set of
scenarios as a discretization of this multivariate random variable. When the returns are
observed and quantized according to the specified scenarios, they become discretized.

It is important to highlight that a risk or safety measure can be computed using Linear
Programming (LP) if the portfolio optimization model adopts a linear structure when
applied to discretized returns. By using Equation (24), risk measures ∂(x) can be defined as:

∂(x) = min
{

aTv : Av = Bx, v > 0, x ∈ Q} (24)

In this formula, v is a vector of auxiliary variables, and x is the portfolio vector. b = Bx
is the parametric right-hand side vector.

The corresponding safety measures are determined using a comparable LP formula
as follows:

µ(x)− ∂(x) = max{∑n
J=1 µJ .xJ − aTv : Av = Bx, v > 0, x ∈ Q (25)

â MILP Computability

Linear Programming (LP) stands as one of the fundamental optimization techniques
extensively employed in various practical applications. The advantage of LP over alter-
native methods lies in the existence of proficient software packages capable of effectively
solving large-scale problem instances. When formulating an LP problem, the software dili-
gently explores the solution space to identify the optimal solution. However, in cases where
the problem formulation necessitates the presence of inherently integer or binary variables,
the LP problem transforms into a Mixed-Integer Linear Programming (MILP) model.

When dealing with large Mixed-Integer Linear Programming (MILP) problems, heuris-
tics become indispensable. The extensive literature offers a wide range of heuristic and
metaheuristic approaches to choose from. For a specific problem, a tailored heuristic in-
spired by these schemes can be designed and implemented. Numerous research papers
have been dedicated to developing problem-specific heuristics. However, this approach
can pose challenges for portfolio optimization due to the necessary expertise and resource-
intensive nature of designing and implementing problem-specific heuristics. Even minor
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variations in the problem may necessitate re-designing the heuristic, incurring additional
time and cost.

To address these challenges, general-purpose methods offer advantages as they can be
applied to a broad class of MILP problems. An optimal, versatile heuristic should possess
efficiency, enabling it to effectively tackle extensive MILP problems within a reasonable
timeframe, and effective, providing solutions close to optimality. The desire for heuristics
that are both efficient and effective, along with the availability of software able to efficiently
process small MILP problems, has given rise to the emergence of matheuristics methods.
Matheuristics combine heuristic strategies with the solution of small MILP subproblems,
leveraging existing software for the latter.

In this context, we introduce Kernel Search, a flexible and versatile matheuristic
method that requires minimal implementation effort. It offers a general approach that can be
applied to a wide range of MILP problems, making it a valuable tool for optimization tasks.

Mixed Integer Linear Programming (MILP) represents a potent mathematical pro-
gramming approach employed to optimize intricate linear systems. In MILP models, the
objective function is optimized by adjusting the values of decision variables while ad-
hering to specific constraints that govern the permissible values of these variables. This
approach enables the identification of optimal solutions that balance the objectives of the
problem with the given constraints, thereby aiding in the efficient resolution of complex
optimization challenges.

A mixed integer linear program (MILP, MIP) is of the form:

min CT .x
Ax = b
x > 0

xi ∈ Z ∀i ∈ Z

(26)

If all variables need to be an integer, t is called a (pure) integer linear program (ILP,
IP). If all variables need to be 0 or 1 (Binary, Boolean), it is called a 0–1 linear program.

Including integer variables increases the modeling power enormously, at the expense
of more complexity. LPs can be solved in polynomial time with interior-point methods (el-
lipsoid method, Karmarkar’s algorithm). Integer Programming is an NP-hard problem, so:

• There is no known polynomial–time algorithm.
• There are little chances that one will ever be found.
• Even small problems may be hard to solve.

â Heuristic MILP

This section introduces the Kernel Search, a versatile metaheuristic that can be em-
ployed for a wide range of MILP problems and their variations. The proposed approach
is suitable for minimizing MILP problems and encompasses multiple sets of variables.
To illustrate the performance of the Kernel Search, a basic variant called Basic Kernel
Search (BKS) is presented. BKS serves as a foundational version that demonstrates the core
principles and effectiveness of the Kernel Search metaheuristic.

