
 

Permanent link to this version 

http://hdl.handle.net/11311/1249057 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
A. Capannolo, G. Zanotti, M. Lavagna, G. Cataldo 
Formation Flying Orbits and GNC Design in Binary Asteroid Systems 
Advances in Space Research, published online 24/07/2023 
doi:10.1016/j.asr.2023.07.040 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.asr.2023.07.040 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



Formation flying orbits and GNC design in binary asteroid systems

Andrea Capannoloa, Giovanni Zanottia,∗, Michèle Lavagnaa, Giuseppe Cataldob
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Abstract

Formation flying represents a promising opportunity for next space missions, due to its benefits in cost saving, redundancy and fault tolerance

given by multiple small and cheap space segments exploitation, with comparable performance of a single, large monolithic spacecraft. That is

even more relevant in asteroid exploration, as the harsh environment poses great risks to the probes survival. The low, irregular gravity field, the

poor knowledge of shape and composition, and the possible presence of floating particles in the surroundings suggest adopting a low-risk strategy

for the exploration of these bodies, delegating proximity operations to multiple nanosatellites, while keeping the main spacecraft at safe distance.

As a downside, multiple cooperating spacecraft imply advanced capabilities in accurately reconstructing the relative positions and displacements

and in fixing reconfiguration manoeuvres. Moreover, whenever relative distance is very close, agents’ guidance and control shall be autonomously

computed by the spacecraft, as promptness of commands is not ensured relying on ground segment only. The partially unknown environment

exacerbates this issue, demanding navigation and control schemes capable of withstanding potentially large uncertainties in the dynamics. If a

binary system is considered, the multiple gravitational sources complicate even more the setup of the formation, requiring an accurate search and

selection of operative orbits. This study will be thus defined by three different steps. First the search and development of suitable trajectories to

host a reconfigurable satellite formation is carried out. Then the design of a Model Predictive on-board guidance and control law is performed to

assess the capability of the spacecraft to execute successful reconfiguration transfers relying on a simplified dynamical model (namely the Circular

Restricted Three-Body Problem). At the end the navigation error requirements are derived, in order to ensure the feasibility of the guidance and

control scheme. Inspired by the Hera mission, this study explores the aforementioned aspects of the design of a formation for the exploration of

the Didymos binary asteroid system, which comprises many complications but also challenges for many other future missions to fly in unexplored

environments.

© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction 1

The foreseeable future of space exploration will strongly rely on new systems with a considerable level of on-board autonomy. 2

The benefits from the development of autonomous systems are twofold. The first one is represented by the several mission scenarios 3

unlocked by exploiting on-board systems that rely on ground segment little or not at all. The second benefit is the reduction of 4

mission operations costs, which may represent a limiting factor for some classes of space missions, such as low-budget ones. 5

∗Corresponding author: giovanni.zanotti@polimi.it
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Among the spacecraft design aspects, the Guidance Navigation and Control (GNC) scheme represents one of the most critical6

fields for the success of the mission. Because of that, the introduction of autonomy in the GNC loop must ensure a certain degree7

of robustness to errors between on-board dynamical models and the actual dynamics of the spacecraft.8

Many advanced mission concepts are based on the exploitation of multiple, cooperating spacecraft. This concepts require the9

definition of specific relative GNC constraints, particularly in terms of safety. In such scenarios, it is paramount to avoid failures in10

the relative state estimation and control, which may lead to collisions among the agents of the formation.11

Among the scenarios that may largely benefit from an autonomous systems, the exploration of small bodies of the Solar System12

stands out. The great limitations given by the uncertainties of the environment (shape and size of the attractor, irregular gravity13

field, etc.), and the lack of promptness in the ground control due to the large distance from Earth, would enormously benefit from an14

autonomous GNC scheme, where the spacecraft could react in real time to local changes in the expected behaviour of the dynamics.15

An interesting test scenario for autonomous GNC algorithms is certainly represented by the Didymos binary asteroid system,16

target of the first human attempt to test a hypervelocity kinetic impact for small body trajectory deflection. Within the AIDA17

(Asteroid Impact and Deflection Assessment) framework Cheng et al. (2015), the American spacecraft DART (Double Asteroid18

Redirection Test) Ozimek and Atchison (2017) crashed the moonlet of the system, Dimorphos, on purpose, while the CubeSat19

named LICIACube (Light Italian CubeSat for Imaging of Asteroids) Dotto et al. (2021); Capannolo et al. (2021) performed a fly-by20

to image the impact and map the evolution of ejected material. About 4 years after the impact, the European Hera mission Michel21

et al. (2020) will reach the binary to perform accurate measurements of the impacted body, exploiting two CubeSats for close22

scientific observations and measurements.23

Within this scenario, this paper leverages recent developments of the trajectory and GNC design topics Capannolo et al. (2020);24

