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Integrated photonic neural networks provide a promising platform for energy-

efficient, high-throughput machine learning with extensive scientific and com-

mercial applications. Photonic neural networks efficiently transform optically-

encoded inputs using Mach-Zehnder interferometer mesh networks interleaved

with nonlinearities. We experimentally trained a three-layer, four-port sili-

con photonic neural network with programmable phase shifters and optical

power monitoring to solve classification tasks using “in situ backpropagation,”

a photonic analogue of the most popular method to train conventional neural

networks. We measured backpropagated gradients for phase shifter voltages

by interfering forward- and backward-propagating light and simulated in situ
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backpropagation of 64-port photonic neural networks trained on MNIST im-

age recognition given errors. All experiments performed comparably to digi-

tal simulations (>94% test accuracy), and energy scaling analysis indicated a

route to scalable machine learning.

Introduction Neural networks (NNs) are ubiquitous computing models loosely inspired by

the structure of a biological brain. Such models are trained on input data to implement complex

signal processing or “inference” (1, 2), powering various modern technologies ranging from

language translation to self-driving cars. The required energy for training and inference to

power these technologies has recently been estimated to double every 5 to 6 months (3), and

thus necessitates an energy-efficient hardware implementation for NNs.

To address this problem, programmable photonic neural networks (PNNs) have been pro-

posed as a promising, scalable, and mass-manufacturable integrated photonic hardware solu-

tion (4). A popular implementation of PNNs consists of silicon photonic meshes, N × N net-

works of Mach-Zehnder interferometers (MZIs) and programmable phase shifters (5–7), which

optically accelerate the most expensive operation in a PNN: unitary matrix-vector multiplication

(MVM). The MVM y = Ux is implemented by simply sending an input mode vector x (op-

tical phases and modes in N input waveguides) through the network implementing U to yield

output modes y (4, 6, 8). This fundamental mathematical operation, based on optical scatter-

ing theory, additionally enables various analog signal processing applications beyond machine

learning (4, 9) such as telecommunications (8), quantum computing (10, 11), and sensing (12).

Recently, “hybrid” PNNs, which alternately cascade photonic meshes and digital nonlinear

activation functions (9, 13), have proven to be a low-latency and energy-efficient solution for

NN inference in circuit sizes of up to 64×64 (14). Compared to fully analog PNNs with optical

nonlinear activations (15, 16), hybrid PNNs get around the critical problem of photonic loss
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and offer more versatility than multilayer PNNs for between-layer logical operations that do

not favor optics. Such features may be present in a number of state-of-the-art machine learning

architectures such as recurrent neural networks (17) and transformers (18, 19). When fully

optimized, the energy efficiency of hybrid PNNs has been estimated to be one to two orders of

magnitude higher than state-of-the-art digital electronic application specific integrated circuits

(ASICs) in AI (20). However, despite the success in PNN-based inference, on-chip training of

PNNs has not been demonstrated due to significantly higher experimental complexity compared

to the inference procedure.

In this paper, we experimentally demonstrated photonic implementation of backpropaga-

tion, the most widely used method of training NNs (1, 2). (A minimal bulk optical demon-

stration has been previously explored (21).) Backpropagation is generally performed by prop-

agating error signals backwards through the NNs to determine programmable parameter gra-

dients via the chain rule. In our multilayer PNN device, we performed in situ training on a

foundry-manufactured silicon photonic integrated circuit by sending light-encoded errors back-

wards through the PNN and measuring optical interference with the original forward-going

“inference” signal (22). Once trained, our chip achieved similar accuracy to digital simu-

lations, adding new capabilities beyond existing inference or in silico learning demonstra-

tions (4, 23, 24). We further designed and experimentally validated an analog (electro-optic)

phase shifter update protocol, a key improvement over past proposals requiring more energy-

intensive and quantization error-prone “digital subtraction” (22). Finally, we systematically

analyzed energy and latency advantages of in situ backpropagation and its scalability to larger

(64×64) PNN systems. Our findings ultimately pave the way for energy-efficient optoelectronic

training of neural networks and optical systems more broadly.

