
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022 1

NERONE: the Fast Way to Efficiently Execute
Your Deep Learning Algorithm at the Edge
Raffaele Berzoini‡, Eleonora D’Arnese‡, Member, IEEE, Davide Conficconi, Member, IEEE,

and Marco D. Santambrogio, Senior Member, IEEE

Abstract— Semantic segmentation and classification are
pivotal in many clinical applications, such as radiation dose
quantification and surgery planning. While manually label-
ing images is highly time-consuming, the advent of Deep
Learning (DL) has introduced a valuable alternative. Nowa-
days, DL models inference is run on Graphics Process-
ing Units (GPUs), which are power-hungry devices, and,
therefore, are not the most suited solution in constrained
environments where Field Programmable Gate Arrays (FP-
GAs) become an appealing alternative given their remark-
able performance per watt ratio. Unfortunately, FPGAs are
hard to use for non-experts, and the creation of tools to
open their employment to the computer vision community
is still limited. For these reasons, we propose NERONE,
which allows end users to seamlessly benefit from FPGA
acceleration and energy efficiency without modifying their
DL development flows. To prove the capability of NERONE
to cover different network architectures, we have developed
four models, one for each of the chosen datasets (three for
segmentation and one for classification), and we deployed
them, thanks to NERONE, on three different embedded
FPGA-powered boards achieving top average energy effi-
ciency improvements of 3.4× and 1.9× against a mobile and
a datacenter GPU devices, respectively.

Index Terms— Deep Learning, Edge Acceleration, Medi-
cal Image Analysis, Energy Efficiency, FPGA.

I. INTRODUCTION

The advent and the spreading of imaging techniques such
as Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT) allow the analysis of critical anatomical
structures [1], [2]. Their employment assures a non-invasive
study of internal structures for both screening and diagnostic
purposes. Unfortunately, the number of images daily generated
and the scarcity of expert radiologists produce a considerable
workload causing delays in the intervention [3]. In this context,
semantic segmentation and classification play a fundamental
role in identifying organs, lesions, and regions of interest,
pivotal in many downstream applications such as tumor detec-
tion, dose definition, and surgery planning. Precisely, semantic
segmentation is a pixel level classification that consists in
assigning at each pixel within an image a label representing

Manuscript received: July 31 2022; revised May 20, 2023; Accepted:
July 9 2023. (Corresponding Author: Eleonora D’Arnese)
‡equal contributions; R. Berzoini, E. D’Arnese, D. Conficconi, and
M. D. Santambrogio are with the Department of Electronic, Infor-
mation and Bioengineering, Politecnico di Milano, Milano, IT, 20133.
E-mail: raffaele.berzoini@mail.polimi.it E-mail: {eleonora.darnese, da-
vide.conficconi, marco.santambrogio}@polimi.it

a class [4], [5]. Such a task is particularly time-consuming if
done by hand; therefore, its automation is essential to make it
faster, efficient, and standard, allowing the physicians to carry
out the diagnosis and the prognosis [6].

Currently, the application of Deep Learning (DL), and in
particular Fully Convolutional Networks (FCNs), has delivered
state-of-the-art results in segmentation and classification in
fields ranging from autonomous driving and robotic navigation
to medical practice [7], [8]. Indeed, FCNs predict a value indi-
cating for each pixel or image its class of belonging, providing
a fast and easy way to interpret information regarding the
observed scene. Developing effective semantic segmentation
and classification workflows based on FCNs for medical
image segmentation/classification requires vast and properly
annotated datasets, which are expensive and difficult to obtain.
Moreover, training these models requires computational and
energetic resources that are not always available in the medical
field [9]. While dataset dimensions problems can be faced by
patching images, data augmentation strategies, and generated
data [10], [11], the power and computational load needed to
perform the segmentation task are still an open challenge.

Currently, Graphics Processing Units (GPUs) are the de
facto gold standard for both the training and the inference stage
of FCNs. Indeed, not only they deliver notable performance
and throughput, but their widespread adoption is also driven
by the numerous libraries that support and facilitate making
the most out of the GPUs capabilities without knowing parallel
programming (e.g., TensorFlow, PyTorch). On the other hand,
GPUs are power-hungry devices limiting their adoption in
restraint scenarios such as in the surgery room. Indeed, during
a computer-aided intervention, we want to perform real-time
analyses while limiting power consumption since it is mainly
provided to the surgical and imaging pieces of machinery
[12]. Therefore, in the last years, new approaches have been
explored by companies and research intuitions.

Motivation and Related Work. To offer an alternative to
power-hungry GPUs for the inference phase of FCNs, Field
Programmable Gate Arrays (FPGAs) are appealing devices
for their fine-grained computation capabilities at a reasonable
energy budget. Therefore, thanks to the possibility of deliver-
ing considerable performance while limiting power consump-
tion, accelerators are being studied as valuable alternatives
to GPUs for inference, especially in edge scenarios [12]–
[14]. Although there is a massive amount of research to
develop fast and energy-efficient custom accelerators in the

2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

Vitis-AI
Compiler

Vitis-AI
Quantizer

A B C
1001001
0101010
0100010

Fig. 1: High-level view of the NERONE framework. It consists of models training on GPU (A). Models quantization with the
Vitis-AI quantizer, which makes use of a subset of the original dataset (B). In the end, the Vitis-AI compiler generates the
DPU binary instructions based on the quantized network and the target board DPU architecture (C).

edge world, designing them from scratch could require months
for a non-expert hardware developer [15], such as a computer
vision expert. Moreover, the majority of the available solutions
present accelerators implementing a single network structure
and allowing its execution on a single or highly restricted
number of devices [13]. Additionally, FCNs, and in general,
DL algorithms, evolve extremely fast, making those accel-
erators obsolete fast as well. Therefore, an accelerated and
efficient version is required along a high-speed design cycle
to keep the evolution pace. While GPU-enhanced frameworks
widely support these computations, FPGA-based ones still
present a barrier to computer vision scientists, and although
some attempts to lower this barrier have been made, like
AMD-Xilinx Vitis-AI [16], they still require some hardware
knowledge and basic tools understanding. Based on these
considerations, creating automation toolchains that open the
employment of FPGA-based DL models will pave the way to
broader adoption of such solutions by DL experts and also in
the clinical practice exploiting FCNs.