Piccinin et al. (2020); Silvestrini et al. (2021), extending them in the field of small bodies exploration. In particular, an adaptive25

guidance and control scheme for formation maintenance and reconfiguration, previously developed for cislunar applications Capan-26

nolo et al. (2023), is here tuned and tested for a formation of two CubeSats within the Didymos binary asteroid system environment,27

extending the analysis with considerations on state estimation errors and applicability in a closed loop GNC scheme. After this28

introduction, Section 2 will go through the dynamical framework presentation, and the selection and development of the operative29

orbits that will be used to host the formation. Then, Section 3 will present the design of the controller for the formation. An30

adaptive Model Predictive Guidance and Control scheme (MPC) is developed, and results obtained under different constraints and31

conditions are shown, together with the validation results obtained in a high-fidelity dynamical representation. Section 4 will go32

through some preliminary navigation considerations, deriving the estimation accuracy requirements to be satisfied within the GNC33

loop by a navigation filter. Finally, some concluding remarks and possible improvements of the overall strategy are discussed in34

Section 5.35

2. Dynamics of the formation36

2.1. Gravitational models37

The following paragraphs briefly describe the various gravitational models exploited for the analyses.38

Point mass gravity. The simplest way of representing the gravitational field of a massive object is through the point mass model,39

where all the mass is shrunk in its center of mass, and reads40

U =
Gm

r
(1)
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where G is the gravitational constant, m represents the overall attractor’s mass, and r is the distance of the spacecraft from the 41

attracting point mass. Despite the gravity fields of asteroids are typically far from being perfectly spherical, this model is still useful 42

for the preliminary design of the formation. 43

Spherical Harmonics gravity. The spherical harmonics expansion model is a computationally convenient approach when the 44

irregularities of the attractor’s shape need to be modelled. Its expression, following Hobson (1931), reads 45

Ushe =
Gm

r

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 +

n∑
i=2

i∑
j=0

(R0

r

)i [
Ci j cos( jλ) + S i j sin( jλ)

]
Pi j(cos(θ))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2)

where λ and θ are the attractor’s longitude and co-latitude respectively, R0 a reference radius (typically the average equatorial 46

radius), Pi j(x) are Associated Legendre Polynomials, as described in Belousov (2014), while Ci j and S i j are the normalised Stokes 47

coefficients, computed as 48

Ci j =
1

m

√
(2 − δ0 j)(i − j)!
(2i + 1)(i + j)!

�
m

( r
R0

)i
Pi j(sin(θ)) cos( jλ)dm

S i j =
1

m

√
2(i − j)!

(2i + 1)(i + j)!

�
m

( r
R0

)i
Pi j(sin(θ)) sin( jλ)dm

(3)

with

δ0 j =

⎧⎪⎪⎨⎪⎪⎩1 ( j = 0)

0 ( j � 0)
(4)

Ellipsoid gravity. The ellipsoidal model is an analytical expression derived by MacMillan (1958), particularly useful when short 49

distances are present between spacecraft and attractor, as long as the latter is well approximated by a triaxial ellipsoid shape. The 50

formulation has the advantage over the spherical harmonics model of being valid also within the Brillouin sphere, down to the 51

surface of the object. According to MacMillan, the potential of a field point reads 52

Uell =
2Gρπabc√

a2 − c2

{[
1 − x2

a2 − b2
+

y2

a2 − b2

]
F(ωκ, k) +

[
x2

a2 − b2
− (a2 − c2)y2

(a2 − b2)(b2 − c2)
+

z2

b2 − c2

]
E(ωκ, k)+

+

[
(c2 + κ)y2

b2 − c2
− (b2 + κ)z2

b2 − c2

] √
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

} (5)

with a, b, c being the three semi axes in descending length order, x, y, z the field point coordinates in the reference frame aligned 53

with the semi axes, ρ the average density of the attracting body, F and E the Legendre’s elliptic integrals of first and second kind, 54

and ωκ and k satisfy the following conditions: 55

sin(ωκ) =

√
a2 − c2

a2 + κ
(6)

k2 =
a2 − b2

a2 − c2
(7)

The previous equations show an additional parameter (κ), which is defined as the largest algebraic root of the following equation:

x2

a2 + κ
+

y2

b2 + κ
+

z2

c2 + κ
= 1 (8)
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2.2. Dynamical model56

CRTBP. The Circular Restricted Three-Body Problem (CRTBP) describes the motion of a point mass m3, subjected to the gravita-57

tional attraction of two primary objects, m1 and m2, assumed to orbit on a circular path around their center of mass (CoM) Szebehely58

(1967). By expressing the dynamics in a rotating frame, where the two attractors appear fixed, the equations of motion read59

ẍ − 2ẏ =
∂U
∂x

ÿ + 2ẋ =
∂U
∂y

z̈ =
∂U
∂z

(9)

Here, an adimensionalisation has been introduced, by scaling the quantities with respect to the total mass of the binary system, to60

the distance from the attractors, and to the gravitational constant. The quantityU is the pseudo-potential function, and reads61

U = 1

2
(x2 + y2) + Ũ1 + Ũ2 (10)

where Ũ1 and Ũ2 are the separate gravitational potentials of the two attractors (whose expressions vary according to the selected62

model as per Equations (1),(2),(5)), properly made nondimensional according to the previously mentioned scaling.63

Ephemeris model. When a high-fidelity modelling of the dynamics is required, it is fundamental to rely on accurate history of the64

positions of all attractors and generators of perturbation. This can be done, through the ephemerides, tables of state and time data65

of celestial object created through highly accurate models and several observation of the bodies’ motion Folkner et al. (2014). The66

disadvantage of this model is the lack of regularity and periodicity, which makes the search of orbital solutions a very difficult task.67

