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Abstract—The human-machine teaming paradigm promotes
tight teamwork between humans and autonomous machines
that collaborate in the same physical space. This paradigm is
increasingly widespread in critical domains, such as healthcare
and domestic assistance. These systems are expected to build a
certain level of trust by enforcing dependability and exhibiting
interpretable behavior. However, trustworthiness is negatively
affected by the black-box nature of these systems, which typically
make fully autonomous decisions that may be confusing for
humans or cause hazards in critical domains.

We present the EASE approach, whose goal is to build better
trust in human-machine teaming leveraging statistical model
checking and model-agnostic interpretable machine learning. We
illustrate EASE through an example in healthcare featuring
an infinite (dense) space of human-machine uncertain factors,
such as diverse physical and physiological characteristics of the
agents involved in the teamwork. Our evaluation demonstrates
the suitability and cost-effectiveness of EASE in explaining
dependability properties in human-machine teaming.

Index Terms—Human-machine teaming, formal analysis, sta-
tistical model checking, interpretable machine learning

I. INTRODUCTION

The widespread diffusion and pervasiveness of autonomous
systems pave the way for their inclusion in critical domains,
such as healthcare and domestic assistance. In this context,
Human-Machine Teaming [8] (HMT) is an emerging paradigm
in which machines and humans can be seen as teammates
that collaborate, leveraging their strengths and reducing their
weaknesses to achieve a common goal. One of the primary
challenges for a successful collaboration between humans and
machines is the establishment of a certain level of (mutual)
trust. However, trustworthiness is negatively affected by the
black-box nature of these systems, which typically make fully
autonomous decisions that may be confusing for humans or
cause hazards in critical domains.

In our vision, to achieve trust, the machine shall exhibit
dependable and transparent behavior to offer strong, ideally
provable assurances along with human interpretable explana-
tions for the expected scenario outcome. A natural starting
point is to consider formal verification as a crucial enabler
of some facets that collectively compose the notion of trust
in this context. Indeed, the adoption of formal approaches to

verification, such as model checking, remains essential, yet
not conclusive. Humans not only require knowing whether
the teaming is going to succeed and certain dependability
properties hold, but they also need to understand the main
reasons in terms of many teaming factors that are typically
uncertain and evolve as the scenario of interest develops over
time. For example, consider an interactive service robotics
application in the healthcare domain. Here, doctors, patients,
and robots collaborate in highly volatile conditions. Patients
may be in discomfort, affecting their mobility, while doctors
may be subject to stress factors affecting their actions due to
physical or mental fatigue.

In this context, there exist a number of open challenges.
Teaming factors are affected by sources of uncertainty and
vary over time. Thus, the set of factors typically determines
a nontrivial space of possible values for a parametric specifi-
cation describing the target teaming scenario. Each value as-
signment sampled from the space of teaming factors may lead
to different verification outcomes in terms of satisfaction of
dependability properties of interest. However, running model
checking tasks for all assignments to explain what happens
under all possible conditions is unfeasible since the space of
teaming factors may be huge or even dense. Furthermore,
runtime usage of model checking when changes occur may
be prohibitive since verification outcomes may be produced
at a slower rate compared to changes in the factors. On the
contrary, explanations must be constructed quickly and, at the
same time, must follow rigorous approaches.

To deal with these challenges, we propose EASE1, a novel
approach that combines formal verification, based on Statisti-
cal Model Checking [10] (SMC), and interpretable Machine
Learning [30] (ML). Formal verification provides rigor to the
characterization of the system’s operation, while ML models
trained on the verification results can predict the satisfaction of
dependability properties during an ongoing teaming scenario
with high accuracy and a small amount of time (orders of mag-
nitude faster than model checking). Furthermore, interpretable
ML can be used to build on-the-fly explanations to track

1EASE stands for “Exploration, AnalySis, and Explanation.”



scenario outcomes down to human interpretable root causes
in terms of relevant teaming factors. The operator may exploit
such explanations to apply recovery measures or redesign the
teaming scenario.