3



Photonic neural networks We built a hybrid PNN by alternating sequences of analog MVM

operations U (ℓ)(η⃗(ℓ)) (implemented on a custom designed silicon photonic triangular mesh

(6)) and digital nonlinear transformations f (ℓ) (implemented using autodifferentiation soft-

ware (25, 26)) as shown in Fig 1A-D, where layer ℓ ≤ L (total of L layers). The PNN was

parameterized by programmable phase shifts η⃗ ∈ [0, 2π)D, where D represents number of PNN

phase shifters. Mathematically, the following “inference” function sequence transformed input

x = x(1), proceeding in a “feedforward” manner to the output ẑ := x(L+1) (fig. 1A,B,D):

y(ℓ) = U (ℓ)x(ℓ) (1)

x(ℓ+1) = f (ℓ)(y(ℓ)) (2)

The “cost function” is defined as L(x, z) = c(ẑ(x), z), where c represents the error between

ẑ and ground truth label z. Backpropagation updates parameters η⃗ based on D-dimensional

gradient ∂L/∂η⃗ evaluated for “training example” (x, z) (or averaged over a batch of examples).

Each MZI was parametrized by thermo-optic phase shifts controlled by a source module

unit (fig. 2A,B). Phase shifts were placed at the input (ϕ, voltage Vϕ) and internal (θ, voltage

Vθ) arms of all MZIs to control propagation pattern of light enabling arbitrary unitary matrix

multiplication. We embedded an arbitrary 4 × 4 unitary matrix multiply in a 6 × 6 triangular

network of MZIs. This configuration incorporated two 1× 5 photonic meshes on either end of

the 4× 4 “matrix unit” capable of sending any input vector x and measuring any output vector

y from Eqs. 1 and 2. These calibrated “generator” and “analyzer” optical I/O circuits (figs. 1E

and 2B) require calibrated voltage mappings θ(Vθ), ϕ(Vϕ) (4, 27–29) (fig. S4).

Backpropagation demonstration Our core result (fig. 1E) was experimental realization of

backpropagation on a photonic triangular mesh MVM chip using a custom optical rig (fig.

S3) (22). Our backpropagation-enabled architecture differs in three ways from a typical PNN

photonic mesh (4):
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1. We enabled “bidirectional light propagation,” the ability to send and measure light prop-

agating left-to-right or right-to-left through the circuit (as depicted in fig. 1E).

2. We implemented “global monitoring” to measure optical power pη propagating through

any phase shift η in the circuit using 3% grating taps (shown in the inset of fig. 1E and fig.

2A,B). In our proof-of-concept setup, we used an IR camera mounted on an automated

stage to image these taps throughout the chip (fig. S3E).

3. We implemented both amplitude and phase detection (improving on past approaches (30))

using a self-configuring programmable matrix unit layer (27, 31) on both generator and

analyzer subcircuits (fig. 1E and fig. 2B), which by symmetry worked for sending and

measuring light that propagated forward or backward through the mesh.

These improvements on an already versatile hardware platform enabled backpropagation

entirely using physical measurements of field intensities to obtain loss gradients. As shown

in fig. 1E, backpropagation (22) required global optical monitoring. Furthermore, bidirec-

tional optical I/O was required to switch between forward- and backward-propagating signals

to experimentally realize in situ backpropagation. Equipped with these additional elements,

our protocol can be implemented on any feedforward photonic circuit (32) with the requisite

analyzer and generator circuitry (fig. S1-2).

Here we give a quick summary of the procedure explained further in Supplementary Text.