Indeed, this level of fidelity can be applied to already found solutions in the CRTBP (or other simplified dynamical models) to68

refine the trajectories and their performance.69

2.3. Target asteroid system: 65803 Didymos70

The “65803 Didymos” binary system (depicted in Fig. 1) consists of a main asteroid (Didymos) with an irregular shape and a71

maximum diameter of 820 m, and a moonlet (Dimorphos) with an expected ellipsoidal shape, and a maximum diameter of 206 m.72

The main asteroid has a spin period of 2.26 h. The moonlet orbits around the primary on a nearly circular orbit, at an average73

distance of 1180 m and a period of 11.92 h. The system’s parameters are derived from on-ground observations Pravec et al. (2006);74

Scheirich and Pravec (2009): mean values and range of uncertainty of the most relevant ones are reported in Table 1, where am, em75

and Tm are the moonlet’s orbit semi-major axis, eccentricity and period respectively, Mtot is the total mass of the binary system, m2

m1
76

is the mass ratio between the moonlet and the primary asteroid, and ρ is the average density of both bodies.77

2.4. Operative orbit78

To properly initialise a formation, it is fundamental to search for a reference orbit that is sufficiently stable and suitable for79

the objectives of the mission. Previous works have demonstrated how some orbits in the CRTBP model of the Didymos system80

are strongly affected by the irregularity of the attractors’ shape (see Capannolo et al. (2019)). Furthermore, the low intensity of81

the gravity makes the effect of the Solar Radiation Pressure (SRP) particularly critical for the stable or unstable behavior of the82

trajectory. Among the typical orbital families studied in the framework of the CRTBP (see Chappaz (2015)), it has been shown how83

the Distant Retrograde Orbits (DRO) are very stable, and remain bounded even in presence of large perturbations from the SRP84
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Fig. 1: 65803 Didymos

and Sun’s gravity (fourth body), as depicted in Fig. 2. In particular, medium-sized DROs display the best stability, thanks also to 85

their larger distance from both the attractors, and are therefore selected as final operative orbits. In particular, the selected DRO is 86

the one depicted in Fig. 2, having a period of 10.73 h, with a resonance of 9/10 with Didymoon period. 87

2.5. Formation setup: Quasi-Periodic Invariant Tori 88

Once the operative orbit is selected, a naturally bounded formation can be built by leveraging the dynamical properties of the 89

periodic orbits in the CRTBP. In particular, periodic orbits possess a neighbouring region of quasi-periodic motion which preserves 90

the same orbital frequency (ω0), plus a secondary frequency (ω1) of winding motion around the periodic reference. The two 91

frequencies are incommensurable, i.e. the trajectory never closes itself (hence the term quasi-periodic), and a propagation to 92

infinity of this motion will generate a surface (the torus) rather than a curve, parametrised by two angles corresponding to the two 93

aforementioned frequencies, longitude and phase respectively (θ0 and θ1). Then, a bounded leader-follower formation can be built 94

by placing one spacecraft on the reference periodic orbit, and the others on the quasi-periodic torus Barden (1998). 95

The procedure to generate quasi-periodic tori follows the same scheme used for generating families of periodic orbits, and 96

consists of an initialisation using the center manifold of the periodic orbit, a correction in the nonlinear regime, and a continuation 97

along some specified parameter, as in Baresi et al. (2018). The full set of equations and conditions used in this paper can be found 98

in Capannolo (2022); Capannolo and Lavagna (2020). The result of the process is a family of quasi-periodic tori, with variable size 99

(distance from the reference periodic orbit) and secondary (or winding) frequency. Note than the main frequency is not varied in 100



6

Parameter Value

am 1180+157
−79

[m]

em 0.02+0.01
−0.02

[-]

Tm 11.920+0.005
−0.005

[h]

Mtot 5 278+0.54
−0.54×1011 [kg]

m2

m1
0.0093+0.0039

−0.0039
[-]

ρ 2104+631.2
−631.2

[kg m−3]

Table 1: 65803 Didymos estimated parameters

the continuation process, otherwise the agents of the formation on the torus would have a secular drift from the leader spacecraft101

on the periodic orbit.102

The DRO family possesses two couples of complex conjugates eigenvalues, meaning that two potential tori families can be103

developed. One couple identifies the quasi-periodic planar motion (x − y plane of the synodic frame), while the second couple104

describes an out-of-plane oscillatory motion. With the idea of leveraging the formation for a characterisation of the binary system105

(e.g. stereoscopic observation of the bodies’ surface), it is desirable to keep the distance of each agent from the asteroid surface as106

equal as possible, and to avoid mutual passages in front of their respective fields of view. For this reason, the out-of-plane motion107

is here considered for the development of the formation.108

The single torus within the family is identified by the distance d of the longitude/phase (0◦, 0◦) point from the main spacecraft109

on the reference periodic orbit. The 0◦ longitude point is here considered as the point of the DRO aligned with the two asteroids,110

and between them. The family is developed from a minimum d value of 10 m, up to the maximum value that ensured the existence111

of a quasi-periodic solution, equal to 73.62 m. Figures 3 and 4 depict the smallest and largest developed tori in the binary system’s112

frame, and relatively to a spacecraft orbiting on the reference periodic DRO.113

Notice that the initially (linearised) pure vertical motion, acquires an x − y oscillatory mode when continuing the family in the114

nonlinear regime. Among the possible operative trajectories, the largest one represents the most challenging for formation control,115

because of its larger nonlinearities. For this reason, it has been selected as study case. The main characteristics of the trajectory are116

reported in Table 2.117

Parameter Value

d 69.90 [m]

ω1/ω0 23.9592 [◦/orbit]

Max. Dist. 149.23 [m]

Min. Dist. 1.77 [m]

Table 2: Parameters describing the selected torus around the reference DRO.