The combination of two such different topics requires
special attention, especially when the result of a formal tool,
which is correct by definition and construction, is replaced
by a potentially inaccurate result. Thus, an essential aspect
to be assessed in this approach is the cost-effectiveness, that
is, the trade-off between the accuracy of ML predictions as a
surrogate of model checking results and the resources (time
and memory) required by the two tools.

We address these questions by introducing and evaluating
the EASE framework, which builds on the modeling and
analysis framework presented in [22]–[24] with the ultimate
goal of building better trust in HMT. EASE includes three
stages: offline (1) HMT modeling using Stochastic Hybrid
Automata [1] (SHA) and (2) exploration of the teaming
factors and SMC of the teaming scenarios of interest; and
online (3) explanation of target dependability properties. Since
SMC may be computationally expensive, we keep it in pre-
production as an offline stage to not interfere with the run-
ning applications. SMC feeds a binary classifier estimating
the relationships between uncertain and changing teaming
factors and the scenario outcome in terms of satisfaction of
dependability properties. The classifier is then used online to
predict the scenario outcomes and build human-interpretable
explanations. Explanations can be used while designing a new
HMT scenario (or reconfiguring an existing one) to guide value
selection in the space of teaming factors.

The approach is illustrated using a running example in the
healthcare domain featuring multiple human-machine uncer-
tain factors. The ability of EASE to explain the dependability
in the HMT featured scenario and its cost-effectiveness is
shown through an empirical evaluation.

The remainder of this paper is as follows. In Sec. II we
introduce background notions we use in the rest of the paper.
In Sec. III we introduce our illustrative example. In Sec. IV
we describe our novel approach EASE. Then, we describe
our evaluation results in Sec. V. In Sec. VI we discuss major
strengths and weaknesses of EASE as well as threats to
validity. Section VII summarizes related work, while Sec. VIII
concludes the paper and presents our future work.

II. PRELIMINARIES

This section introduces preliminary theoretical concepts on
SHA, SMC, classification, and interpretable ML.

A. Stochastic Hybrid Automata

We define SHA [12] as an extension of Hybrid Automata
(HA) [1]. Let W be a set of symbols, Γ(W ) is the set of guard
conditions, Ξ(W ) the set of updates on elements of W .

Definition 1 (Stochastic Hybrid Automaton). An SHA is a
tuple ⟨L,W ,F ,D, I,C , E , µ,P, lini⟩, where:

1) tuple ⟨L,W ,F , I,C , E , lini⟩ is an HA;

2) D : L ⇀ {R → [0, 1]} is the partial function assigning a
probability distribution from {R → [0, 1]} to locations;

3) µ : (L×RW ) → {R+ → [0, 1]} is the function assigning
a probability distribution from {R+ → [0, 1]} to each
valuation of the SHA;

4) P : L ⇀ {(C!? × Γ(W ) × ℘(Ξ(W )) × L) ⇀ [0, 1]}
is the partial function assigning a probability weight
to the defined edges outgoing a location, such that∑

α=(c!,γ,ξ,l′)∈E(l),c∈C P(l)(α) = 1 holds.

While in location l ∈ L, real-valued variables in W evolve
in time according to the expressions F(l). These expressions
are called flow conditions [1] and are defined through sets
of Ordinary Differential Equations (ODEs), making SHA
suitable to model systems with complex dynamics. Special
cases of flow conditions constrain clocks (ẋ = 1 holds for all
x ∈ X ⊂ W ), dense-counter variables, and constants (v̇ = 0
holds for all v ∈ (Vdc ∪K) ⊂ W ).

If dense-counter θ ∈ Vdc is an independent term for flow
f ∈ F(l) on location l ∈ L, i.e., f = f(t, θ), and parameter
θ is randomly distributed, then f is a stochastic process [14].
We limit the analysis to flow conditions depending on, at most,
one random parameter, according to Definition 1.