Proposed Solution. For these reasons, we propose
NERONE, which, building on top of Vitis-AI [16], exposes a
framework that minimizes the required knowledge and efforts
while granting the highest energy efficiency at the edge with a
reasonable deployment time. Therefore, NERONE poses itself
as the tool that allows deep learning and computer vision
developers to seamlessly benefit from FPGA acceleration
and energy efficiency without modifying their development
flows. Indeed, they create and train their model as usual, and
NERONE hides the complexity of FPGA-based acceleration
with a few Python lines of code. Indeed, NERONE, given
a dataset, a trained model, and the platform to be used,
automatically deploys the solution for inference.

Our main contributions are:

• A comprehensive framework to deploy DL models on
FPGAs to achieve a fast, accurate, and efficient inference
to meet the requirements of constrained scenarios such
as the medical one (Section II).

• An open-source1 methodological workflow to deploy, on
a user-oriented interface, the FPGA-based models with
real-time visualization of network outputs (Section II).

• A systematic design and results analysis to demonstrate
the framework’s generalizability to a wide range of
datasets, models, and tasks (Section III, IV, and V).

1https://github.com/necst/NERONE

To prove the generalization of NERONE, we selected four
open-source medical datasets (three for semantic segmentation
and one for classification) and deployed a different network
architecture for each of them. Additionally, we run them
on three different embedded FPGA-powered boards. From
this experimental evaluation, we achieved top average energy
efficiency improvements of 3.4× and 1.9× against a mobile
and a datacenter GPU device, respectively.

II. PROPOSED APPROACH

This Section describes the NERONE workflow that allows
deploying the inference phase of DL models to Field Pro-
grammable Gate Array-based (FPGA) platforms. Moreover,
thanks to NERONE, it is possible to obtain an efficient and
accurate inference on a generic dataset employing a generic
Deep Neural Network (DNN) applicable in scenarios where
power consumption is a limiting factor. Figure 1 illustrates the
steps to obtain a quantized and compiled model executable on
an FPGA-based Deep Learning Processor Unit (DPU) [17].
Moreover, thanks to the adaptability of the quantization and
compilation, NERONE enables deploying a pretrained model
with a small set of images on edge, thus skipping the first
steps of the presented work with a small set of input images.

A. Training and Model Preparation
The primary purpose of NERONE is to optimize a DNN

to reduce memory bandwidth and power consumption and
make it executable on an edge device powered with an FPGA.
NERONE does not have particular limitations or actions to
be followed during model training. The only constraint is on
the version of the framework used for GPU model definition
and training that has to be compatible with the Vitis-AI [16]
version adopted during quantization and compilation. Since
the quantization phase alters the model weights, quantizing a
trained model only once it has reached a plateau in its loss
function to obtain more stable and predictable performance
during and after quantization is also convenient.

B. Model Quantization
Currently, model training on GPU is generally performed

with at least 32-bit floating-point (FP32) weights. When the
working scenario allows easy use of a GPU, the FP32 weights
are often kept at inference time, but this requires a complete
working station to support the GPU computations. Conversely,

https://github.com/necst/NERONE

R. BERZOINI, E. D’ARNESE et al.: NERONE: THE FAST WAY TO EFFICIENTLY EXECUTE YOUR DEEP LEARNING ALGORITHM AT THE EDGE 3

as shown in literature [13], [18], when the working scenario
requires a memory footprint reduction, better energy effi-
ciency, and less voluminous device, models with 8-bit integer
(INT8) weights drastically reduce the required memory and
power consumption with a negligible accuracy loss. For these
reasons, within NERONE, we exploit the Vitis-AI quantizer to
convert the FP32 weights of pretrained models into INT8 while
maintaining the overall accuracy of the GPU-based models.
Given the INT8-weights model, the edge device execution
engine, namely the DPU, can perform more energy-efficient
computations with a reduced memory demand. Additionally,
the Vitis-AI quantizer optimizes the INT8 model by remov-
ing inference-useless layers, such as the dropout layers, and
folding some layers into preceding ones to reduce the overall
number of computations necessary to provide network outputs.

The Vitis-AI quantizer offers three quantization procedures:
Post Training Quantization (PTQ), Fast Finetuning Quanti-
zation (FFQ), and Quantization Aware Training (QAT). PTQ
and FFQ apply quantization using a small set of unlabelled
images, namely the calibration dataset, even though PTQ is
faster since it converts all the model weights simultaneously.
Adopting the FFQ method based on the AdaQuant algorithm,
which performs quantization layer by layer, is helpful when
facing accuracy losses. The third and slowest method is QAT,
which differs considerably from the previous ones. It rewrites
the floating-point model converting it into a quantized one
before starting training. Unlike PTQ and FFQ, QAT requires
the whole dataset (input images and labeled outputs) and
longer and more hardware-demanding computations. Within
NERONE, we could use PTQ with no global performance
loss for all models and datasets. As previously stated, PTQ
requires a small calibration dataset; generally, between 100
and 1000 images are enough to guide the quantization. Such
a calibration dataset is crucial since the Vitis-AI quantizer
performs not only a simple conversion of the weights but
also adjusts their values to minimize the output differences
between INT8 and FP32 models. Although there are no spe-
cific requirements for the dataset size, from our experimental
evaluation, having at least a few dozen images for each class is
recommended. Indeed, in our case, we consider 500 unlabelled
images to convert the FP32 weights into INT8 ones. Finally,
the calibration dataset usually reflects the exact distribution of
the training data providing good performance; however, some-
times, it may be required to adjust the distribution manually
(i.e., increase or decrease the number of images containing a
particular class) to obtain homogeneous performance among
the classes of the dataset. Therefore, the calibration dataset’s
distribution and dimension can be considered an additional set
of hyperparameters that the user can tune.