3. Guidance and control118

The quasi-periodic tori introduced in Section 2.5 provide a natural region of space to virtually maintain a bounded formation.119

Nevertheless, it was pointed out how the natural motion generates relative reorientation of the formation agents. It is therefore120

desirable to introduce an active control to manage such motion, and ensure faster reconfigurations or fixed orientation for a certain121

amount of time.122
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Fig. 2: Evolution of a DRO in increasingly perturbed environments

This can be done through the development of a reference tracking problem, where a spacecraft on the torus targets another point 123

on the same dynamical surface. 124

A preliminary reference cost map, depicted in Fig. 5, is generated through the optimisation of impulsive manoeuvres transfers. 125

To magnify the differences with respect to the initial longitude and phase on the torus, a full phase shift is considered, i.e. the 126

target point is always at 180◦ beyond the initial phase. Cost peaks of almost 6 cm s−1 are observed in the regions of highest vertical 127

displacement of the torus, and in the region external to the binary system (nearby θ0 = 180◦), while nearly null cost regions are 128

observed across the whole trajectory in the points where the initial and target trajectory branches intersect each other, as depicted in 129

Fig. 6. The results from Fig. 5 are used as a reference for performance comparison with the scheme proposed in the present paper. 130

3.1. Target state identification 131

The on-board scheme requires to be computationally efficient, therefore it is desirable to compute the target state without resort- 132

ing to numerical propagations of the dynamics. Luckily, the closed surface of the torus can be easily parametrised as a function 133

R
2 −→ R6 which maps the two longitude and phase angles into a full 6-dimensional state. This approach, already exploited in past 134

research as in Baresi et al. (2021), is here reformulated in relative terms to specialise it to formation flying scenarios. In particular, 135

recalling the methodology proposed by the authors in Capannolo et al. (2023), a 2D cubic spline formulation of the relative torus 136
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Fig. 3: Smallest and largest DRO tori with respect to the binary system’s barycenter

(expressed from now on as s(θ0 f , θ1 f )) is exploited. The cubic spline is built from a grid of states along the torus, with evenly137

spaced phase angles. The grid does not follow the natural trajectories of the torus, hence the expression s(θ0 f , θ1 f ) must rely on138

time varying angles. In other words, given the target trajectory (defined by the phase angle θ1 f ), and the initial longitude θ0 f (or139

θ0i), the target angles at each time step are defined as140

θ̃0 f = θ0 f + ω0t

θ̃1 f = θ1 f + ω1t
(11)

where ω0 and ω1 are the two frequencies of the torus, and t is the time measured from the beginning of the transfer. So, having141

the torus frequencies (ω0, ω1) and the torus spline function s, provided the initial longitude and target phase at the beginning of the142

transfer (θ0 f , θ1 f ), and the main spacecraft state in the synodic frame of the binary system (xre f ), the time varying target state reads:143

xT(t) = xre f (t) + s(θ0 f + ω0t, θ1 f + ω1t) (12)

It is worth noting that the parametrisation of a relative torus provide advantages in terms of maintenance of the formation; the144

regular and closed shape of quasi-periodic tori in the CRTBP model tends to be easily disrupted in a more complex dynamics. For145

this reason, direct targeting of torus’ states in the synodic frame would result in a relative drift from the main spacecraft. On the146

contrary, leveraging the relative torus structure ensures that the target state of Eq. 12 is always bounded around the main spacecraft,147



9

Fig. 4: Smallest and largest DRO tori relatively to a spacecraft on the DRO

despite the discrepancy between the torus’ shape and the real dynamics. As a consequence, the full formation motion in the binary 148

system is dictated by the main’s state xref(t), but such issue goes beyond the scope of this paper and shall be explored in future 149

work. 150

3.2. Model Predictive Control 151

Controller formulation. The selected guidance and control scheme follows a receding horizon Model Predictive Control (MPC) 152

algorithm, to generate an optimal control action sequence to perform the re-phasing manoeuvres. An in depth presentation of 153

the MPC mathematics can be found in Camacho and Bordons (2002; 2007), while literature where this scheme has been proven 154

extremely powerful for autonomous GNC of either spacecraft or UAV can be found in Gavilan et al. (2015); Vazquez et al. (2015). 155

We preferred this strategy over a shrinking horizon MPC (such as that in Ceresoli et al. (2021)) due to the reduced horizon length, 156

leading to lower demands from a computational standpoint. The receding horizon scheme works with a fixed size window that 157

slides (or recedes) at each time instant, shifting its starting and ending point by a single sample time, as represented in Fig. 7. 158

Considering thus the kth time step, the algorithm works in the following fashion. 159

1. Define a finite-horizon window composed by a fixed number of np discrete time-steps. The boundary in this case will be 160

