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Abstract 

Natural Language Processing has been transformed by the introduction of deep learning 

models for text and speech processing. Through intuitive techniques like transfer learning and 

fine-tuning, it is possible to train impressive discriminative and generative probabilistic 

models. Moreover, these approaches seem to be able to cope with an issue that traditional 

handcrafted features sometimes fail to handle: lack of resources like data or domain-specific 

knowledge. To test the applicability of these features, we build a classification pipeline for 

Parkinson's disease from speech, using samples in Telugu. The data set we use is relatively 

small, especially if compared with those available for English for example; moreover, Hindi 

does not offer access to many models specific for its processing, again differently from highly 

resourced languages. In these settings, we evaluate the generalization capabilities of 

classification models using deep-learning features. In our experiments, we compare different 

deep-learning models and traditional prosodic and acoustic features to understand which 

features are the most suitable for this situation. The results are mixed: although in line with the 

state-of-art, the best scores we obtained are with one of the models using deep learning features, 

we still managed to achieve impressive scores using handcrafted features.  

Keywords: Natural Language Processing, Deep-Learning, Speech analysis, Parkinson’s 

disease. 
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1. Introduction 
Deep learning has slowly become an essential tool for Natural Language Processing. Apart 

from the impressive results on text processing [1] [2], deep learning models allowed to improve 

the results of multiple speech-related applications, like Automatic Speech Recognition (ASR) 

[3] [4], speaker identification [5], conditioned Text-to-Speech synthesis [6] [7] [8] or speech 

emotion recognition [9]. 

These deep learning models are particularly useful in the presence of small data sets or under-

resourced problems (in terms of data and domain-knowledge availability). They allow to 

exploit techniques like transfer learning and fine-tuning [10], where the features computed by 

a deep learning neural network model trained on a large generic data set are re-used on a 

specific problem with a smaller data set, generally resulting in improved performances. 

In this work, we focus on Parkinson's disease detection from speech. We propose a probabilistic 

classification pipeline to detect if a patient is affected by Parkinson's disease by analyzing voice 

recordings. To evaluate the generalization capabilities enabled by deep learning models for 

audio/speech feature extraction, we test them on a relatively small data set of samples in 

Telugu. These settings represent a challenge due to the reduced data set size and the scarce 

availability of language-specific analysis models. 

We divide this chapter into the following sections. In Section 2 we present the related works in 

terms of features for speech analysis and results on Parkinson's disease detection from voice. 

In Section 3 we present the abstract classification pipeline we adopted, suggesting possible 

implementations of the various modules. In Section 4 we describe the data set we collected to 

train and evaluate different classification models. In Section 5 we describe the implemented 

pipeline configurations we evaluated and we report the results obtained during the evaluation. 

Finally, in Section 6 we summarize our work and suggest possible future evolution. 

2. Related Works 
In this section, we present the features commonly employed for speech classification, both 

traditional and deep learning based.  

Additionally, we present the latest results for Parkinson's disease detection from speech. 

2.1. Features for speech analysis 

Traditionally, the speech features adopted for NLP are divided into two groups: prosodic 

features and acoustic features [11] [12]. The former group includes features used to describe 

peculiarities of speech, like: Pitch, Intensity, Harmonicity, Jitter, Shimmer, Speech Rate, Short-

Term Energy, Short-Term Entropy, etc. The latter group includes the features used to describe 

the acoustic properties of speech, like Spectrogram (magnitude or power), Mel-spectrogram, 

Mel Frequency Cepstral Coefficients (MFCC), Spectrogram statistics (centroid, spread, flux, 

rolloff, entropy), Chromagram, etc. 

More recent approaches, instead, propose to re-use deep learning models trained on large data 

collections. The internal representations learned by these models are particularly informative 

and can be directly transferred or easily adapted to many new problems. The most popular 

models in this sense are SoundNet [13], VGGish [14], and Wav2Vec [15] [3]. The first two are 



very generic models, though for acoustic analysis not necessarily aimed at speech. SoundNet 

is a 1D convolutional neural network trained to predict from the audio track of video clips the 

pseudo labels generated from an object recognition deep neural network and a scene 

recognition deep neural network that processed the images of the video clips. VGGish, on the 

other hand, is a 2D convolutional neural network trained on a large audio classification data 

set containing a large number of labels and samples. Instead, both the versions of Wav2vec 

were specifically designed for speech analysis problems and were originally used as input for 

state-of-the-art ASR models. 

2.2. Parkinson’s disease detection from speech 

Parkinson's disease detection from speech has already been explored as a machine-learning 

problem. 

More sophisticated solutions also adopted dimensionality reduction techniques to feed more 

compact and informative feature vectors (encoding the input speech signal) to the classifiers. 