Probability measures are also associated with delays to
model the wait between the firing of two edges. Specifically,
given configuration (l, vvar), distribution µ(l, vvar) governing
the associated time delay is either uniform or exponential [12].

Multiple SHA modeling different entities forming a system
can be combined into a network. Different automata of a
network synchronize through the channels of set C [20]. Given
channel c ∈ C and two edges of two distinct automata,
whose events are c! (the sender) and c? (the receiver),
triggering an event through channel c causes both edges to
fire simultaneously. Synchronization always requires at most
one sender and possibly many receivers (or none) [11].

B. Statistical Model Checking

SMC applies statistical techniques to a set of runs of the
formal model, expressed as a network of SHA, to estimate
the probability of a desired property holding. SMC is cheaper
than exhaustive state space exploration since it is based on a
finite number of simulations of the target system [10]. Given
the stochastic nature of the formalism, SMC estimates the
probability that a certain property ψ holds for the system.
Specifically, the value of expression PM(ψ) is an estimate
for the probability of property ψ holding for a given SHA
network M [11]. Formulae ψ are Metric Temporal Logic
(MTL) properties that represent an expressive formal language
adopted in the context of Cyber-Physical Systems [19].

In our framework, the property ψ is of the form: ♢≤τap,
where ♢ is the “eventually” operator and ap is an atomic
proposition. Formula ♢≤τap is true if ap holds within τ ∈ N
times units from the onset. SMC computes the confidence
interval [p− ϵ, p+ ϵ] for the probability of ψ holding for M,
estimated through the Clopper-Pearson method [9].



C. Classification

In the field of Machine Learning (ML), classification [18]
refers to a predictive modeling problem where the class
label yi is anticipated for a specific input data point x(i).
Classification models (either binary or multiclass) are built
by using supervised learning techniques to create a concise
representation of the distribution of class labels in terms
of quantifiable properties, known as features (or explanatory
variables). Thus, a data point x(i) is a vector that contains a
value x(i)j for each feature j. A supervised learning algorithm
that implements classification is referred to as classifier. Super-
vised learning uses a training set that includes pre-labeled data
points ⟨x(i), yi⟩ to “learn” the desired classification function
f̂ . The classification function applied to a data point f̂(x(i)) is
referred to as prediction. There exist several popular classifiers
(either binary or multiclass) in supervised ML, including, for
instance, Logistic Regression and Neural Networks [18].

The evaluation and comparison of alternative classifiers rep-
resent crucial steps after training. The evaluation is based on
predictive accuracy measures taking into account True/False
Positive and True/False Negative rates collected by comparing
the outcome of the classifiers on new data points (not in
the training set) and the corresponding oracle (i.e., ground
truth class labels). Unseen data points used for evaluation
purposes collectively compose the so-called test set. A pop-
ular predictive accuracy measure widely suggested by recent
research is the Area Under the receiver operator characteristic
Curve [15] (AUC). The AUC measures the discriminatory
power of classifiers capturing the true positive (TP) rate against
the false positive (FP) rate at various threshold settings. The
AUC measure ranges between 0 (worst), 0.5 (no better than
random guessing), and 1 (best).

D. Interpretable Machine Learning

Interpretable ML [30] refers to the extraction of relevant
knowledge from an ML model concerning existing relations
contained in data or learned by the model itself. In this sense,
interpretability is the ability of a model to be understood and
explained by humans. According to the terminology intro-
duced by Miller [29], we use terms interpretable and explain-
able interchangeably. Some predictive models are designed
to have a clear and simple structure, and their predictions
are inherently explained (e.g., Linear Regression, Decision
Trees). More complex models (e.g., Neural Networks, Random
Forests) that do not explain their predictions are referred to as
black box (or non-interpretable) models.