The BKS (Basic Kernel Search) approach involves solving a sequence of constrained
problems. In this sequence, the complete set of assets is denoted as N = {1, . . ., n}. The
MILP(K) formulation is employed to represent the MILP problem that is constrained to a
specific subset of assets, denoted as K ⊆ N. The aim of the BKS is to determine the assets
that would be part of an optimal solution for the original problem and then solve the MILP
problem using only those chosen assets. By iteratively applying this process, the BKS aims
to find an effective solution by progressively refining the set of assets considered in the
MILP problem.

In the majority of optimization problems, the number of assets that are relevant or
active is relatively small, typically less than 100. Consequently, although solving the MILP
problem with the entire set of assets may be computationally demanding, the MILP problem
involving a subset of a hundred assets can generally be solved within a reasonably short
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computational time. This observation allows for more efficient optimization by focusing on
the essential assets and significantly reducing the computational burden.

The BKS (Basic Kernel Search) algorithm aims to identify a subset of assets, known as
the kernel, that are prone to being selected in an optimal solution for the original problem.
Any assets not included in the kernel are placed into buckets. The assets are then sorted
based on their likelihood of contributing to an optimal portfolio. The initial kernel is formed
by selecting the first n_I assets in this sorted order.

After categorizing the remaining assets into distinct groups or buckets, the BKS
algorithm solves the MILP problem with the assets confined to the initial kernel. Next, the
algorithm iteratively revises the kernel by solving the MILP problem which is constrained
to the specific assets that have been selected in each individual bucket. This iterative
process continues until all buckets have been processed, resulting in the refinement of the
kernel. BKS is provided in the following algorithm:

1. Determine the initial kernel and arrange the remaining assets into a sorted collection
of buckets.

2. Find the solution to the MILP problem by considering only the assets within the initial
kernel.

3. Continue the process repeatedly until a specific condition or criterion is satisfied:

• Modify or update the kernel;
• Find the solution to the MILP problem by considering the assets within the

current kernel along with the assets in the next bucket on the list;
• Exclude or eliminate the bucket from the list.

References [40,44,51,52] implement this method in their papers.

4.2.5. Non-Linear Programming

The GAMS (Generalized Algebraic Modeling System) optimizer software package
is widely used in industrial applications and academic research in applied sciences and
mathematics. Among the most notable capabilities of GAMS for the solution of mathemat-
ical optimization models is its ability to solve linear as well as nonlinear models and to
include continuous, discrete, and binary variables [108]. There are six basic components of
the mathematics model coded in GAMS: sets, data, variables, equation, model, and output.
There are many solvers in GAMS that deal with models of mathematical programming
such as deterministic global optimization, stochastic programming, linear programming,
linear regression, and others.

However, it is necessary to use a nonlinear programming (NLP) algorithm when
solving nonlinear models created with GAMS. In GAMS, there are two types of nonlinear
models: nonlinear programming (NLP) and differencing nonlinear programming (DNLP).
The NLP pattern is a smooth function with smooth derivatives that appears in model
variables that have endogenous arguments. A DNLP model can also use functions that
have smooth derivatives but discontinuous ends. Therefore, NLP models are usually used.
There are a large number of various solvers for solving NLP in GAMS, and CONOPT solver
is one of the fastest solvers.

It is possible to formulate the CONOPT optimization algorithm in the following
way [109,110]:

min∑E
i=1 xji (27)

Subject to:
ci(xi, xi−1, . . . , xi−t) = bi i = 1, . . . , E (28)

li ≤ xi ≤ ui i = 1, . . . , E (29)

A vector xi represents the optimization variables in period i, a vector ci represents
constraint values in period i, a vector bi represents the right-hand sides in period i, a vector
li represents the lower bounds in period i, a vector ui represents the upper bounds in
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period i, a vector xji represents the jth component of vector xi, and a time horizon indicates
the end point. Figure 17 shows the flow chart for the CONOPT algorithm [108]. Also,
ref. [48] uses NLP in order to achieve modeling.
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Figure 17. Flowchart of CONOPT algorithm [108].