[tk, tk+np ]. 161

2. Predict the state evolution of the system, exploiting the on-board plant dynamical model and the best estimate of the current 162

state x̂k as initial condition. Exploiting this initial conditions ensures that the closed-loop behaviour of the controller, which 163
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Fig. 5: Cost map for 180◦ phase shift, as function of the initial point of the spacecraft on the torus

observes the real dynamics and uses it as a feedback, has a more reliable state prediction.164

3. Construct and solve an optimal control problem, minimising a certain cost function J whilst exploiting the predicted evolution165

within the finite horizon. A set of control actions for the whole window duration is obtained, namely uk, uk+1, . . . , uk+np−1.166

4. Execute only the first control action. The remaining computed actions are discarded.167

5. Define the window by receding the finite-horizon by one time-step and come back to point 1 to restart the loop. The new168

window’s boundaries will be [tk+1, tk+np+1].169

This procedure is looped for the whole required manoeuvring time, until desired stopping criteria are met, (e.g. threshold relative170

distance between chaser and target spacecraft in rendezvous scenarios Silvestrini et al. (2020)). A consequence of this is that the171

overall Time-of-flight is not defined a-priori, but depends on the combined performances of the algorithm and the control authority172

of the platform.173

In order to pass through steps 2 and 3, an on-board discretised state-space model, with a specified sample time Ts, is needed. To174

do so, Eq. (9) shall be linearised and discretised, leading to the system in Eq. (13), where the state transition matrices from step k175

to step k + 1 for the state and for the input are called Ak+1
k and Bk+1

k respectively.176
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Fig. 6: Example of a transfer with intersecting initial and target trajectories on the torus. Axes not to scale

xk+1 = Ak+1
k (xk)xk + Bk+1

k (xk)uk (13)

Ak+1
k = eATs ≈ I6×6 +

∂ f (x)

∂x

∣∣∣∣
xk

Ts (14)

Bk+1
k =

∫ tk+1

tk
eAτB dτ

≈ Ak+1
k B(xk) = Ak+1

k

[
03×3

I3×3

]
(15)

Equations (14) and (15) also report the first-order approximation of the state transition matrices, exploiting the jacobian matrix 177

of the dynamics and the trivial definition of the input matrix, considering the control action uk as an impulsive Δv manoeuvre lasting 178

Finite Horizon at   -th step 

nite Horizon at   -1-th stepFinnnnnnnnn    

nite Horizon at   +1-th stepFinnnnnnn    

Fig. 7: Receding horizon MPC guidance scheme.
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for the complete sample time.179

The next step is to construct an optimisation problem in a suitable formulation to reduce the computational burden, done by180

approaching the problem as in Silvestrini et al. (2020). Due to the deterministic nature of the dynamical system in Eq. (13), from181

a given initial condition xk and the complete control history within a prediction window, the complete state evolution up to xk+np182

is determined. It is indeed possible to write chain of equalities to express all the states as function of all the previous control183

actions and the initial conditions, in order to collect these expressions into a single matrix equation. By stacking all the state vectors184

vertically, the following arrays are constructed: the stack of np state vectors Xk+1 ∈ R6np×1 and of np control vectors Uk ∈ R3np×1
185

described in Eqs. (16) and (17), and the collection of state transition matrices Ak ∈ R6np×6 and Bk ∈ R6np×3 (these last two186

expressions are omitted for brevity).187

Xk+1 =
[
xk+1

� xk+2
� . . . xk+np

�]� (16)

Uk =
[
uk
� uk+1

� . . . uk+np−1
�]� (17)

The complete dynamics within the window is then expressed in a single concise matrix expression, where we define the states188

stack vector Xk+1 as function of the initial state xk and of the control stack vector Uk, as in Eq. (18).189

Xk+1 = Ak xk + BkUk (18)

In order to define a reference tracking problem, transporting this stacked formulation for both the target point and the follower190

is necessary. Notice that, according to the problem analysed in this paper, the target point is defined for each time step as Eq. (12),191

and the corresponding control action is null (uT = 0), being the target a natural trajectory in the dynamics model of the controller192

(CRTBP). Also, the control actions within the MPC are modelled as impulsive manoeuvre, therefore they can be expressed as193

Δuk = Δvkδ(tk) (19)

where δ(tk) is the Kronecker’s delta. Defining Δxk as the difference between target trajectory and actual one and the related stack194

vector as Xk+1 (as in Eq. (21)), it is possible to write:195

Xk+1 = AkΔxk + BkUk (20)

Xk+1 =
[
Δxk+1

� Δxk+2
� . . . Δxk+np

�]� (21)

The tracking algorithm is then expressed through a specific cost function, expressed as the summation of quadratic forms of the196

state error between target trajectory and the current one Δxk+i and the control actions uk+i over the prediction window, as in Eq.(22)197

J(Δxk,...,k+np ,Δvk,...,k+np−1) =

np∑
i=1

Δx�k+iQΔxk+i +

np−1∑
i=0

Δv�k+iRΔvk+i (22)

where Q and R are two weighting matrices used to balance the effectiveness and precision of the reference tracking (Q) with the198

propellant expenditure (R). It is easy then to show that, exploiting the stacked system in Eq. (20), the cost function can be rewritten199

as200
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J(Xk+1,Uk) =
1

2

(
X
�
k+1Q̂Xk+1 + U

�
k R̂Uk

)
(23)

where the matrices Q̂ and R̂ have been defined as block-diagonal matrices with Q and R respectively. 201