The scope of interpretability is either global (i.e., holistic
model interpretability) or local (i.e., interpretability for a single
prediction). Global explanations describe the average behavior
of a given model. They give a holistic view of the distribution
of the target outcome (e.g., class labels) based on the features.
Partial Dependence Plot [30] (PDP) is a global model-agnostic
method that shows the marginal effect that selected features
have on the predicted outcome of a model. A PDP shows the
relationship between the predictions and one or more features

(e.g., linear, monotonic or more complex). The PDP function
is defined as follows:

f̂S(xS) = EXC
[f̂(xS , XC)] =

∫
f̂(xS , XC) dP(XC) (1)

where xS are the features for which we want to know the
effect on the prediction (usually one or two features), and XC

are the other features treated here as random variables. PDP
marginalizes the model output over the distribution of features
XC to show the relationship between xS and the predictions.
For classifiers, PDP calculates the probability for a certain
class label given different values for feature(s) xS .

Local explanations take into account an individual data point
of interest x(i) and examine the prediction f̂(x(i)) to explain
possible reasons usually based on a local surrogate model. The
Local Interpretable Model-agnostic Explanation [30] (LIME)
method starts from x(i) and generates a new dataset consisting
of perturbed samples mapping to the corresponding predictions
of the original model. LIME uses the new dataset to train an
interpretable model, which is weighted by the proximity of the
samples to x(i). The local model built this way has the local
fidelity property, that is, it represents a good approximation
of local predictions, but it does not have to be a good global
approximation. Formally, the local model can be expressed as:

g∗(x(i)) = arg min
g∈G

L(f̂ , g, πx(i)) + Ω(g) (2)

where the explanation model g∗ is the local surrogate belong-
ing to G (i.e., the set of all possible local surrogate models)
that minimizes the loss function L measuring the distance
between g(x(i)) and f̂(x(i)) for all perturbed samples defined
by the proximity measure πx(i) . The function Ω defines the
model complexity that shall be minimized (e.g., models with
fewer features are preferred over more complex models).

III. ILLUSTRATIVE EXAMPLE IN HEALTHCARE

The illustrative example targets interactive service robotics
in the healthcare domain. In such applications, humans and
robots collaborate to achieve a common goal while operating
in highly volatile conditions. The selected scenario features a
hospital ward with an analysis room where doctor visits take
place, a waiting room for patients to wait until the doctor is
ready, and a storage room with medical equipment. A robot
is deployed on the floor to assist patients and doctors during
daily operations. Such assistance consists of services provided
by the robot requiring interaction and synchronization with
a human subject. The specific service sequence (i.e., the
scenario) we consider is: 1) the robot escorts a patient from
the entrance to the waiting room; 2) the doctor leads the robot
to a storage room to retrieve the equipment required to visit
the patient; 3) the robot follows the doctor to the analysis room
while carrying the equipment; 4) the robot escorts the patient
from the waiting room to the analysis room that has been set
up for a visit.2

Following the modeling approach in [22]–[24], this scenario
can be formalized by using a SHA network composed of

2Scenario specification available at https://github.com/LesLivia/hri dsl.



(a) High-level representation of how the SHA from the use case
scenario communicate. Synchronizations through channels are solid
black; probabilistic transitions are dashed; data shared through vari-
ables are solid grey. Selected HMT factors are highlighted in red.

(b) Extract of Ap SHA modeling a human walking.

Fig. 1: SHA network of the illustrative example.

five automata as illustrated in Fig. 1a. Automata Ap and Ad

model the human subjects (i.e., the patient and the doctor,
respectively), while Ar, Ab, and Ao model the robotic system
(i.e., the robotic platform, the battery, and the orchestrator,
respectively). The latter serves as a controller since it monitors
the state of the system and issues commands for the robot (i.e.,
start/stop moving and start/stop recharging) or suggestions
for the human (i.e., start/stop walking). To this end, agents
share data with the orchestrator through global dense counters
in Vdc. Robots share updates on their position and state of
charge, while humans share updates on position and fatigue.
An extract of the SHA modeling the patient is described in
the following, while we refer the reader to [22]–[24] for a
thorough description of the complete SHA.