In the preceding sections, a comprehensive overview of both modern and traditional
methods employed in railway energy management systems has been presented. These
methods play a crucial role in optimizing energy consumption and enhancing the effi-
ciency of railway operations. To further illustrate the breadth of these approaches, a chart
showcasing the various methods and their respective variants is provided in Figure 18.
Furthermore, the most common general purposes for the methods application together
with their main references are provided in Table 3. This visual representation offers a
concise reference for readers, facilitating a deeper understanding of the diverse strategies
utilized in railway energy management.
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Table 3. Different methods used in ERS.

Methods Type Method Name General Purpose and References

Traditional

QP
Classified shared characteristics with linear and nonlinear programming algorithms [74].

Global minimization of the inequality constraints problems [111].
Analysis application of a new recurrent neural network for quadratic programming [112].

Newton

Solve the Lagrangian function by a direct simultaneous solution for all unknowns [75].
Calculating wear between two elastic bodies in contact [113].

Solve a set of n nonlinear simultaneous equations, and obtaining a correction to each element
of the approximate solution [114].

IPM
Primal-dual algorithm and the numerical results for large-scale networks [78].

Solve the optimal control problem in model predictive control [115].
Solve the general nonlinearly inequality constrained problems [116].

DT

Solve the economic dispatch problem [77].
Coordinating the mid and short-term scheduling of hydrothermal systems [117].

Identify and quantify the separate contributions of group differences in measurable
characteristics [118].

DP
Optimize solutions to align sequences that are not related [76].

Optimizing the train running profile [119].
Application to discrete-utterance and connected-speech recognition [120].

Modern

DEA
Optimal energy management of railroad electrical systems [45].
Examines the problem of scheduling railway timetables [121].

Fuel loading optimization [122].

DRP
Prime operation of a smart railway station [48].

Measuring consumer response to static time-of-day and seasonal prices [123].
Reduce consumers’ load in real-time once the prices goes beyond a specific point [124].

MCS
Optimum operation of smart railway stations [49].

Minimizing the operational cost in REMS [47].
Evaluation of kinetic parameters and their effect on the biomass pyrolysis [125].

MILP
Energy management for railway substation [51].

Robust energy management of high-speed railway [52].
Minimizing the operational cost of smart railway station [44].

NLP

Ultimate AC power flow for ERSs’ operation [21].
An optimal operation strategy for an ERS’s station based on combined cooling, heating, and

power systems [126].
An optimal AC power flow problem for ERSs’ operation [46].
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5. Discussion

As discussed in the previous section, in the context of electric railway systems, var-
ious methods can be applied for the energy management and optimization of systems.
These methods are classified into two main categories of traditional and modern meth-
ods. In summary, traditional methods are well-established and computationally efficient
for handling linear or quadratic problems but may have limitations when dealing with
nonlinear or non-convex optimization problems, especially for non-linear and complex
systems such as ERS. On the other hand, modern methods offer more flexibility, improved
global optimization guarantees, and the ability to handle complex, nonlinear, or discrete
problems. However, they may require more computational resources and could have
slower convergence compared to traditional methods. The choice of method depends on
the specific problem characteristics, available computational resources, and the trade-off
between solution quality and computational efficiency. Accordingly, in this paper we
mostly concentrated on modern methods.

NLP finds applications in optimizing power flow, energy management, and scheduling
tasks in the railway domain. It can be used to control the distribution of power, manage
energy resources efficiently, schedule electric vehicle charging stations, and optimize train
timetables while considering energy efficiency and operational constraints.

DEA is useful for fine-tuning parameters and optimizing control strategies in traction
systems, optimizing maintenance schedules for railway infrastructure, and allocating
resources efficiently for energy management. DEA can also aid in optimizing the usage of
battery storage and regenerative braking systems.

MCS plays a valuable role in analyzing uncertainties and assessing the risks associated
with energy consumption and demand forecasting. It helps evaluate the reliability of power
supply and distribution networks and assesses the impact of random events on system
performance and energy efficiency.