The final step is substituting the states stack in Eq. (23) with the linearised discrete system of Eq. (21), from which the objective 202

function J becomes 203

J(Uk) =
1

2
U
�
k
(
B
�
k Q̂Bk + R̂

)
Uk +

(
Δx�k A

�
k Q̂Bk

)
Uk+

+
1

2
Δx�k A

�
k Q̂AkΔxk (24)

from which we can easily spot the three addenda with respect to the only unknown of the problem, i.e. the optimisation variable 204

Uk. The first and the second components represent a quadratic and a linear term respectively, while the last one is a constant 205

term, independent from the optimisation variable, thus discardable. The final expression of the quadratic programming problem in 206

Eq. (25) involves the matrix H = B�k Q̂Bk + R̂ and the vector l = (Δx�k A
�
k Q̂Bk)�. 207

min
Uk

J(Uk) =
1

2
U
�
k HkUk + l�Uk (25)

After that, a maximum thrust constraints ensures that every Δvk does not exceed the value manageable by the fixed thrust within 208

a full sample time Ts, namely: 209

‖Δvk+i‖2 < ũTs , i ∈ 0 : j (26)

Involving the 2-norm of a vector, the constraint is nonlinear, so it shall be linearised according to a quadratic programming problem. 210

This is done by imposing that the ∞-norm of every Δvk in the prediction window, i.e. every component of the control stack, shall 211

be lower than the maximum impulsive Δv obtainable divided by the square root of three, namely: 212

‖U‖∞ < ũTs√
3

(27)

Notice that this formulation makes the constraint anisotropic, since any control action aligned with one of the Cartesian directions 213

is required to be less than the actual maximum control that the spacecraft can provide; still, when the control vector is aligned with 214

the trisectrix of the first octant (defined by the three Cartesian axes), the 2-norm stays below the max value. 215

Taking into consideration also safety issues, another constraint is here proposed to provide Collision Avoidance Manoeuvre 216

(CAM) capabilities. This constraints imposes a minimum distance between the leader and the follower of the formation for the 217

whole transfer arc, which generally is expressed in nonlinear form as follows: 218

‖CΔxk+i‖22 = Δx�k+iC
�CΔxk+i > R2

KOZ , i ∈ 0 : j (28)

where C :=[I3×3 03×3]�, while RKOZ is the radius of the Keep Out Zone (KOZ) sphere. Also in this case, to exploit the constraint 219

in the quadratic programming formulation, a linearisation is performed with a strategy proposed by Morgan et al. (2014), where 220

the KOZ sphere is approximated into a plane tangent to it, and normal to the Δxk+i vector. The constraint can thus be written in a 221

convex form as per Eq. (29), exploiting the known initial value of the prediction window, Δxk. 222
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−Δx�k C�CΔxk+i < −RKOZ ‖CΔxk‖2 (29)

Note that, to express the constraint as an upper boundary inequality, the sign of both sides of the equation has been inverted. To223

express this constraint at each time instant within the prediction window, Eq. (29) is reformulated as function of the control stack,224

leading to the following expressions:225

ACAMU < bCAM (30)

with226

ACAM = − Inp×np ⊗ Δx�k C�CBk (31)

bCAM = − RKOZ ‖CΔxk‖2 1np×1+

Inp×np ⊗ Δx�k C�CAkΔxk (32)

where the symbol ⊗ indicates the Kronecker product.227

At this point, the complete problem, with quadratic cost function and linear constraints (both maximum thrust and CAM), reads:228

min
U

1

2
U
�
HkU + l�k U

s.t. ‖U‖∞ < ũTs√
3

ACAMU < bCAM

(33)

which is the expression ready to be tackled by any quadratic programming solver at each time step over the given finite horizon229

window. Starting thus from the initial error Δxk, the linearised model to evaluate the state transition matrix of Eq. (14), solving the230

optimisation problem will provide the optimal control stack vector Ûk, which will be exploited only for its very first component,231

i. e. Δ̂vk.232

Weight matrices. The problem expressed by Eq. (33) presents the weighting matrices Q and R as tuning parameters. The simplest233

strategy would be to define a fixed value for both, obtained either by trial and error or by a specific optimisation problem with the234

aim of finding the best value trading-off convergence to the target trajectory and propellant usage. However such approach may lead235

to very long processes and less versatile algorithms, since the tuning of these parameters would vary widely changing the requested236

formation reconfiguration manoeuvre. Consequently we used the same approach presented in Capannolo and Lavagna (2022),237

where an adaptation law is defined in order to automatically adjust the balance among control responsiveness and cost reduction238

on-board.239

This Adaptive Weights strategy requires a single initial tuning of some terms, but provides efficient transfers of the spacecraft240

anywhere along the quasi-periodic torus. In this approach the R matrix is kept equal to the identity matrix, while Q is defined by a241

diagonal matrix with a position term qr equal for the first three elements of the diagonal and a velocity term qv for the remaining242

ones. In particular, the position terms qr of the weight matrix Q are scaled through a coefficient directly related to the spacecraft-243

target relative state, and to the available time to complete the transfer within the maximum ToF:244

qr = γ(Δr,Δṙ, t)qMAX (34)
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with qMAX being a user-defined upper limit for the weight, and γ being the adaptation coefficient, explicitly defined as: 245