C. Model Compilation and Deployment to the Edge
Once we obtain a quantized model with negligible accuracy

reduction, we compile, deploy, and evaluate the INT8 model
on three target FPGAs from AMD-Xilinx, namely, an Avnet
Ultra96-V2, a ZCU104, and a Kria KV260. Before deployment
and evaluation, we must generate the binary instruction for our
target programmable soft engines, which are the Deep Learn-
ing Processor Units (DPUs) of the target FPGAs. Figure 2

Host
CPU

(ARM)

DPU Core-0
DPU Core-1

Instruction
Fetch Unit Global Memory Pool

High
Performance

Scheduler Hybrid Computing Array

PE PE PE PE

Main Memory

Programmable Logic
System on Chip

High Speed Data Tube

Fig. 2: System view of an example DPU dual-core and its
internal architecture and system-wise components

reports a system view of the ZCU104 device as an example.
It comprises a System-on-a-Chip (SoC) with the main memory
off-chip. All three considered SoC have an ARM-based CPU
and an FPGA, on which our target DPUs are implemented.
The default DPU version for SoC-based devices employs a
quantization approach based on INT8 data types for CNNs
and has a parallelism degree parameters to regulate the Peak
Operations Per Second (POPS). The Ultra96-V2 achieves 2304
POPS, while the Kria KV260 and the ZCU104 achieve 4096
POPS. Moreover, the latter implements a dual-core DPU.

The binary instructions are stored into an xmodel file
generated using the Vitis-AI compiler (VAI C). The compiler’s
framework can parse the quantized network’s topology and
build an internal computation graph. VAI C performs addi-
tional optimizations, such as scheduling instructions efficiently
by exploiting data reuse and parallelism. Finally, the back-end
generates the compiled xmodel file based on the target DPU
microarchitecture. Since the ZCU104 and the Kria KV260
share the same DPU architecture, the xmodel file is compatible
with the two boards without the need to be recompiled. On
the other hand, for the Ultra96, a different xmodel file has
to be generated. From the user perspective, the whole process
requires the execution of two scripts, one for the flow from the
quantization to the deployment and one that takes care of the
execution of the actual inference. Thanks to this automation,
if the end-users need to fine-tune the model after initial
deployment, they can do it as usual on CPU/GPU, and thanks
to NERONE, a redeployment requires less than 20 minutes,
far lower than a hardware redesign cycle.

We deploy our models to the target boards with the bi-
nary instruction files. We employed PYNQ-DPU2, a software
layer that runs on our SoCs and allows us to submit it
asynchronously and collect jobs to/from the accelerator and
take advantage, where present, of the multi-core architecture.
PYNQ-DPU offers Python APIs and a user-oriented interface
to deploy the application and visualize directly from the board

2https://github.com/Xilinx/DPU-PYNQ

https://github.com/Xilinx/DPU-PYNQ

4 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

the DNN outputs. PYNQ-DPU also automatically performs
the preprocessing steps necessary to feed the models with
the input images. Indeed, as we quantize our models from
FP32 to INT8 weights, they no longer accept the original
input images datatypes because they are incompatible with
the new network structure and weights. Therefore, the xmodel
file stores a set of values with which images has to be scaled.
PYNQ-DPU automatically performs this step allowing a more
accessible and intuitive user experience. The only drawback of
using PYNQ-DPU is that it requires a portion of the available
resources, leading to a performance reduction of the quantized
models. However, PYNQ-DPU is ideal for prototyping and
reaching a more comprehensive range of final users.

III. EXPERIMENTAL SETUP

As previously introduced, we have designed four different
networks, one per dataset, and trained them on GPU in a
classical fashion. For the network structures definition, we
exploited TensorFlow 2.3.0 and trained them on an Ubuntu
20.04 Oracle virtual machine with a six-core Intel Xeon
Platinum 8167M (Skylake) CPU with 90 GB of memory and
a 16 GB NVIDIA Tesla V100. Such a setup was used both for
training and testing the baseline configurations; additionally,
we also used an Ubuntu 18.04 laptop with an Intel Core
i7-10750H and an NVIDIA GeForce RTX 2060 Mobile for
further comparison. All the trained models are considered as
baselines and the starting point for developing the FPGA-
based solutions. Concerning the FPGA side, we exploit Vitis
AI 1.4.1, PYNQ-DPU 1.4.0 and the default Deep Learning
Processor Units (DPUs), as Section II-C described. Finally,
as evaluation metrics, we employ the throughput and Energy
Efficiency (EE) for all the proposed models, while the Dice
Similarity Coefficient (DSC) for the segmentation-based tasks
and the accuracy for the classification one.

1) Throughput and Efficiency: For evaluating NERONE, we
employ the Frames Per Second (FPS) as a proxy of the
throughput, computing how many images are processed by
the selected model in one second. Additionally, we measure
the DC power consumption in Watt during the inference phase
with the Voltcraft 4000 energy logger for the FPGAs and the
nvidia-smi command for the RTX2060 Mobile and the TESLA
V100. Finally, since throughput and power consumption are
dependent quantities, we evaluate the models’ efficiency in
terms of energy efficiency as:

EE =
FPS

Watt
=

FRAMES

Joule
(1)

2) Performance Metrics: Given the different nature of the
two tasks selected in the validation of NERONE, we select
two different evaluation metrics accordingly. For the semantic
segmentation, we select the widely employed DSC weighted
on the class representation in the dataset, defined as:

DSC =

C∑
i

wi
2 |Pi ∩Gi|
|Pi|+ |Gi|

(2)

where P is the predicted segmentation, G is the ground truth
label, and w is the frequency with which the ith class C

appears in the dataset. On the other hand, for the multi-class
classification tasks, we employ the overall Accuracy.

A. Datasets Description and Pre-Processing
To train and evaluate the performance of NERONE we have

employed four open-source datasets representing different
anatomies and imaging techniques.

1) Segmentation: For the first segmentation task, we have
selected the CT-ORG dataset [19], [20] that provides 140
Computed Tomography (CT) volumes in NIfTI where the
lungs, the liver, the bones, the bladder, and the kidneys are
segmented and provided as ground truth. We downsized the
input images from 512×512 to 256×256, we resampled by cu-
bic interpolation the axial voxel size to 0.557mm×0.557mm,
and we performed a 3D histogram analysis to make the input
images contrast uniform thanks to a linear transformation with
input interval [-500, 1000] and output interval [-1, 1]. The
second segmentation dataset is BraTS [21]–[23] which reports
369 multi-modal Magnetic Resonance (MR) images and the
corresponding manual segmentation of enhancing tumor, the
peritumoral edema, and the necrotic and non-enhancing tumor
core. We kept the original input dimensions of 240×240. The
last segmentation dataset is the Prostate-3T from the NCI-
ISBI 2013 Challenge [24] composed of 30 prostate transversal
T2-weighted MR image volumes along with the segmentation
of the central gland and the peripheral zone obtained with
MeVisLab. We reduced the input image dimensions from
320× 320 to 256× 256, we resampled by cubic interpolation
the axial voxel size to 0.625mm×0.625mm, and we adjusted
the contrast of the images by saturating the upper and lower
1% of the pixels. We rescaled the input images in the [-1, 1]
interval for all the segmentation datasets to match the network
requirements and the subsequent quantization phase.