The “forward inference” signal x(ℓ) and “backward adjoint” signal x(ℓ)
adj are sent forward and

backward respectively through the mesh that implements U (ℓ). The “sum” vector x(ℓ)− i(x
(ℓ)
adj)

∗

is sent forward and subtracting the forward and backward measurements from it digitally yields

the gradient (22), a reverse-mode differentation process we call an “optical vector-Jacobian

product (VJP).”
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Analog update Going beyond an experimental implementation of the theoretical proposal of

Ref. (22), we additionally explored a more energy-efficient fully analog gradient measurement

update for the final step avoiding a digital subtraction update. Instead of global monitoring the

first two steps and the final “sum” step, we toggled an adjoint phase ζ(t), a square wave modula-

tion with period T that periodically toggles between “sum” and “difference” settings ζ = 0 and

π corresponding to signal inputs x(ℓ)
± = x(ℓ)∓i(x

(ℓ)
adj)

∗. The gradient is ∂L/∂η = (pη,+−pη,−)/4,

or half the “signed amplitude” of the AC (mean-subtracted) signal (Supplementary Text, fig.

S6E). The sum and difference inputs x
(ℓ)
± were computed digitally (off-chip), requiring O(N)

operations to compute per input. The sum and difference inputs were directly programmed at

the generator to compute phase gradients, subtracted in the analog domain to update phase shift

voltages. One option to efficiently achieve a periodic ζ toggle is to use the summing architecture

in fig. 2C which sums x(ℓ) and i(x
(ℓ)
adj)

∗ interferometrically with a fast modulator implementing

ζ . In an optimized scheme, we would physically measure the gradient and update the phase

shift voltage in the analog domain using a photodiode, differential amplifier (implementing an

analog subtraction), and a “sample-and-hold” update circuit using only a single toggle (fig.

S6B,C). A simple experimental demonstration of the gradient measurement of this circuit for

a single phase shifter demonstrated the logic of this electronic feedback scheme, which was

extended to “batch updates” incorporating data from multiple training examples ultimately re-

quired for our approach to scale (fig. S7). This approach avoided a costly digital-analog and

analog-digital conversion and additional digital memory complexity required to program N2

elements, enabling a truly analog backpropagation scheme.

The local feedback just described updates each phase shifter η using the measured gradient:

∂L
∂η

= I(xηxη,adj) =
|xη,+|2 − |xη|2 − |xη,adj|2

2
=

pη,+ − pη − pη,adj
2

=
pη,+ − pη,−

4
, (3)

where xη,+ = xη−ix∗
η,adj and the last equation indicates the equivalence of “digital subtraction,”
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(figs. 1E and 3) and our proposed “analog subtraction” scheme (figs. 2C-D, 4 and S6-7).

Pseudocode and the complete backpropagation protocol are discussed in the Supplementary

Text. Note that digital and analog gradient updates can both be implemented in parallel across

all PNN layers.

We experimentally estimated the accuracy of the analog gradient measurement for a matrix

optimization problem (7) by digital processing of the optical power measurements (fig. 2D). We

programmed a sequence of inputs into the generator unit of our chip and recorded the square

wave response oscillating between pη,+ and pη,− and separately subtracted the two measure-

ments to find the gradient with respect to η.

We implemented in situ backpropagation in a single photonic mesh layer optimizing the cost

function defined for output port i via Lr = 1−|ûT
r u

∗
r|2 or a “batch” cost function L =

∑4
r=1 Lr.

Here, ur is row r of U , a target matrix that we chose to be the four-point discrete Fourier

transform (DFT), and ûr is row r of Û , the implemented matrix on the device. For our gradient

measurement step, we sent in the derivative yadj = ∂Lr/∂y = −2(ûT
r u

∗
r)

∗er to measure an

adjoint field xadj, where er is the rth standard basis vector (1 at position m, 0 everywhere else).

We evaluated gradient direction error as 1− g · ĝ comparing normalized measured (ĝ) and

predicted gradients g = ∂L/∂η⃗ · ∥∂L/∂η⃗∥−1. Both digital and analog gradients were less ac-

curate near convergence (fig. 2F) with the errors empirically increasing quadratically as the

inverse of fidelity error (Methods, fig. 2F). The analog batch gradient (trained by summing all

four gradients together to give ∂L/∂η) validated the photonic portion of the batch scheme in fig.