The extract of the patient model in Fig. 1b includes two lo-
cations capturing the subject standing or walking. Real-valued
variable F ∈ W models fatigue, which increases while walk-
ing, whereas standing corresponds to a recovery phase. Flows
F(standing) = frec(t, ρ) and F(walking) = fftg(t, λ) con-
strain the time derivative of F , where t measures the duration
of the current fatigue/recovery phase. Fatigue/recovery rates λ
and ρ are randomly distributed according to D(standing) =
N (µs, σ

2
s ) and D(walking) = N (µw, σ

2
w). In more detail,

upon entering the standing (resp. walking) location, a sample
of N (µs, σ

2
s ) (resp. N (µw, σ

2
w)) is extracted and assigned

to ρ (resp. λ). Thus, alternating fatigue/recovery phases may
yield different values of the corresponding rate. According

TABLE I: Selected HMT factors.

Factor Agent Type Domain

Free will profile Patient Categorical {focused, nominal, inattentive}
Health status Patient Categorical {healthy, sick, unsteady}
Age group Patient Categorical {young, elderly}

Initial position x Doctor Continuous [0.0, 50.0] m
Initial position y Doctor Continuous [0.0, 8.0] m

Speed Robot Continuous [30.0, 100.0] cm/s
Battery charge Robot Continuous [11.1, 12.4] V

to [17], [31], such distributions depend on the health status
and age group of the involved subject. Probabilistic edges
model visible manifestations of human free will. When the
human is standing with fatigue smaller than a critical threshold
(guard F ≤ Fmax holds), and the orchestrator fires a suggestion
through channel walk ∈ C , they begin walking with probabil-
ity pdo ∈ K, or ignore it with probability 1−pdo (similarly for
the edges from walking to standing with channel stop ∈ C ).
The value of pdo depends on the specific free will profile. A
human can also start walking independently of the orchestra-
tor’s suggestions. The edges between locations standing and
walking labeled with guard γfree will model haphazard human
decisions in terms of a dice roll.

As anticipated above, several factors in this highly dy-
namic context affect the outcome of human-robot teaming.
Indeed, the number of people operating in the ward and the
level of bustle vary significantly during the day or based on
seasonal factors, larger-scale emergencies (e.g., the COVID-
19 pandemic), or unexpected local emergencies. In these
cases, human behavior can be highly uncertain. For instance,
unexpected decisions often stray from the original plan. Pa-
tients may be distressed or in discomfort, which may affect
their mobility, whereas professionals may be subject to stress
factors. Therefore, the duration and efficiency of their action
due to either physical or mental fatigue are highly variable.

Table I lists selected HMT factors that may affect the
agents in our illustrative example. Some apply to the patient
only, while others to the doctor only (see the color-coding
in Fig. 1a). These factors potentially hinder service provision
and, in turn, the dependability of the robotic application and
people’s trust in the technology.

IV. THE EASE APPROACH

In this section, we present the main stages of our approach
illustrated in Fig. 2: offline (A) HMT modeling, (B) explo-
ration and analysis; and online (C) prediction and explanation.
In the following, we describe these stages and we illustrate the
key concepts through our example in Sec. III.

A. HMT Modeling

The first activity of the offline stage envisages the modeler
defining one or more HMT scenarios of interest. An HMT
scenario is specified through a user-friendly Domain Specific
Language3 (DSL) to specify the geometrical boundaries of the

3DSL sources available at https://github.com/LesLivia/hri dsl.
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Fig. 2: EASE workflow.

teaming area, the scenario workflow, and the dependability
requirements of interest. The DSL, presented in detail in [25],
supports the specification of a broad range of human-machine
teaming patterns, including cooperative tasks that require close
contact and precise synchronization (e.g., robot feeding the hu-
man or support while walking), as well as competitive patterns
capturing the human and the robot simultaneously requiring a
critical resource, which could happen during emergencies.