2) Classification: We have employed the BCCD dataset
[25], a small dataset for blood cell classification which
includes 9957 augmented blood cell images from the 410
original ones. The dataset contains approximately 2500 images
for each of the four classes: eosinophil, lymphocyte, monocyte,
and neutrophil. For this dataset, we kept the starting dimension
of 240× 320 and the three color channels.

B. Models Employed
To validate NERONE, we employed a different network

architecture for each of the four datasets to further prove
the adaptability to different models. We employed a 2D FCN
based on the U-Net [26] architecture for the CT-ORG dataset
[19], [20], while for the Prostate-3T dataset [24], we chose
a network based on the V-Net [27] architecture. These two
architectures, i.e., U-Net and V-Net, were chosen given their
wide employment in biomedical segmentation tasks [28]. For
the BraTS dataset [21]–[23], we exploited an FCN decoder
attached to a MobileNetV2 [29] used as the encoder path
of the architecture. The choice of MobileNetV2 relies on
the possibility of testing different parameters and configura-
tions. Moreover, like U-Net and V-Net, it is also employed
in different scenarios, including medical ones [30]. Finally,
for the classification task on the BCCD dataset [25], we

R. BERZOINI, E. D’ARNESE et al.: NERONE: THE FAST WAY TO EFFICIENTLY EXECUTE YOUR DEEP LEARNING ALGORITHM AT THE EDGE 5

implemented a 2D CNN [31] based on the ResNet architecture
[32]. This architecture is among the most used and efficient
for classification tasks making it a good fit for NERONE’s
evaluation. In addition to supporting almost all architectures
available in the state-of-the-art, NERONE has no limitations
on model size and can quantize and compile models of any
dimension. The only constraints come from the physical device
the user chooses as the model deployment device since the
available memory varies from one another. For example, on the
ZCU104, which has 4096 MB of available memory, the user
can accommodate models with up to 198 million parameters.

1) U-Net: comprises four stacks in the encoder path, four
in the decoder one, and the stack connecting the two paths.
In the encoder path, each stack is made by two Conv2D-batch
normalization-ReLU activation (CBA) blocks followed by a
max pooling layer and a 5% dropout layer. On the other hand,
each stack of the decoder path is made by a 2D transpose
convolution, a concatenation layer, a 5% dropout layer, and
two CBA blocks. In the encoder path, the first stack has eight
filters for the 2D convolution, and the number of filters doubles
at each stack. In the decoder path, the number of filters halves
at each stack. The last layer adopts six 3 × 3 convolutional
filters and a softmax activation function to generate the six
probability maps, one for each organ and the background. The
final outputs of the U-Net have been obtained thanks to the
argmax function applied to the 256× 256× 6 output stack.

2) MobileNetV2: is used as the encoder of a more exten-
sive encoder-decoder architecture. The encoder based on the
MobileNetV2 [29] structure has a width multiplier of 0.35,
progressively reducing the number of filters in each layer. The
fully connected layer at the end of the original architecture
has been removed. In this way, we attach the last layer
of the encoder structure to a standard FCN decoder layout
composed of a 2D up-sampling layer, a concatenation layer
for joining the ReLU activation layers of the MobileNetV2
encoder path to two CBA blocks. The last layer adopts four
3×3 convolutional filters and a softmax activation function to
generate the four probability maps, one for each labeled area
of the brain tumor and the background. Final outputs of the
network are obtained thanks to the argmax function applied to
the 240× 240× 4 output stack.

3) V-Net: has a similar but simplified and smaller structure
compared to the U-Net. We have five stacks for the encoder
and decoder paths. Each stack is made of a CBA block
followed by a max pooling layer and a 1% dropout layer. In
the decoder stacks, the 2D up-sampling and the concatenation
layers are followed by a CBA block. The last layer has two
or three 3× 3 2D convolutional filters depending on whether
we want to segment the whole prostate in a single class or if
we want different segmentations for the central gland and the
peripheral zone. As for the other segmentation networks, the
last convolutional filters are followed by a softmax activation
function to generate two or three probability maps. Finally, an
argmax activation function is applied to the 256× 256× 2(3)
output stack to obtain the segmented outputs.

4) 2D CNN: has a structure similar to ResNet [32] including
skip connections, but it does not present the fully connected
layer at the end. We have five stacks, each made of 4 CBA

plus 20% dropout (CBAD) blocks, a skip layer, and a fifth
CBAD block. The first stack has eight filters which double at
each stack until 128. At the end of the CNN, there is a stack
with 30 filters and a final 2D convolutional layer with four
filters, one for each type of cell, which reduces the output to
a 1 × 1 × 4 vector after a softmax activation function. The
predictions are obtained using the argmax activation function
applied to the output vector.

Finally, all the models employed for the segmentation task
were trained with a weighted focal Tversky loss [28], while the
2D CNN employed for the classification was trained with the
sparse categorical cross-entropy loss. We adopted a learning
rate with a step decay schedule for training both segmentation
and classification networks starting from 1e−3 and decreasing
to 1e− 6, while Adam optimizes the training process [33].

IV. EXPERIMENTAL RESULTS

We evaluate the DL models’ performance for the different
segmentation and classification tasks, comparing them to their
GPU-based counterparts in terms of FPS, EE, and global DSC.
Table I reports the obtained results and those of our previous
work [34] (where the Vitis AI Runtime (VART) is exploited
instead of PYNQ-DPU) and its projection on the new tasks.
Section IV-A and Section IV-B describe the results obtained
with PYNQ-DPU, while the overhead introduced by PYNQ-
DPU compared to VART is discussed in Section IV-C.