S6B (with the electronic portion being separately demonstrated in fig. S7). All gradient errors,

regardless of implementation, scaled similarly with convergence distance; uncalibrated thermal

crosstalk likely resulted in gradient measurement errors comparable to systematic power errors

at the taps. Digital subtraction (fig. 1E) encountered different losses and coupling efficiencies

in bidirectional gratings, whereas analog gradient measurements involved subtraction of only
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forward-going fields at forward gratings, likely resulting in superior performance (fig. 2F). Fi-

nally, error in the full analog subtraction scheme was independent of batch size for the gradient

calculation, and no significant deviation due to electronic jitter or signal distortion was observed

(fig. S7D).

Photonic neural network training To test overall on-chip training, we assessed accuracy of

in situ backpropagation to train multi-layer PNNs using digital subtraction protocol in Ref. (22)

(fig. 3A). We trained our chip to implement L = 3 layers with N = 4 ports to assign labelled

noisy synthetic data, generated using Scikit-Learn (33), in 2D space to a 0 or 1 label based on

the point’s spatial location (fig. 1A and 3E,H). We performed a 80%:20% train-test split (200

train points, 50 test points) to avoid overfitting.

To implement classification, our PNN assigned a probability to each point being assigned a

0 or 1 based on the following model:

ẑ(x) = softmax2(|U (3)|U (2)|U (1)x|||), (4)

where softmax2 is the standard softmax (normalized sigmoid) function applied to two quan-

tities: the total power in outputs 1, 2 and total power in ports 3, 4. The input data x was

engineered such that any 2D point had the same total input power as a four port vector (Meth-

ods). Each point was classified red or blue (0 or 1 respectively) based on whether output of

eq. 4 obeyed the condition z0 > z1 for each input (fig. 3), which we optimized using a cross

entropy cost function (Methods).

Our chip performed data input, output and matrix operations for all PNN layers. At each

layer output, we digitally performed a square-root operation on output power to implement ab-

solute value nonlinearities (off-chip via JAX and Haiku (25,26)) and recorded output phases for

the backward pass of in situ backpropagation. Ideally, PNNs are controlled by separate photonic

meshes of MZIs for each linear layer to achieve low power consumption. However, to save on
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footprint we reprogrammed the same chip to perform successive linear layers since basic op-

erating principles remain the same. We used the Adam gradient update (34) with a learning

rate of 0.01 and performed digital simulations at each step to fully compare measured and pre-

dicted performance. Before on-chip training experiments, we performed forward inference with

digitally pre-trained neural network weights to verify accurate calibration. We achieved 90%

and 98% device test set accuracy for ring and moons datasets respectively (fig. S5I,J). Since

our photonic and digital implementation agreed closely in inference accuracy, we performed

network training on-chip while conducting evaluations off-chip for convenience.

During training of the circle dataset, predicted and measured powers for grating tap-to-

camera monitor measurements showed excellent agreement across all waveguide segments re-

quired for accurate gradient computation. The training curves in fig. 3C indicate that stochastic

gradient descent was a highly noisy training process for both predicted and measured curves

due to the noisy synthetic dataset about the boundary and our choice of single-example training.

These large swings appeared roughly correlated between the simulated and measured training

curves (fig. 3E), and we successfully achieved 96% train and 93% test model accuracy (fig. 3D).

We then trained the moons dataset, applying same procedure to achieve 87% train and 94% test

model accuracy (fig. 3F, green vs red). When using the predicted phase for phase measurement,

we reduced gradient error by roughly an order of magnitude on average resulting in 95% train

and 98% test model accuracy which agreed with digital training (fig. 3F-H). This improvement

underscores the importance of accurate phase measurement for improved training efficiency.

Simulations and scalability Given that our experimental results for N = 4 PNNs showed

evidence of hardware error impacting training, we assessed the scalability for N = 64 PNNs in

the presence of error to better understand the relative contributions at scale. We implemented

a PNN simulation framework in Simphox (35) using JAX and Haiku (25, 26) to simulate an
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in situ backpropagation training given a grid search of systematic and noise errors (Methods).