γ = αβ (35)

α =

(
ΔrT

Δr

)
(36)

β = 1 +
Δṙ
Δr

(ToF − t) (37)

Here, Δr and Δṙ respectively represent the radial distance and speed from spacecraft to target point, ΔrT is the distance threshold 246

for a successful transfer, and t is the current time. In such a way, the control action results smaller at large distance from target 247

and at early stages of the transfers, avoiding large initial control actions. On the other hand, it pushes the weight to its maximum 248

value when approaching the target and/or when the time left is short. Moreover, including information about the local radial relative 249

velocity avoids excessively slow or high approaching speeds. In addition, a saturation effect on the reduction term Δβ between 250

consecutive sample points is given, aimed at avoiding large control cost increments due to local small approach speed of the target: 251

β = max

([
1 +
Δṙ
Δr

(ToF − t) , β0 − Δβ
])

(38)

where β0 denotes the β exponent from the previous step. There is instead no adaptation included for the velocity terms of the weight 252

matrix qv, which are tuned once and remain fixed during the transfer. This choice was made to prevent potential instabilities in the 253

transfer that may arise when the value of these weights approaches zero, leading to undesired overshoots. The work in Capannolo 254

and Lavagna (2022) presents the adaptation law more in details and compares it with a fixed weight approach, applied to a similar 255

guidance and control scheme. 256

For the case under study, Table 3 reports the tuned parameters for the adaptation law.

Parameter Value

qMAX 102.5 [-]

qv 10−1 [-]

β0|init 2 [-]

Δβ 2 [units/h]

Table 3: Parameters for the MPC control strategy with adaptive weights.

257

Performance analysis. To address the performance of the on-board MPC, the transfers are first executed without collision avoid- 258

ance, and the costs are compared to the reference impulsive transfers of Fig. 5. The new costs are depicted in Fig. 8. Overall, it is 259

possible to notice a global increment of the costs for the regions already showing the highest costs in the impulsive transfers case. 260

This is justified by the fact that the on-board controller is not able to plan the best times to manoeuvre, and always delivers a control 261

action at each time step of the clock set for the controller itself. The new costs reach the value of 8 cm s−1, approximately 25− 30% 262

more than the impulsive transfer maximum cost. Furthermore, one can notice that the new map displays a greater cost increment in 263

the regions of the DRO between the attractors (θ0i > 270◦); this is due to the fact that the on-board scheme always relies on the max- 264

imum (user-defined) ToF available for the transfer, while in such region, the impulsive transfer optimiser returns lower costs with 265

a reduced ToF. Nevertheless, it is worth noting that the cost increment is not particularly critical and can be easily managed even 266
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Fig. 8: Cost map for the on-board MPC with adaptation law

by very small platforms. A peculiar behaviour is instead observed for low-cost regions, where intersection of trajectories occurs,267

as depicted in Fig. 6. Here thanks to such intersection, the on-board controller is able to approximately get the same reduced costs268

as the impulsive case. It is worth mentioning that the limited increments in costs are mostly possible thanks to the adaptation law269

of Eq. (34), which mitigates large control actions for the long-distance transfers, while a standard setup of weights would further270

increase the difference from the impulsive cost map, as observed in Capannolo (2022).271

A second step of the analysis is carried out to address the capability of the on-board controller (and of the adaptation law) to272

withstand deviations due to collision avoidance manoeuvres. In particular, a minimum distance of 20 m is set between the two273

spacecraft, which covers most of the torus regions. It has been observed that, with very few exceptions, the increment of costs due274

to CAMs is always below +5 cm s−1, and in very few regions above +2 cm s−1, as depicted in Fig. 9. Regardless, all transfer are275

executed and completed with success despite the deviations, thanks to the adaptation law. The longer path causes the spacecraft to276

be at relatively large distance for a longer time; this pushes the weights to a higher value, ensuring the completion of the last branch277

of the transfer in the shorter time available. Overall, the transfer times are almost unaltered with respect to their counterpart without278

CAM, and the rendezvous with the target point occurs in nearly the same spot, as depicted in Fig. 10.279

A final validation of the scheme is carried out in the high-fidelity, ephemeris-based dynamics, considering the true trajectories280

of the attractors, their uneven shape, and the gravitational and SRP effects of the Sun. In general, the MPC scheme was found to281

withstand the errors between the ”true”, high-fidelity dynamics, and the on-board CRTBP dynamics that the controller is based on.282
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Fig. 9: Cost increment for the on-board MPC when collision avoidance manoeuvres are added.