A. Semantic Segmentation Evaluation
We now analyze each segmentation dataset’s results ending

with a general trend discussion.
1) CT-ORG: Table I shows how the Tesla V100 is the device

reaching higher throughput, while both the Kria KV260 and
the ZCU104 can deliver more FPS then the mobile RTX 2060.
The fastest FPGA, the ZCU104, can segment a whole body
scan (700 - 900 slices) in approximately 8.4 - 10.9 seconds.
On the other hand, the slowest device, the Ultra96, can still
provide an acceptable throughput for real-time scenarios while
requiring the lowest amount of energy among all the GPUs and
FPGAs. Additionally, as shown in Figure 3, all the FPGAs
are more energy efficient than the GPUs; in particular, the
Kria KV260 is 2.44× and 6.59× more energy efficient than
the Tesla V100 and RTX 2060, respectively. Moreover, the
quantization has brought negligible accuracy losses, with the
INT8 model losing less than 0.15% DSC points, as supported
by the indistinguishable segmentation differences in the first
row of Figure 4.

2) BraTS: Again, Table I shows how the Tesla V100 pro-
vides the highest throughput among all the devices. For this
network and task, the RTX 2060 is also faster than the FPGAs,
while the Ultra96 keeps the lowest power consumption, but it
has a lower energy efficiency than the Tesla V100, being the
only case where an FPGA configuration is less energy efficient
than a GPU one, as shown in Figure 3. The Kria KV260 is
the most energy efficient, with an improvement of 1.50× and
2.19× upon the Tesla V100 and the RTX 2060, respectively. It
also delivers higher throughput than the ZCU104, segmenting
the three areas of the brain tumor in roughly 1.42 seconds per

6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

TABLE I: Results evaluation of NERONE divided by task, dataset, and FPGA-powered board. We report the FPS, Watt, EE,
and the performance metric as DSC for the semantic segmentation task and the overall accuracy (Acc) for the classification.
All the results are reported as µ± σ over five independent runs, with the best in bold, underlined and italic if projected.

Task Dataset Device FPS Watt EE DSC/Acc

Segmentation

CT-ORG [19], [20]

RTX 2060 72.09±0.46 78.17±0.68 0.92±0.01 90.23±0.01
Tesla V100 199.36±1.77 80.38±1.31 2.48±0.02 90.23±0.01
Ultra96-V2 36.52±0.05 9.59±0.03 3.81±0.01 90.10±0.29
Kria KV260 74.70±0.07 12.33±0.11 6.06±0.01 90.10±0.29

ZCU104 82.92±0.47 17.59±0.02 4.71±0.01 90.10±0.29
ZCU104† 335.40±0.34† 28.40±0.02† 11.81±0.02† 90.10±0.29

BraTS [21]–[23]

RTX 2060 99.98±0.66 28.06±0.11 3.56±0.01 83.44±0.38
Tesla V100 372.52±3.53 71.58±0.79 5.20±0.03 83.44±0.38
Ultra96-V2 37.26±0.40 8.96±0.11 4.16±0.02 82.89±0.37
Kria KV260 96.52±0.07 12.39±0.11 7.79±0.02 82.89±0.37

ZCU104 93.34±0.47 16.47±0.08 5.67±0.01 82.89±0.37
ZCU104⋆ 377.53±0.34⋆ 26.60±0.02⋆ 14.20±0.01⋆ 82.89±0.37⋆

Prostate-3T [24]

RTX 2060 299.62±1.5 77.22±1.51 3.88±0.02 91.81±1.31
Tesla V100 599.48±3.46 81.82±1.31 7.33±0.04 91.81±1.31
Ultra96-V2 91.47±0.44 8.59±0.03 10.65±0.05 91.59±1.23
Kria KV260 145.76±1.00 11.38±0.33 12.81±0.09 91.59±1.23

ZCU104 190.68±0.55 15.96±0.15 11.94±0.03 91.59±1.23
ZCU104⋆ 771.27±0.34⋆ 25.78±0.02⋆ 29.92±0.03⋆ 91.59±1.23⋆

Classification BCCD [25]

RTX 2060 959.50±2.98 80.28±0.64 11.95±0.04 92.25±2.25
Tesla V100 2046.22±8.63 166.56±4.29 12.29±0.05 92.25±2.25
Ultra96-V2 114.99±2.18 9.28±0.31 12.40±0.23 92.05±2.23
Kria KV260 237.92±0.23 12.75±0.05 18.66±0.02 92.05±2.23

ZCU104 225.49±0.74 17.35±0.01 13.00±0.04 92.05±2.23
ZCU104⋆ 912.06±0.34⋆ 28.02±0.02⋆ 32.55±0.04⋆ 92.05±2.23⋆

† Experimental Results from Ref. [34] ⋆ Projected according to direct VART exploit as in Ref. [34] and scaled based on † results without preprocessing

scan. Finally, the quantization procedure introduces a 0.55%
drop in DSC, which, despite being the more significant drop
in accuracy among all the datasets, is negligible to the human
eye, as in the central row of Figure 4.

3) Prostate-3T: Table I shows how the behavior of the FP32
and INT8 networks remains similar to the previous two tasks
but with a generally higher EE (as in Figure 3). The higher
EE is the effect of a higher throughput without a proportional
power consumption growth. The Tesla V100 remains the most
performing in FPS, requiring roughly the same power as the
RTX 2060 but providing 2× higher throughput. The ZCU104
achieves 190 FPS, being the fastest among the FPGAs and
allowing for segmenting the prostate area in an average of 0.1
seconds. Though the Ultra96 has the lowest power consump-
tion, its EE is lower than the others keeping the Kria KV260
as the most energy-efficient device. It has an improvement of
1.74× and 3.3× compared to the Tesla V100 and RTX 2060
configurations. The quantized version of the network has just
a 0.21% drop in the DSC, which is also visually confirmed
by the visual outputs in the bottom row of Figure 4.

Finally, to summarize the main trends for semantic seg-
mentation, as expected, the Tesla V100 is the fastest being
a datacenter card. Regarding power consumption, FPGAs are
always better than GPUs, as shown in Table I. Conversely, in
one case, namely on BraTS in Figure 3, the Ultra96 is less
energy efficient than the V100, although this is imputable to

the much higher FPS rate of the latter. Ultimately, the Kria
KV260 proved the best trade-off between watts and FPS.