MILP finds application in various tasks within railway systems. It can optimize the
design and allocation of substations and power distribution infrastructures, facilitating
energy-efficient train scheduling and routing considering capacity constraints and en-
ergy regeneration, and enabling the multi-objective optimization of railway systems by
incorporating factors like energy consumption, travel time, and passenger satisfaction.

In summary, NLP, DEA, MCS, and MILP each offer technical capabilities for different
aspects of energy management in railways, ranging from optimal control and scheduling to
parameter tuning, uncertainty analysis, and infrastructure optimization. These applications
highlight the diverse suitability of each method depending on the specific requirements
and characteristics of the electric railway system being studied. By carefully assessing
the problem, constraints, and objectives, researchers and practitioners can determine the
most appropriate method or combination of methods for a given energy management
application in electric railway systems.

The above-mentioned research allows us to compare all modern methods used in
REMS. Comparing optimization techniques quantitatively can be challenging because their
performance depends on various factors such as problem complexity, data availability,
solver efficiency, and specific problem constraints.

Table 4 presents a general comparison of all modern methods for a greater ease of
understanding. This table generally compares the performance of the methods. However,
their suitability and performance in this specific context may vary depending on the nature
of the energy management problem, the availability of data, the specific constraints and
objectives involved, and the underlying modeling assumptions. It is essential to assess the
requirements and constraints of your energy management system to determine the most
suitable optimization technique for your specific needs.
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Table 4. Different methods comparison.

Technique Speed Simplicity Efficiency Robustness Accuracy Performance

NLP

Varies based
on problem
complexity
and solver
efficiency

Moderate
complexity

due to
nonlinear

nature

Can handle
large-scale
problems

efficiently with
suitable solvers

Sensitive to
problem

formulation
and initial
conditions

Highly dependent
on problem

formulation and
solution approach

Can provide
high-quality

solutions, but
convergence may not

always be
guaranteed

DEA Fast and
efficient

Relatively
simple

Can handle
large datasets

efficiently

Robust against
outliers and
noise in the

data

Based on relative
efficiency rather

than absolute
accuracy

Provides
comparative

efficiency scores and
rankings

MCS Moderate
speed

Relatively
simple

Computationally
demanding for
a large number

of iterations

Robust in
capturing

uncertainty
and variability

Accuracy depends
on the quality of

probability
distributions used

Provides
probabilistic outputs

and risk analysis
results

MILP

Varies based
on problem
complexity
and solver
efficiency

Moderate
complexity

due to integer
variables

Can handle
large-scale

problems with
efficient solvers

Robust against
problem

formulation
and

constraints

High accuracy in
finding optimal or

near-optimal
solutions

Provides optimal
solutions and

guarantees
optimality under
certain conditions

As mentioned, DEA is a stochastic direct search optimization, and because of its
simplicity and high speed, this method has a good efficiency. However, DEA only solves
real-valued problems and there are many constraints associated with this method.

NLP and DNLP are two varieties of nonlinear programs. One of the main advantages
of DNLP is the ability to use functions with smooth derivatives and discontinuous ends.
Compared to linear methods, NLP offers higher accuracy but also more complexity. In
support of this, in ref. [46], the author considered the same system and used DEA and
NLP methods and compared them from an efficiency point of view; as a result, the total
operation cost saving was higher in NLP than in DEA.

MCS require a uniform random number generator which generates an infinite stream
of a random number in the interval (0, 1), which is a disadvantage of this method; in
addition, we have to use a reduction technique to reduce the variables. As MCS focus on
repeatedly taking random samples, for a large number of variables, it requires a lot of time
and computations; as a result, this method is not fast.

DRP has a featured disadvantage in that the DRP model is not enough to only be
implemented in REMS, and it has to integrate into a model; thus, it is not very efficient.