The modeler also specifies the agent’s characteristics, such
as the humans’ health status and age group, the initial battery
level of the robots, and the initial position of all the agents in
the teaming area. Table I presents the list of HMT factors we
consider in this work. We define them as a set of variables v̄
characterizing human agents (both patients and doctors) and
robot agents. Each variable has its own type and domain. The
value of these variables influences the phenomena of interest
in the target HMT scenario possibly affecting, in turn, the
satisfaction of dependability properties.

Firstly, during the modeling phase, the described set of
variables and the dependability requirements are specified
through the custom DSL. The DSL model is then validated
to ensure its well-formedness against a fixed set of rules (e.g.,
that all the agent’s starting positions belong to the teaming
area) and automatically converted into an intermediate JSON
file to decouple the specification language from the selected
verification tool. In this work, each generated JSON file
is automatically converted into a verification-ready UPPAAL
model. Given a teaming pattern and a value assignment v̄,
the EASE framework automatically processes the JSON file
into the corresponding UPPAAL model instance, that is, an
SHA network M[v̄] built through a mechanical model-to-
model transformation procedure [24].

Example 1 (Model instance). The chosen HMT factors and
their possible values, selectable during the modeling phase, are
shown in Table I. Different assignments v̄ and v̄′ correspond
to different SHA networks M[v̄] and M[v̄′] exhibiting, thus,
different behaviors. For instance, with reference to the SHA
in Fig. 1b, if the free will profile is set to focused, pdo = 0.99
holds. In contrast, the nominal profile corresponds to 0.95,
thus impacting the probability with which the human abides

by or ignores the robot’s command.

B. Exploration and Analysis

Given an SHA network instance M[v̄], dependability prop-
erties are verified using SMC using UPPAAL [10] model
checker. We estimate the probability PM[v̄](ψ), where the
atomic proposition ap in ψ is a Boolean variable that becomes
true when the scenario is completed. Specifically, every service
in our illustrative example (e.g., the robot escorts a patient)
is associated with a Boolean value supplied i that is true if
the i-th service in the sequence succeeds. So, the generated
dependability property ψ has the form:

ψ := ♢≤τ

∧
i

supplied i (3)

The SMC tool checks whether ψ holds for all traces and
estimates the confidence interval [p − ϵ, p + ϵ] for the actual
probability. Then, we say that the instance M[v̄] satisfies the
property ψ, denoted by M[v̄] |= ψ, if the lower bound value
p− ϵ is greater than a user-defined probability threshold π.

Example 2 (Verification of dependability properties). Our
illustrative example includes a number of services such as:
“robot escorts a patient”, and “doctor leads the robot”. The
scenario succeeds if they all terminate successfully. For in-
stance, the robot successfully escorts a patient if it is simul-
taneously sufficiently close (i.e., within a fixed threshold) to
the destination and to the human subject, and human fatigue
is smaller than Fmax (see Fig. 1b).

The set of human interpretable HMT factors in Table I
induces a large, or even infinite, SHA model space. As
anticipated in Sec. III, the space of all possible changes that
may break dependability requirements cannot be reasonably
explored exhaustively. As shown in Fig. 2, the offline stages
of EASE include parameter sampling, which is designed to
increase knowledge through the exploration of the space of
HMT factors. At the current stage, EASE adopts a simple
exploration strategy based on uniform random sampling. Each
sample is an assignment v̄ that yields the corresponding
instance M[v̄]. The sampling feeds the SMC that verifies the
property ψ and produces the verification dataset that includes



the so-called success and failure regions. The success region
contains the points v̄ such that M[v̄] |= ψ holds. The failure
region contains instead the points v̄ such that M[v̄] ̸|= ψ holds.

Other exploration strategies may be adopted depending on
the search space’s characteristics. Uniform random sampling
is suitable in case the likelihood of successful and failing
runs is comparable. If one of the two cases is a rare event,
other search strategies can be adopted, such as metaheuristic
optimizing search [2]. In this latter case, the search process
can either maximize the lower bound p − ϵ or minimize the
upper bound p+ϵ, selectively pushing the evolutionary search
towards successful or failing runs, respectively.