B. Multi-Class Classification Evaluation
Moving to the classification task, we consider the same

metrics besides the DSC, which is substituted by the accuracy.
1) BCCD: Given the network structure and the simpler task

compared to the semantic segmentation, as in Table I, the Tesla
V100 reaches more than 2000 FPS (with more than 166.56
Watt), while the RTX 2060 reaches almost 1000 FPS. Also,
in this case, the Ultra96 is less power-hungry with significant
energy efficiency, while the Kria KV260 outperforms all the
other four configurations, as shown in Figure 3, with a 1.52×
and a 1.56× improvements in energy efficiency. These limited
improvements are related to the massive difference in the
FPS (∼ 4.1 − 8.6× more) the GPUs can reach compared to
the FPGAs. On the other hand, if we consider a constrained
scenario, none of the GPU solutions is considerable in terms of
required watts per computation. Finally, the quantized version
of the CNN has negligible accuracy losses with just a 0.08%
drop compared to the GPU counterpart.

C. PYNQ-DPU Overhead
As Section II-C described, PYNQ-DPU eases the develop-

ment process for the end users, but as shown in Table I, at the

R. BERZOINI, E. D’ARNESE et al.: NERONE: THE FAST WAY TO EFFICIENTLY EXECUTE YOUR DEEP LEARNING ALGORITHM AT THE EDGE 7

BraTS PROSTATE3T CT-ORG BCCD
Dataset

2.5

5.0

7.5

10.0

12.5

15.0

17.5

EE
RTX 2060 Mobile
Tesla V100
Kria KV260

Avnet Ultra96-V2
ZCU104

Fig. 3: Average Energy Efficiency (EE) of each tested device
clustered by dataset.

cost of impacting FPGA performance. To evaluate such an
impact, we tested the ZCU104-based solution on the CT-ORG
dataset of our previous work [34] employing the default Linux-
Vitis AI Runtime (VART) image and reported the projections
of the results on the other datasets. Table I shows how using
VART outperforms all the PYNQ-DPU configurations and the
GPU ones in terms of FPS and EE. Notably, PYNQ-DPU data
accounts for data preprocessing time, while with VART, the
data should be preprocessed offline.

Looking at the CT-ORG dataset VART on the ZCU104 is
4.04× faster than our PYNQ-DPU one. Moreover, it is also
1.68× faster than the high-end class Tesla V100 which con-
sistently outperformed the PYNQ-DPU FPGAs throughput.
Despite the increase in watt consumption introduced by VART,
the configuration still presents a higher energy efficiency of
1.95× better than the one of the Kria KV260, which is the
most energy-efficient device tested within NERONE. Even
though VART provides a performance improvement, it leads to
a less versatile and agile use of the FPGAs. A simple example
is the absence of a package manager that leads, for instance,
to be unable to install extra Python packages. On the other
hand, PYNQ-DPU provides more tools to directly develop and
test the solution on the FPGAs, such as a package manager
and a Jupyter Notebook that can be used via a graphical user
interface. To sum up, NERONE, thanks to PYNQ-DPU, can
efficiently quantize, compile and deploy a working application
on multiple FPGAs with little effort by the user. On the other
hand, VART assures performance maximization and is the way
to go when the edge execution environment is stable.

V. LITERATURE ANALYSIS AND COMPARISON

This Section compares NERONE against literature works
that exploit the same datasets in our experimental evaluation.
Table II reports our best performing FPGA and GPU config-
urations, namely the Kria KV260 and the Tesla V100. On the
CT-ORG dataset, [35] combines two datasets to increase the
data available to train a 3D U-Net and a 3D DenseV-Net. They
showed how segmentation performance would increase on
organs labeled on multiple datasets while losing some accuracy
on those that appear only in one of the two. The 3D U-Net

Fig. 4: Visual comparison of NERONE results. From left to
right: input image, ground truth, INT8 NERONE segmenta-
tion, FP32 NERONE segmentation. Top to bottom: the CT-
ORG [19], [20] dataset with spinal cord in white, kidneys
in yellow and liver in brown. From the Prostate-3T [24]
dataset, the inner central gland in dark green and the peripheral
zone in light green. From the BraTS [21]–[23] dataset, the
outer peritumoral edema in light blue, the enhancing tumor in
purple, and the pink tumor core.

is also employed by [20] coupled with a smoothed IOU loss.
For training and inference, they employ 4 GPUs (whose model
is not specified), achieving an average of 4.3 s to segment a
CT scan (17-197 FPS). On the BraTS dataset, [36] conducts
some experiments using a 3D U-Net by testing combinations
of region-based training, data augmentation, and batch loss
instead of sample loss, while [37] employs an encoder-decoder
architecture but with scale attention blocks connecting each
encoding layer output to all the decoding layers obtaining
better DSCs compared to plain U-Net. For the Prostate-3T
dataset, [39] employs a DeepLabV3+ to show the improvement
obtained by the atrous convolution compared to classical FCN,
while [38] is the subsequent work where the authors improve
the DeepLabV3+ performance with patch-wise training. On
the BCCD dataset, [40] employed a pre-trained MobileNet-
224 as a feature extractor followed by a logistic regressor as
the final classifier, while [41] employs a small convolutional
neural network with a fully connected layer that includes more
than 97% of the network total parameters, achieving better
results than fine-tuning on pre-trained networks.

An interesting point to note is that the literature does
not consider throughput or energy efficiency while evalu-
ating performance. Indeed, all the selected works’ primary
objective is to reach the most accurate network on a specific
dataset and task without focusing on the final application,
that in the medical field, along with accuracy, requires further
consideration on the constraints of the working environment.

8 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

TABLE II: Comparison of NERONE with other works in the literature dealing with the same dataset employed in the NERONE
evaluation. We report FPS, EE, and specific task related performance metrics. All our results are reported as µ± σ over five
independent runs, while we report the numbers in the paper of the literature works. The best results are in bold.

Task Dataset Metric Our Kria KV260 Our Tesla V100 [35] [20]

Segmentation

CT-ORG [19], [20]

FPS 74.70±0.07 199.36±1.77 >6.4 [17-197]
EE 6.06±0.01 2.48±0.02 n.a. n.a.