Figure 11 depicts the new costs for the transfer in the high-fidelity dynamics. It can be observed how the most affected regions are 283

indeed those where cost peaks were present, i.e. the transfers with the maximum vertical displacement. In fact, the longer path is 284

intrinsically more susceptible to perturbations in the dynamics, and a higher effort is demanded to the controller to reach the target 285

point. As a consequence, most of the high cost region demands more than 8 cm s−1, with the worst region above 10 cm s−1, while 286

low cost regions are nearly unaffected by the new dynamics. It is important to mention that very few spots where the transfer failed 287

have been identified; nevertheless, all of them are located in the very high cost regions of the map. 288

As a final remark, the scheme presented in this section has been tested assuming a perfect knowledge of the spacecraft state. The 289

next section will be devoted to the performance degradation analysis in presence of navigation uncertainties. 290

4. Navigation requirements 291

This last section presents a simple approach to assess the guidance and control scheme robustness against state estimation 292

uncertainties. In Fig. 12 a possible complete closed-loop GNC scheme is shown. The inclusion of a navigation filter in the loop, 293

which is fed by the various measurements yk provided by on-board sensors, outputs the initial conditions x̂k of the spacecraft in 294

the prediction window to the MPC scheme. Note that these initial conditions are not the real ones, as the navigation will introduce 295

deviations from the real trajectory. 296

To emulate such behaviour, the simulations of the transfers presented in the previous section are performed a second time, con- 297
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Fig. 10: Transfer comparison between impulsive manoeuvres, MPC, and MPC with CAM

sidering noisy states as initial conditions. These conditions have been obtained by generating Gaussian random noise components298

for each of the six elements of the state, with a null mean and an arbitrary standard deviation level (grouped into a value for the299

position σr and a value for the velocity σv). By letting these values vary by orders of magnitude, the final position error Δr f and300

total transfer cost Δvtot have been mapped. Table 4 reports the results for a specific transfer (θ0i = 45◦, θ1i = 135◦), including the301

case of a perfect state knowledge as reference for comparison.302

Considering the 2 m error threshold defined in the guidance scheme, the results highlight how complex and demanding the303

relative dynamics in this small binary asteroid system is. Indeed, the target distance below the threshold of 2 m is reached only304

with σr = 1 m and σv = 1 mm s−1 for both scenarios, with and without the collision avoidance constraint. This result was expected305

regarding the position estimation error, due to the very strict requirement in terms of the final trajectory error, but these analyses306

provided a boundary value also for the velocity, leading to very demanding requirements for a navigation system. From Table 4,307

other useful insights on the proposed Guidance and Control (G&C) scheme can be described. First, by looking at rows B and C, it308

can be noticed that a higher accuracy in the velocity components (case B) is more beneficial than reducing the position error (case309

C). Indeed, in case C the transfer cost is even higher than case B. This shows how having a better position reconstruction pushes310

the controller to activate thrusters for longer periods, but without achieving good results due to the poor velocity knowledge. The311

simulations that include CAM show the same trend between cases B and C in terms of Δr f , but differ in terms of Δvtot. This can be312

explained by the very high sensitivity that the CAM algorithm presents toward the position knowledge, which is directly involved313
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Fig. 11: Transfer costs map in the high-fidelity dynamics

in the evaluation of the constraint. 314

5. Conclusions 315

This paper presented a comprehensive way to generate relative trajectories in a complex and harsh environment such as the 316

one of of a binary asteroid system, exploiting the parametrisation of quasi-periodic invariant tori. This framework is useful to 317

define a simple and yet effective approach for retrieving relative target trajectory, and exploiting such trajectories for a reference 318

tracking guidance and control scheme. A receding horizon Model Predictive Control was exploited to solve the optimal control 319

problem. By discretising and linearising the relative dynamics, the fully nonlinear problem was reduced to a computationally lighter 320

quadratic programming problem.To preserve the quadratic formulation, maximum thrust and collision avoidance constraints were 321

also expressed in a linear and convex fashion, that was proven to be effective. An adaptation law for the MPC tuning parameters, 322

embedded to the scheme, showed promising results. A first test, comparing the on-board, thrust-constrained MPC to the impulsive, 323

optimised transfers showed an overall maximum cost increment of less than 30% of the former. Such values are considered more 324

than satisfactory, considering that the MPC works on a local finite horizon, which does not foresee the whole evolution of the 325

trajectory. Secondly, it was observed that even in presence of collision avoidance manoeuvres, cost increments were mostly below 326

2 cm s−1, corresponding to an additional 20% with respect to the value without CAM. Finally, tests in high-fidelity environment 327

proved the good robustness of the controller against unmodelled dynamics, always ensuring the completion of the transfers. The 328
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Fig. 12: Closed-loop GNC scheme.

Table 4: Resulting trajectory position error and total transfer cost for different levels of state estimation errors without or with the CAM constraint.

ID σr [km] σv [m/s] Δr f [km] Δvtot [m/s] Δr f [km] Δvtot [m/s]

(with CAM)

REF 0 0 0.0003 0.054 0.0009 0.069

A 0.1 0.1 0.4434 0.992 0.3381 1.309

B 0.1 0.01 0.0584 0.399 0.1484 1.605

C 0.01 0.1 0.4783 1.363 0.1938 1.224

D 0.01 0.01 0.0343 0.171 0.0256 0.166

E 0.001 0.01 0.0070 0.201 0.0080 0.216

F 0.001 0.001 0.0009 0.070 0.0012 0.089
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corresponding costs oscillated from almost no change up to ∼ 90%. It is worth noting that high percentage increments are obtained 329

for the most expensive transfers, which should be avoided a priori in the context of a real mission. In addition, a sensitivity analysis 330

has been carried out after closing the GNC loop with state estimation, with the aim of providing requirements to the navigation 331

block. The simulations highlighted the complexity of the analysed scenario, where the uncertainty on the spacecraft state shall 332

achieve very accurate values, down to 1 m for position and 1 mm s−1 for velocity. 333
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