After 100 epochs using M = 600 batch size, we achieved a maximum test accuracy of roughly

97.2% in the ideal case and a performance degradation to roughly 95% on average (fig. 4B,C).

Phase and amplitude errors arising from photodetector noise and phase shift quantization and

calibration errors affected convergence in error the most. This suggests in-situ backpropagation

is relatively robust to noise and hardware errors at scale, which are difficult to totally eliminate

in current analog computing systems.

We also considered the energy and latency tradeoff with accuracy for the optimized analog

gradient update scheme, adding more details about feasible gradient update circuit designs us-

ing current state-of-the-art electronics co-integrated with active photonic components (36–39).

Collectively, our simulation results (fig. 4) and energy calculation contours (fig. S8, supported

by tables S1-6) indicated minimal performance degradation for MNIST training simultane-

ously with 3× improvement in energy efficiency assuming 100 fJ floating point operations for

equivalent digital models (40) and tap noise factor of stap < 0.01 in the regime where optical

power begins to dominate the energy consumption. Errors may be further reduced by improving

avalanche photodiode sensitivity, reducing optical component loss, or increasing overall input

optical power, a key factor in the energy-error tradeoff (tables S1 and S5). Note these pho-

todiode noise error considerations must be considered for inference tasks and photonic matrix

multiplication tasks more broadly (16, 41).

Discussion and outlook In this paper, we demonstrated practically useful photonic machine

learning hardware by physically measuring gradients calculated via interferometric measure-

ments of in situ backpropagation (fig. 1). We concluded that gradient accuracy plays an im-

portant role in reaching optimal results during training (fig. 2). Optical I/O and calibration

errors and photodetector noise at the global monitoring taps caused errors in gradient accuracy,
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resulting in poorer convergence. By correcting for phase error, the resulting accurate gradients

yielded training curves highly correlated to digital predictions (fig. 3). From these results, we

determined that optical I/O calibration accuracy is vital; even though individual updates were

ideally faster to compute, higher error resulted in effectively longer training times that mitigated

this benefit. To better understand this tradeoff, we explored an optimized regime of our system,

which considered co-integration of CMOS electronics with photonics (fig. S8, tables S1-6), and

found that in the regime of photonic advantage (e.g., N = 64 at sufficiently large batch sizes),

we could successfully train MNIST close to digital equivalents (fig. 4).

Our demonstration (fig. 3) and energy calculations (fig. S8) suggest that in situ backprop-

agation is the most efficient approach for training hybrid PNNs. Our hybrid training approach

optically accelerated the most computationally intensive O(N2) operations. All other O(N)

computations, such as nonlinearities and their derivatives, were implemented digitally; this

is reasonable because O(N) time is already needed to modulate and measure optical inputs

and outputs for the overall network. In some cases, such as in data center machine learning

and neural network accelerators (e.g., GPUs) with optical interconnects (where data is already

optically encoded), our in situ backpropagation scheme opens up opportunities to improve en-

ergy efficiency of model training. Many digital schemes already are exploring reduction of

the communication bottleneck in digital chips in the race to address the energy doubling AI

problem (3). As optics is the ideal modularity for low-latency and low-energy signal communi-

cation, mixed-signal schemes are converging on some of these hybrid schemes that benefit from

our proposal (40, 42).

Other techniques, e.g. population-based methods (43), direct feedback alignment (44, 45),

and perturbative approaches (16), have some advantages but are ultimately less efficient for

training neural networks versus backpropagation. This is especially true for hybrid PNNs,

which unlike “receiverless” fully analog PNNs (16), require optoelectronic (i.e. digital-analog
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and analog-digital) conversions for every update. In contrast to perturbative approaches, in situ

backpropagation calculates gradients in a modular framework compatible with complex logic

typically required in larger scale artificial intelligence applications.