DSC Liver 91.08±0.35 90.8±0.02 94.90±n.a. 92.00±3.6
DSC Bladder 77.74±0.40 74.95±0.02 85.80±n.a. 58.10±22.3
DSC Lungs 92.83±0.38 93.21±0.02 98.35±n.a. 93.80±5.9

DSC Kidneys 80.69±0.34 79.61±0.02 91.25±n.a. 88.20±7.9
DSC Bones 89.84±0.10 90.03±0.02 92.73±n.a. 82.70±7.6

Our Kria KV260 Our Tesla V100 [36] [37]

BraTS [21]–[23]

FPS 96.52±0.07 372.52±3.53 n.a. n.a.
EE 7.79±0.02 5.20±0.03 n.a. n.a.

DSC Whole Tumor 93.04±0.31 93.09±0.53 91.87±n.a. 92.56±1.05
DSC Tumor Core 81.05±0.47 82.26±0.48 87.97±n.a. 89.02±1.64

DSC Enhancing Tumor 87.28±0.46 87.46±0.46 81.37±n.a. 82.20±1.74

Our Kria KV260 Our Tesla V100 [38] [39]

Prostate-3T [24]

FPS 145.76±1.00 599.48±3.46 n.a. n.a.
EE 12.81±0.09 7.33±0.04 n.a. n.a.

DSC Central Gland 89.05±1.39 89.05±1.47 92.80±0.70 88.40±n.a.
DSC Peripheral Zone 72.01±1.33 72.82±1.39 78.90±1.90 70.20±n.a.

Our Kria KV260 Our Tesla V100 [40] [41]

Classification BCCD [25]

FPS 237.92±0.23 2046.22±8.63 n.a. n.a.
EE 18.66±0.02 12.29±0.05 n.a. n.a.
Acc 92.05±2.23 92.25±2.25 97.03 87.00

Eosinophil 96.40±1.47 96.54±1.54 96.00 83.15
Monocyte 97.15±0.55 97.47±0.68 100.00 100.00

Lymphocyte 97.57±1.00 97.91±0.87 100.00 75.00
Neutrophil 92.97±2.34 93.20±2.51 96.00 93.59

Conversely, with NERONE, we provide the end users with an
easy-to-use and transparent framework to deploy DL models
in constrained scenarios, where energy efficiency and high
throughput rates are essential. Moreover, since NERONE starts
from a trained model, the users can still focus on pushing the
accuracy performance to the top before transparently moving
their models on FPGA. From Table II, we can also see how all
the models proposed to evaluate NERONE on each task and
dataset are still reaching significant results in terms of specific
performance metrics even if reaching top DSC/accuracy results
is not the core objective of the proposed work.

VI. DISCUSSION AND CONCLUSIONS

This Section discusses the benefits of employing NERONE
to exploit an FPGA-based accelerated inference and the ease
of developing custom solutions starting from the proposed
framework. Indeed, we have proposed an open-source frame-
work that, given a trained network and a dataset, transparently
deploys the inference phase on FPGA, maintaining the result-
ing accuracy but improving the energy efficiency compared
to GPU-based solutions. Moreover, thanks to NERONE, end
users can benefit from the FPGA-based inference without any
coding overhead, but just by writing a few lines of Python
code. Based on these considerations, we believe the proposed
framework could pave the way for broader adoption of FPGAs

in the DL world, opening to new applications (e.g., where
power consumption is a limiting factor) and a vaster public,
for example, to computer vision experts.

Even though we have demonstrated the ability of NERONE
to be easily adaptable to different image modalities, tasks,
and platforms, further considerations should be made. While
the FPGA-based embedded solutions proposed outperform the
GPU ones in terms of energy efficiency, they still achieve
lower FPS rates. This fact is mainly caused by the overhead
of using the Python APIs provided by PYNQ-DPU. Although
employing them facilitates the usage by the end users, it also
introduces a computational overhead that can be avoided by
directly exploiting the Vitis AI Runtime (VART).

In conclusion, within this work, we have proposed an
open-source framework for deploying DL models on FPGAs
to achieve a fast, accurate, and efficient inference. By its
evaluation, we have demonstrated how it can be easily tailored
to different use cases without knowing FPGA programming.

ACKNOWLEDGMENTS

We thank Oracle Cloud Infrastructure and Oracle for Re-
search for their support to this work. This work was supported
in part by Oracle Cloud credits and related resources provided
by the Oracle for Research program. We thank AMD Univer-
sity program for the boards used in this manuscript.

R. BERZOINI, E. D’ARNESE et al.: NERONE: THE FAST WAY TO EFFICIENTLY EXECUTE YOUR DEEP LEARNING ALGORITHM AT THE EDGE 9

REFERENCES

[1] J. Hsieh, “Computed tomography: principles, design, artifacts, and recent
advances,” 2003.

[2] R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and
R. Venkatesan, Magnetic resonance imaging: physical principles and
sequence design. John Wiley & Sons, 2014.

[3] M. I. Razzak, S. Naz, and A. Zaib, Deep Learning for Medical Image
Processing: Overview, Challenges and the Future. Cham: Springer
International Publishing, 2018, pp. 323–350. [Online]. Available:
https://doi.org/10.1007/978-3-319-65981-7 12

[4] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic
segmentation using deep neural networks,” International journal of
multimedia information retrieval, vol. 7, no. 2, pp. 87–93, 2018.

[5] E. D’Arnese, G. W. Di Donato, E. Del Sozzo, M. Sollini, D. Sciuto,
and M. D. Santambrogio, “On the automation of radiomics-based
identification and characterization of nsclc,” IEEE Journal of Biomedical
and Health Informatics, vol. 26, no. 6, pp. 2670–2679, 2022.

[6] Z. Ma, J. M. R. Tavares, and R. N. Jorge, “A review on the current
segmentation algorithms for medical images,” in Proceedings of the
1st International Conference on Imaging Theory and Applications
(IMAGAPP), 2009.

[7] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, “A review on deep learning techniques applied to
semantic segmentation,” arXiv preprint arXiv:1704.06857, 2017.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[9] E. Alcaı́n, P. R. Fernández, R. Nieto, A. S. Montemayor, J. Vilas,
A. Galiana-Bordera et al., “Hardware architectures for real-time medical
imaging,” Electronics, vol. 10, no. 24, p. 3118, 2021.