Different classification algorithms, like Artificial Neural Networks, Support Vector Machines, 

and k-Nearest Neighbors, have been adopted for this detection problem [16] [17] [18] [19] [20] 

[21] [22]. Usually, these solutions involved the extraction of prosodic and acoustic features 

(mainly MFCC, Jitter, Shimmer, and Pitch), which allowed to train discriminative models with 

impressive results. In some cases, these features were further processed through dimensionality 

reduction transformations to keep only the most relevant components of the vectors encoding 

the audio clips to classify, which resulted in further improvements is some cases. 

Recent results also explored the effect of deep learning features to train a classifier for this 

Parkinson's disease detection problem [19], reaching more than 80% recognition accuracy on 

a data set of English audio clips, outperforming the other considered classifiers based on 

spectral features. Other works started focusing on building classifiers compatible with multiple 

languages [20]: the results showed that acoustic and spectral features can be used to build high-

performing classifiers (reaching more than 90% recognition accuracy) on English and Italian. 

All these works relied on larger data sets like Mobile Device Voice Recordings at King's 

College London (MDVR-KCL) from both early and advanced Parkinson's disease patients and 

healthy controls [23] and Italian Parkinson's Voice and Speech [24] [25], which account for 

more than 1 h of recordings. In our case we are dealing with a much smaller data set, thus we 

are interested in seeing if and how much performance degrades when using similar 

classification pipelines. 

  



3. Proposed machine learning pipeline 
 

 
Figure 3.1. Visualization of the abstract classification pipeline. 

In this section, we describe the classification pipeline we propose for Parkinson’s disease 

detection from speech; we depicted the pipeline in Figure 3.1. We compose each of the stages 

of the pipeline (preprocessing, feature extraction and classification) of different modules. The 

choice of specific module implementations allows to instance the proposed pipeline into a 

classification model, which can be trained and evaluated. 

3.1. Pre-processing 

In our pipeline, we considered two pre-processing steps: segmentation and denoising. Both 

steps prepare the raw data for the feature extraction stage. 

Segmentation consists of the splitting of the audio clip in presence of longer pauses, which 

generally mark the end of an utterance. This step can be done by hand (however it may require 

a lot of time) or automatically. In the latter case, it is better to do it after denoising, to avoid 

errors due to additional sounds present in the recording that overlap with the voice. 

The denoising module takes care of removing (as much as possible) additional signals in the 

input audio clip which overlap with the voice to analyze. State-of-the-art solutions use deep 

learning models trained on many hours of data and can achieve impressive results. This is an 

important step; due to the reduced size of the data set we are working with; we cannot expect 

the classification models to generalize and learn implicitly to ignore the noise. 

3.2. Features extraction 

Features extraction is the core stage of our pipeline. The main step at this stage is the 

computation of the feature map, which, after the appropriate post-processing steps is the actual 

input of the classification model. 

Each pre-processed input speech signal undergoes a transformation to extract a feature map. 

Traditionally data samples for machine learning are represented by a 𝑑 ∈ ℕ feature vector. 

However, for some problems like speech or image analysis, it is possible to leverage the spatial 

structure of the input and generate a feature map. In our case, from a speech signal, we can 

compute a feature map that is a sequence of feature vectors (each computed is a specific time 

window of the input signal) that can be encoded in a matrix 𝑿 ∈ ℝ𝑡×𝑑, where 𝑡 is the number 

of time positions and 𝑑 is the number of features for each vector. Deep learning models, as 

well as algorithms to compute traditional prosodic and acoustic features, iteratively transform 

the raw input signal to obtain a feature map.  
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Depending on the duration of the input audio clip, we considered the possibility of an 

intermediate chunking module. To avoid processing too large segments of audio, which can be 

computationally expensive and may harm the results in the presence of shorter input, we 

introduced an optional chunking step. The feature maps can be chunked into smaller windows 

along the time axis, to process smaller portions of the input speech. In this way, from the same 

segment, it is possible to extract multiple samples for the classifier.  

The last step in the features extraction stage is standardization. This transformation is used to 

mean-center the data and impose a variance of 1 for all the features individually. 

Standardization is used to have the same scale on all the features, which helps the convergence 

and stability of the learning algorithm used for classification. There exists some robust version 

of this transformation using, for example, the median instead of the mean for centering. 

3.3. Classification 
 

 
Figure 3.2. Convolutional Neural Network Classifier Architecture. 
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The last step of the proposed pipeline is a Convolutional Neural Network (CNN) classifier [26]. 

We approach the problem as a supervised binary classification problem. In input we have a 

feature map extracted from an audio clip of human speech and in output we have the probability 

for that clip to correspond to a Parkinson’s Disease patient. We report a diagram of the 

considered architecture in Figure 3.2. 

The CNN is composed of a hidden transformation ℎ(∙), composed of convolutional blocks. 