Although this paper focuses on applications to hybrid PNNs, it is worthwhile noting that

our backpropagation scheme can in principle be made to be compatible with all-optical or re-

ceiverless implementations (15, 16). Our alternate configuration enables all-optical inference

and hybrid in situ backpropagation training (provided accurate nonlinearity models, fig. S8E)

without incurring exponential loss in the number of layers L, which can limit gradient accuracy

(fig. 4). Previous proposals suffer this exponential loss scaling because they propagate the same

optical modes through all layers in a feedforward configuration (15, 16), whereas our proposal

splits input light equally across the layers (linear scaling in number of layers). Furthermore, it is

possible to switch between all-analog PNN inference and hybrid PNN training modes of opera-

tion (fig. S8F) or perform an all-analog backpropagation through a choice of nonlinearity (46);

studying the scaling and errors of this scheme (given the need to calibrate nonlinearity models

for training) are left to a future work.

Ultimately, however, such all-optical schemes suffer from limited versatility (data cannot be

moved around at will in a scalable manner), still require input and output electronics (saving

energy proportional to the number of mesh layers L), and the tradeoff between error sensitivity

and energy consumption of the nonlinearity. A single photonic mesh circuit arbitrarily interfer-

ing large number of modes requires large-depth circuits pushing the limit of the footprint-loss

tradeoff of an all-optical scheme. Instead, a hybrid PNN receives and re-injects optical power

at various points (at least for all nonlinearities or lossy elements) to “rescue” lossy modes and

scale PNNs to larger and, more importantly, deeper and more complex models that only use

optics when convenient.

Based on these versatility principles, large scale hybrid PNN models have already achieved
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high ResNet-50 image classification accuracy using existing commercially viable photonic cir-

cuits (14). Our proposal indicates a route to train models on such devices that few other training

methods can efficiently produce. In situ backpropagation is also uniquely positioned to train

“optical transformers” that leverage hybrid PNNs for computation; inference has been recently

experimentally demonstrated in a free space computing element, a timely application for nat-

ural language and video processing applications (19). Due to the complex movement of data

in many of these neural networks, hybrid PNNs offer extreme flexibility to tackle a number of

complex problems and are not tied to any specific connectivity between layers, as is the case for

all-optical solutions.

Given the generality of photonic meshes and wide applicability of gradient measurements,

our protocol can be applied beyond the photonic machine learning to more traditional photon-

ics problems including processing of free-space signals (12, 47) and, more generally, efficient

photonic mesh calibration (7,32). In fact, the analog gradient update experiment in fig. 2 specif-

ically targets solving this problem of mesh calibration (6), because those gradients can be used

to optimize the implemented matrix on the device. This is useful for linear optical elements

with no obvious calibration scheme; for instance, our approach can be useful for training robust

arbitrary unitary elements consisting of large multi-waveguide coupling elements (48) and more

generally any reconfigurable optical device with active phase elements. More generally in the

photonics space, our demonstration can be thought of as an experimental analogue of “inverse

design” of photonic devices at the circuit level. Inverse design implements reverse-mode au-

todifferentiation with respect to material relative permittivity by interfering adjoint and forward

fields, the basis of the original proof of in situ backpropagation (22) since phases are trivially

related to material relative permittivity changes. This suggests an even broader application do-

main for our technique to arbitrary linear optical devices, including free-space and recirculating

designs (46, 49).
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Our results ultimately have wide-ranging implications for bridging the fields of photonics

and machine learning. Backpropagation is the most efficient and widely used neural network

training algorithm for machine learning, and our demonstration of this popular technique as

a physical implementation presents promising capabilities of hybrid PNNs to reduce carbon

footprint and counter the exponentially increasing costs of AI computation.

References and Notes

1. S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT Numer Math 16,

146–160 (1976).

2. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-

propagating errors, Nature 323, 533–536 (1986).

3. J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, P. Villalobos, Compute Trends

Across Three Eras of Machine Learning, Proceedings of the International Joint Conference

on Neural Networks (2022).

4. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao,
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Figure 1: In situ backpropagation concept: (A) Example machine learning problem: an un-
labelled 2D set of points that are formatted to be input into a PNN. (B) In situ backpropagation
training of an L-layer PNN for the forward direction and (C) the backward direction showing
the dependence of gradient updates for phase shifts on backpropagated errors. (D) An inference
task implemented on the actual chip results in good agreement between the chip-labelled points
and the ideal implemented ring classification boundary (resulting from the ideal model) and a
90% classification accuracy. (E) We show how our proposed scheme performs the three steps of
in situ (analog) backpropagation, using a 6× 6 mesh implementing coherent 4× 4 bidirectional
unitary matrix-vector products using a reference arm. We depict the (1) forward (2) backward
(3) sum steps of in situ backpropagation. Arbitrary input setting and complete amplitude and
phase output measurement are enabled in both directions using the reciprocity and symmetries
of the triangular architecture. All powers throughout the mesh are monitored by an IR camera
using the tapped MZI shown in the inset for each step, allowing for digital subtraction to com-
pute the gradient (22). These power measurements performed at phase shifts are indicated by
green horizontal bars.
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·ĝ

) Analog (forward)

Digital (two-way)

Analog batch (4)

Measured

Predicted

0

π

50 um 1 mm

Figure 2: Analog gradient experiment and simulation: (A) Photonic chip was wirebonded
to a custom PCB with fiber array for laser input/output and a camera overhead for imaging the
chip. Zooming in reveals the core control-and-measurement unit of the chip, enabling power
measurement using 3% grating tap monitors and a thermal TiN phase shifter nearby. (B) A cali-
brated control unit was used for input generation and output coherent detection. The IR camera
over the chip imaged all grating tap monitors necessary for backpropagation. (C) Analog gra-
dient update might optionally be implemented by introducing a summing interference circuit
(not implemented on the chip in (B)) between the input and adjoint fields. (D) We toggled the
adjoint phase between ζ = 0 and π to evaluate the analog gradient measurement ∂Li/∂η for
i = 1 to 4. (E) Gradients measured using the toggle scheme yielded approximately correct gra-
dients when the implemented mesh was perturbed from the optimal (target) unitary given 1 rad
phase standard deviation. (F) Measured normalized gradient error decreased with distance of
the device implementation Û(η⃗) from the optimal U = DFT(4), and analog batch and single-
example gradients outperformed digital gradients.
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Figure 3: In situ backpropagation experiment and simulation: We performed in situ back-
propagation training (34) for two classification tasks solvable by (A) a three layer hybrid PNN
consisting of absolute value nonlinearities and a softmax (effectively sigmoid) decision layer.
(B) Three-step digital subtraction gradient update given monitored waveguide powers and the
measured gradient output. (C) For the circle dataset, the digital and in situ backpropagation
training curves show excellent agreement resulting in (D) model accuracy of 96% test and 93%
model (depicted here for iteration 930, showing the true labels and the learned classification
model outcomes) and (E) histogram of low gradient error. (F) For the moons dataset, our phase
measurements were sufficiently inaccurate to impact training leading to a lower model train
accuracy of 87% (green). Using ground truth phase (red), we arrived at (G) sufficiently high
model test accuracy 98% (train 95%) and (H) histogram of gradient errors improving consider-
ably by roughly an order of magnitude using the correct phase measurement.
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Figure 4: In situ backpropagation simulation: (A) We simulated a two-layer PNN on MNIST
data using a previously explored PNN benchmark (32). (B, C) We aggregated marginal training
curve statistics (shaded regions indicate standard deviation error range about the mean) over a
grid search of 72 tap noise, loss, and I/O amplitude and phase errors. (B) tap noise factor stap
(2.7% increase for stap = 0.02 from 3.7 ± 0.7% average error) and (C) phase error σϕ (1.9%
increase for σϕ = 0.05 from 4± 1% average error) affected training most.
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