C. Prediction and Explaination

The verification dataset produced by the search process is
then used to train and validate a binary classifier [35] to
bridge the gap between offline and online stages. As shown
in Fig. 2, we build the model offline, then use it online along
with the running HMT to predict and explain the outcome of
the ongoing scenario. The classifier estimates the relationships
between features (i.e., HMT factors) and the corresponding
class label (i.e., the verification outcome, that is, the property
ψ holds or not). Training and validation are carried out
considering different classifiers built using the verification
dataset split into 80% training and 20% test using stratified
sampling [18]. As described in Sec. II, the evaluation is based
on the AUC measure [15].

Example 3 (Training and validation). Training and validation
may consider, for instance, Random Forests (RF) and Neural
Network (NN) classifiers trained on 800 data points belonging
to the training set. The AUC measure computed on 200 data
points belonging to the test set is 0.95 and 0.6 for RF and NN
classifiers, respectively. The interpretation of the AUC measure
is that NN is slightly better than random guessing (AUC =
0.5). RF exhibits higher accuracy and is close to optimal (AUC
= 1.0). In this case, RF represents a better choice.

After the validation process, the most accurate classifier can
support operators during the execution of the HMT scenario
of interest. According to Fig. 2, the actual value of the
HMT factors is monitored and used to predict whether the
ongoing scenario is going to meet the dependability property
in Eq. 3. The operator can then examine the predictions
taking into account the policies and safety regulations of the
facility (e.g., the minimum accepted success range within a
specific ward). In case the estimated likelihood of observing
a dependable scenario is low, the operator may apply manual
emergency procedures or the robot enforce automated graceful
degradation.

EASE also adopts global and local model-agnostic inter-
pretable ML techniques to build human interpretable explana-
tions for the predictions. Concerning global explainability, we
rely on PDP introduced in Sec. II. We use PDP to understand
the average relationship between the predictions and one or
more selected features according to their importance.

TABLE II: Mapping between RQs and measurements.

RQ Study subject Activities Measurements/criteria

RQ1 Best classifier Offline analysis
Offline training Cross-validation AUC

RQ2 Online cost-effectiveness Offline analysis
Online prediction

Execution time
Memory consumption
Confusion matrix

RQ3 Types of explanations Online explanation PDP plots
LIME plots

Example 4 (PDP explanations). PDP can help operators to
interpret the dependency between the features and the outcome
(e.g., linear, monotonic, or more complex). As an example,
global PDP explanations for the joint effect of robot speed and
its charge level may reveal that, for speed values between 60
and 70 cm/s, the probability of success is nearly independent
of the charge level when its value is higher than 11.5.

Concerning local explainability, we rely on LIME to probe
repeatedly the classifier and understand each individual pre-
dicted outcome (either success or failure). Starting from the
current assignment v̄, the binary classifier uses LIME to
generate a new dataset made of synthetic perturbations of v̄
paired with the corresponding predictions. The new dataset is
used to train an interpretable regression model weighted by
the proximity of the perturbations to the original data point
as introduced in Sec. II. The explanations are directed to
operators to illustrate the reason why the current scenario is
going to fail (or succeed) in terms of HMT factors.

Example 5 (LIME explanations). LIME can be used to under-
stand the relative importance of the HMT factors and quantify
the extent to which their value contributes to the likelihood
of observing a failure (or a success). For instance, a LIME
explanation may reveal that the patient profile inattentive
represents, under the current assignment v̄, the main reason for
the failure, that is, the surrogate local model has the highest
weight 0.56 associated to this feature. Other features, like the
fatigue profile, may instead reduce the probability of failure.
In this case, the corresponding feature in the local surrogate
has a negative weight, such as −0.19.