[10] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues et al.,
“Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning,” IEEE
transactions on medical imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

[11] L. Zhang, X. Wang, D. Yang, T. Sanford, S. Harmon, B. Turkbey et al.,
“Generalizing deep learning for medical image segmentation to unseen
domains via deep stacked transformation,” IEEE transactions on medical
imaging, vol. 39, no. 7, pp. 2531–2540, 2020.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa
et al., “In-datacenter performance analysis of a tensor processing unit,”
in Proceedings of the 44th annual international symposium on computer
architecture, 2017, pp. 1–12.

[13] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of
fpga-based neural network inference accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[14] E. D’Arnese, D. Conficconi, M. D. Santambrogio, and D. Sciuto,
“Reconfigurable architectures: The shift from general systems to domain
specific solutions,” in Emerging Computing: From Devices to Systems.
Springer, 2023, pp. 435–456.

[15] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[16] Xilinx, “Vitis ai: Adaptable and real-time ai inference acceler-
ation,” https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html,
2021, last accessed 21 January 2022.

[17] ——, “Dpu for convolutional neural network,” https://www.xilinx.com/
products/intellectual-property/dpu.html#overview, 2021, last accessed
30 April 2023.

[18] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu et al.,
“Dnnbuilder: an automated tool for building high-performance dnn
hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018, pp.
1–8.

[19] Blaine Rister, Kaushik Shivakumar, Tomomi Nobashi and Daniel
L. Rubin, “Ct-org: Ct volumes with multiple organ segmentations
[dataset],” The Cancer Imaging Archive, 2019. [Online]. Available:
https://doi.org/10.7937/tcia.2019.tt7f4v7o

[20] B. Rister, D. Yi, K. Shivakumar, T. Nobashi, and D. L. Rubin, “Ct-org, a
new dataset for multiple organ segmentation in computed tomography,”
Scientific Data, vol. 7, no. 1, pp. 1–9, 2020.

[21] U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Co-
lak et al., “The rsna-asnr-miccai brats 2021 benchmark on brain
tumor segmentation and radiogenomic classification,” arXiv preprint
arXiv:2107.02314, 2021.

[22] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby et al., “The multimodal brain tumor image segmentation
benchmark (brats),” IEEE transactions on medical imaging, vol. 34,
no. 10, pp. 1993–2024, 2014.

[23] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby
et al., “Advancing the cancer genome atlas glioma mri collections with
expert segmentation labels and radiomic features,” Scientific data, vol. 4,
no. 1, pp. 1–13, 2017.

[24] Litjens, Geert, Futterer, Jurgen, Huisman, and Henkjan, “Data from
prostate-3t [data set],” The Cancer Imaging Archive. Available online:
0.7937/K9/TCIA.2015.QJTV5IL5, 2015.

[25] S. Cheng and N. Chen, “Blood Cell Count and Detection,” 2019.
[Online]. Available: https://github.com/Shenggan/BCCD Dataset

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[27] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). IEEE, 2016, pp.
565–571.

[28] R. Berzoini, A. A. Colombo, S. Bardini, A. Conelli, E. D’Arnese, and
M. D. Santambrogio, “An optimized u-net for unbalanced multi-organ
segmentation,” in 2022 44th Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,
2022, pp. 3764–3767.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[30] W. Sae-Lim, W. Wettayaprasit, and P. Aiyarak, “Convolutional neural
networks using mobilenet for skin lesion classification,” in 2019 16th
international joint conference on computer science and software engi-
neering (JCSSE). IEEE, 2019, pp. 242–247.

[31] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transac-
tions on neural networks and learning systems, 2021.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[34] R. Berzoini, E. D’Arnese, and D. Conficconi, “On how to push efficient
medical semantic segmentation to the edge: the seneca approach,” in
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2022, pp. 1–8.

[35] F. Islam Tushar, H. Nujaim, W. Fu, E. Abadi, M. A. Mazurowski,
E. Samei et al., “Quality or quantity: Toward a unified approach for
multi-organ segmentation in body ct,” arXiv e-prints, pp. arXiv–2203,
2022.

[36] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-
Hein, “nnu-net for brain tumor segmentation,” in International MICCAI
Brainlesion Workshop. Springer, 2020, pp. 118–132.

[37] Y. Yuan, “Automatic brain tumor segmentation with scale attention
network,” in International MICCAI Brainlesion Workshop. Springer,
2020, pp. 285–294.

[38] Z. Khan, N. Yahya, K. Alsaih, S. S. A. Ali, and F. Meriaudeau,
“Evaluation of deep neural networks for semantic segmentation of
prostate in t2w mri,” Sensors, vol. 20, no. 11, p. 3183, 2020.

[39] Z. Khan, N. Yahya, K. Alsaih, and F. Meriaudeau, “Zonal segmentation
of prostate t2w-mri using atrous convolutional neural network,” in 2019
IEEE Student Conference on Research and Development (SCOReD).
IEEE, 2019, pp. 95–99.

[40] E. H Mohamed, W. H El-Behaidy, G. Khoriba, and J. Li, “Improved
white blood cells classification based on pre-trained deep learning
models,” Journal of Communications Software and Systems, vol. 16,
no. 1, pp. 37–45, 2020.

[41] M. Sharma, A. Bhave, and R. R. Janghel, “White blood cell classification
using convolutional neural network,” in Soft Computing and Signal
Processing. Springer, 2019, pp. 135–143.

https://doi.org/10.1007/978-3-319-65981-7_12
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/intellectual-property/dpu.html#overview
https://www.xilinx.com/products/intellectual-property/dpu.html#overview
https://doi.org/10.7937/tcia.2019.tt7f4v7o
https://github.com/Shenggan/BCCD_Dataset

	Introduction
	Proposed Approach
	Training and Model Preparation
	Model Quantization
	Model Compilation and Deployment to the Edge

	Experimental Setup
	Throughput and Efficiency
	Performance Metrics

	Datasets Description and Pre-Processing
	Segmentation
	Classification

	Models Employed
	U-Net
	MobileNetV2
	V-Net
	2D CNN

	Experimental Results
	Semantic Segmentation Evaluation
	CT-ORG
	BraTS
	Prostate-3T

	Multi-Class Classification Evaluation
	BCCD

	PYNQ-DPU Overhead

	Literature Analysis and Comparison
	Discussion and Conclusions
	References