In a Mixed Integer Linear Program, variables are integers which can be pure integer
linear programs or they are 0 and 1—the so-called binary linear program—and both are
stochastic. MILP does not consider decimal variables, which is not an advantage of this
model. Figure 19 shows a comparison of the main methods used in REMS from different
performance points of view.
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Overall, modern methods such as DE, DRP, MCS, MILP, and NLP offer more advanced
capabilities to handle complex and nonlinear optimization problems in railway energy
management systems. They often provide greater flexibility, improved global optimization
guarantees, and the ability to handle discrete variables or dynamic scenarios. However, the
choice of method depends on the specific problem characteristics, available computational
resources, and the trade-off between solution quality and computational efficiency.

6. Conclusions

This review paper has provided a comprehensive examination of railway energy
management systems (REMS). The focus was on exploring the various architectures and
methods reported in the literature. Firstly, different configurations for integrating dis-
tributed energy sources and electric vehicle charging infrastructures with the railway
network were thoroughly reviewed. These investigations highlighted the potential for
reducing operational costs and enhancing sustainability by leveraging renewable energy
resources and optimizing the power supply system.

In the second part of the paper, a comprehensive study of traditional and modern op-
timization methods was conducted. These methods were classified and evaluated based on
their suitability for addressing the energy management challenges in railway systems. The
review highlighted the strengths and limitations of each approach, including their speed,
simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints.
The Differential Evolution Algorithm method proves to be suitable in many aspects, except
for its constraints, which increase computation complexity and time requirements. On the
other hand, although Monte Carlo Simulation exhibits slower speed compared to DEA, its
lower number of constraints makes it a preferred choice in the literature. Lastly, the Mixed
Integer Linear Programming method demonstrates high efficiency and accuracy, making it
a valuable approach in REMS.

Looking towards the future, REMS shows promising developments and trends. The
integration of advanced technologies, such as Artificial Intelligence (AI) and Machine Learn-
ing (ML), holds great potential for optimizing energy utilization and reducing operational
costs. AI and ML algorithms can effectively analyze complex data sets and provide real-
time decision-making capabilities, enabling more accurate forecasting, adaptive control,
and intelligent scheduling in railway systems. Furthermore, the rise in Internet of Things
(IoT) technology opens avenues for the enhanced monitoring, control, and optimization of
energy flows within the railway network.

Moreover, ongoing research focuses on exploring advanced energy storage technolo-
gies, such as advanced batteries and supercapacitors, to improve energy efficiency and
support regenerative braking systems. Additionally, there is a growing emphasis on de-
veloping smart grid solutions specifically tailored to the unique requirements of railway
networks, enabling the seamless integration of renewable energy sources and efficient en-
ergy management practices. Accordingly, the main research gaps of this study are studying
the practical implementation and effectiveness of integrating AI, ML, and IoT technolo-
gies in real-world REM-S applications, especially in terms of scalability, adaptability, and
compatibility with existing infrastructure and operational constraints.

Another research gap lies in the exploration of advanced energy storage technologies
and the development of tailored smart grid solutions for railway networks, necessitating
further investigation into their feasibility, cost-effectiveness, and overall impact on energy
efficiency and sustainable energy management in the railway sector.
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Nomenclature

CO2 Carbon dioxide
CTSSs Co-phase traction substations
cdf Cumulative distribution function
DR Demand Response
DSM Demand Side Management
DT Digital Twin
DERs Distributed Energy Resources
EMU Electric multiple units
ERPSs Electric Railway Power Systems
ETs Electric trains
EV Electric Vehicle
ERS Electric railway system
ESSs Energy Storage Systems
EHS Energy hub system
EMS Energy management system
FCHL Fuel cell hybrid locomotives
GHG Greenhouse gases
HS Harmonic Search
HSR High-speed rail
HESS Hybrid energy storage system
HTs Hydrogen trains
LCGs Linear congruent generators
MILP Mixed Integer Linear Programming
MRG Multi-recursive generators
OPF Optimized power flow
PV Photovoltaic
PFCs Power flow controllers
REMS Railway Energy Management Systems
RBE Regenerative braking energy
RERs Renewable Energy Resources
SGs Smart grid solutions
SRS Smart railway station
SOE State of energy
TOC Total operating costs
TPSS Traction power supply system
WT Wind turbine
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