These transformations process the input feature map 𝑿 ∈ ℝ𝑡×𝑑  transforming it into another 

feature map 𝑯 ∈ ℝ𝑡×ℎ to be used for the final classification. The convolutional blocks contain, 

in order, a 1D convolutional layer, a 𝑅𝑒𝐿𝑈(∙) activation and a max pooling transformation to 

reduce the spatial dimensionality of the feature map. Optionally, we considered an initial 

average pooling transformation to reduce the spatial dimensionality before the convolutional 

blocks. This optional transformation is useful when dealing with highly dense feature maps 

like those from handcrafted features or from Wav2Vec 2.0. 

After the hidden transformation, we apply a vectorization transformation. The role of this 

transformation is to drop the spatial dimension and convert the feature map 𝑯 ∈ ℝ𝑡×ℎ into a 

feature vector 𝒉 ∈ ℝℎ to be classified. We considered the following vectorization approaches: 

flattening (or unrolling), Global Average Pooling (GAP) [30], and Global Max Pooling (GMP) 

[30]. 

The last layer of the CNN is a linear transformation that maps the feature vector 𝒉 ∈ ℝℎ into a 

scalar value. This value is passed through a Sigmoid activation function to have the output 

probability score. 

 

4. Data 
 



 
Figure 4.1. Distribution of audio clips duration after segmentation. The green line is the overall 

distribution including all samples. 

As discussed, in this work we adopted a data set of audio clips collected from Telugu speakers. 

The reasons behind this choice are two: there, thus we wanted to establish a baseline, and we 

wanted to see if deep learning features for speech analysis allow generalizing on under-

resourced languages and small data sets, like in this case. 

The data set we adopted is composed of two parts. The samples from Parkinson's disease 

patients come from a private data set, composed of 12 m 39 s of audio recordings. To balance 

this data set with samples from healthy persons (in the sense of speakers not affected by 

Parkinson’s disease), we gathered the audio samples from the delta segment of the Telugu split 

of the Open Speech and Language Resources (OpenSLR) corpus [28], which accounts for 15 

m 35 s of recordings. The total amount of available data is 28 m 14 s. In terms of samples, we 

collected a total 281 audio clips, 200 from patients in healthy conditions and 71 from patients 

affected by Parkinson’s Disease. 

Before processing the audio clips with the feature extraction modules of our pipeline, we 

manually segmented those clips. We split the recordings on longer pauses, which we associated 

with utterances boundaries. In Figure 4.1 we displayed the distribution of the audio clip lengths 

after the manual segmentation. As can be seen, audio clips of Parkinson’s disease patients cover 

a wider duration range than those from healthy patients. This difference is primarily due to the 

different sources of the data samples, other than the articulation difficulties due to the disease.  

As we explained in Section 3, the speech samples are analyzed in smaller chunks, to prevent 

overfitting of the classifiers, given the reduced size of the data set.  



5. Evaluation and results 
In this section, we describe the experiments we conducted on different models and how we 

evaluated their performances. Additionally, we present and comment on the obtained results. 

5.1. Experiments 

Our experiments were mainly though to compare different modules for the feature extraction 

stage, in order to identify the most suitable features for Parkinson’s disease from speech on the 

considered Telugu data set. In this sense, we compared different feature map computation 

approaches, analyzing the results obtained using features from different deep learning models. 

Additionally, we explored different vectorization algorithms, applying them to the extracted 

feature maps. 

In the preprocessing stage, after the manual segmentation step to isolate the different utterances 

in the same recording, we used a denoising application to enhance voice and remove 

background noises that could have affected the classifier. We employed RNNoise [29] tool to 

denoise the input speech segments. 

For the feature extraction stage, we compared three different pre-trained deep learning models 

for acoustic features extraction: SoundNet, VGGish, and Wav2Vec 2.0. To have a term of 

comparison with these deep learning features, we also trained some models using traditional 

(handcrafted) speech analysis features. Following recent work on Parkinson’s disease detection 

from speech in English [20], we adopted the following prosodic and acoustic features: MFCC, 

Pitch, Jitter (absolute, relative, rap, and PPQ5), Shimmer (absolute, absolute dB, relative, 

APQ3, and APQ5), Harmonicity. We concatenated these prosodic and acoustic features into a 

single, di-dimensional, feature map. 

We applied chunking to the feature maps resulting from features extraction using non-

overlapping windows of 4 s. We applied padding to make sure that all windows ended up 

composed of 4 s data. We extended both sides of the feature map (before the chunking step), 

replicating the value on the border. We repeated the values so that the input sequence of 

features could be decomposed into an integer number of chunks. For all the considered input 

features, we applied standard scaling, computing mean and variance of the individual features 

vectors composing all the feature maps.  

After chunking, we obtained 538 samples, 315 from people in healthy conditions and 223. We 

applied minority oversampling to balance the data set. 

Concerning the CNN, we used a standard stack of 1D convolutional layers with non-linear 

activation as hidden transformation, followed by the vectorization operation and a final linear 

classification layer. As anticipated in Section 3.3, we considered flattening, GAP and GMP as 

vecotrisation transformations. For each input feature-vectorisation algorithm pair, we searched 

for the best hyperparameters configuration of the CNN using 5-fold cross-validation. We 

considered 1, 2, or 3 convolutional blocks and either 512 or 1024 output channels for the 

convolutions. We used a constant kernel width of 3 for all configurations. We trained the CNN 

using the Adam optimiser, in the cross-validation step we considered as learning rates 10-3 and 

5·10-4. To prevent overfitting we used dropout with a probability of 10% 



5.2. Evaluation approach 

To ensure a correct evaluation of the model performances, we split the audio segments into 

train and test, with a 75%-25% split. We used the same training and testing subsets with each 

of the proposed models (i.e., pipeline implementations). For each model, we computed the 

common metrics used in machine learning for classification and information retrieval 

problems, defined starting from the confusion matrix. 

 

Table 1 - Confusion matrix. 

 Predicted positive Predicted negative 

Labelled positive 𝑇𝑃 𝐹𝑁 

Labelled negative 𝐹𝑃 𝑇𝑁 

 

Referring to the confusion matrix in Table 1, we introduce the following definitions: 

• 𝑇𝑃 = True Positive (i.e., positive values correctly predicted as such) 

• 𝑇𝑁 = True Negative (i.e., negative values correctly predicted as such) 

• 𝐹𝑃 = False Positive (i.e., negative values predicted as positive) 

𝐹𝑁 = False Negative (i.e., positive values predicted as negative) 

Given that this is a Parkinson's disease detection problem, we associate the positive class with 

the disease condition and the negative class with the healthy condition. 

To assess the quality of the trained classification models, we computed the following metrics: 

• accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

• precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (i.e., positive predictive value) 

• recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (i.e., sensitivity, hit rate, true positive rate) 

• specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (i.e., selectivity, negative class recall true negative rate) 

• 𝐹1-score =  
2 ∙ precision ∙ recall

precision+ recall
 (i.e., sensitivity, hit rate, true positive rate) 

• AUC (Area Under the Curve of the Receiver Operating Characteristic) 



5.3. Results and comments 

 
Figure 5.1. Results of the different tested configurations. Each row corresponds to a different 

pooling (vectorization) approach, each column corresponds to an input feature. 

We reported the measured metrics on the test split in Figure 5.1. All models managed to achieve 

good performances despite the reduced data set size: in most cases we achieved scores for all 

metrics > 95%. All features showed to be independent from the pooling approach, reaching 

similar results across the different vecotrisation algorithms. 

Concerning deep learning features, VGGish and Wav2Vec 2.0 achieve the overall best results. 

On the other side, SoundNet produced the worst results. In all cases where the classifiers 

produce worse results, we can notice that the recall score is lower than the precision one. Thus, 

we can hypothesize that, in those cases, the unbalance in the number of negative samples 

(corresponding to healthy patients) influenced negative the model, causing the increase of false 

negatives.  

Interestingly, the handcrafted features perform comparably to VGGish and Wav2Vec 2.0. In 

fact, despite the small data set, we managed to achieve almost a perfect score (which is not 

possible). This hints that the few handcrafted features encode very useful information for the 

task. 



6. Conclusion 
In this chapter, we approached a speech analysis problem, Parkinson's disease detection from 

voice, using a machine learning pipeline. We evaluated different feature extraction approaches, 

comparing traditional prosodic and acoustic features against features computed by deep neural 

networks. We used the extracted features to fit an CNN classifier. All the experiments were 

conducted on a relatively small data set of audio clips collected from Telugu speakers. We 

achieved equally good results using both deep features and, surprisingly, with the handcrafted 

features. The reported scores are in line with those achieved on bigger data sets, showing that 

even with low resources deep learning models can yield good generalization capabilities. 

Nevertheless, handcrafted features showed to be capable of yielding valid results, comparable 

to those of the deep models, despite the reduced data set size. This hints that deep learning 

solutions for audio processing still need to become an irreplaceable tool. For the sake of 

reproducibility, we are sharing the source code via GitHub1. 

Concerning future direction, we are willing to explore different learning paradigms to improve 

the detection results. On one side we are considering exploiting regularities within data and see 

if unsupervised learning may lead to better results. Ideally, the similarities and dissimilarities 

between samples may be used to feed a clustering algorithm, allowing, possibly, to group 

automatically samples from healthy patients and patients affected by Parkinson's disease. On 

the other side, we are considering anomaly detection approaches. In fact, given that there are 

many more available samples of speech from people in healthy conditions, it would be possible 

to detect samples of speech from Parkinson's disease patients as outliers to the distribution of 

the regular data. 
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