Global/local explanations may be adopted by modelers to
guide the selection of the most suitable configurations (i.e.,
value assignments to factors) that maximize the likelihood of
observing a successful scenario according to the results of
the classifier. Suggestions should then be validated through
SMC to achieve stronger dependability guarantees. This way,
the number of assignments to be verified is limited, which
makes the approach more practical compared to exhaustive
enumeration and verification of all possible assignments.

V. EVALUATION

In this section, we describe the evaluation of EASE. We
introduce our research questions, the design of the evaluation,
and then we present the major results4.

4Replication package available at https://doi.org/10.5281/zenodo.7614649
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Fig. 3: Cross-validation AUC.

A. Research questions and design

The purpose of our evaluation is to study the extent to which
EASE can be adopted to explain the dependability of HMT
and its cost-effectiveness. In particular, we aim at answering
the following research questions:
RQ1: What is the best classifier we can build in the offline

stage of EASE?
RQ2: What is the cost-effectiveness of the EASE in the

online stage?
RQ3: What kind of human interpretable explanations can we

provide using EASE?
To answer the research questions, we carried out a number

of experiments by executing the activities of EASE (both
offline and online stages) on the example in Sec. III. The struc-
tural complexity of the SHA network used in our evaluation
is approximately 176× 103 (i.e., the cumulative size of each
SHA, calculated as the product of the number of locations,
edges, and the cardinality of state variables’ domains). Table II
maps each research question to the corresponding study sub-
ject, the executed activities, and the collected measurements
or criteria used to answer the question.

In our experiments, we took control over the HMT factors
in Table I and we generated two random samples S and S′,
each one with 500 unique assignments (1k assignments in
total). Then, we used the UPPAAL model checker5 to verify

5For each run, we estimated the probability of success p with confidence
interval magnitude equal to 0.1 (i.e., with ϵ = 0.05).

TABLE III: Model rank through Scott-Knott ESD test.

Classifier Median AUC Rank

Gradient Boosting Machine (GBM)
eXtreme Gradient Boosting Tree (XGB)

0.988
0.985

Rank-1

Random Forests (RF) 0.974 Rank-2
Decision Tree (DT) 0.926 Rank-3
Logistic Regression (LR) 0.760 Rank-4
Neural Network (NN) 0.603 Rank-5

the dependability property in Eq. 3 under the specification
M[v̄] for all v̄ ∈ S ∪ S′. The results have been used to create
two datasets DS and DS′ mapping all v̄ to the corresponding
Boolean outcome y. We used the dataset DS to train and
validate a number of binary classifiers to compare them
and identify the best one in our problem domain. Then, we
used the dataset DS′ to study the cost-effectiveness of the
online predictions of the best classifier compared to the actual
outcome of the model checker. Finally, we collected the output
of the best classifier to feed model agnostic interpretable ML
techniques. In particular, we identified the most important
HMT factors to build PDP global explanations and then we
sampled the dataset DS′ to build LIME local explanations to
understand the extent to which these techniques can be used to
provide scenario designers with human interpretable feedback.

All the SMC experiments have been conducted by using a
commodity hardware machine running UBUNTU OS v22.04
with 64GB of memory and 4 CPU cores.

B. Results

1) RQ1 (best classifier): We executed the offline analysis
and training activities multiple times to find the best classifica-
tion technique in our problem domain. We selected and then
compared 6 common classification techniques [34] listed in
Table III. These techniques include interpretable models (DT),
techniques having built-in model-specific explanations (LR,
RF) and other well-known approaches (NN, GBM, XGB).

All the classifiers have been trained using the dataset DS

(split into 80% training set and 20% test set). To reduce
the risk of overfitting on the test set, we used k-fold cross-
validation [33]. According to Table II, we determine the best
classifier using the Area Under the receiver operator charac-
teristic Curve (AUC) to measure the discriminatory power of
predictive models [15]. The Receiver operating characteristic
(ROC) [15] is a curve that plots the True Positive (TP) rates
against False Positive (FP) rates for all possible FP thresholds
in [0, 1]. The best possible model has ROC close to y = 1.
Thus, the values of AUC range between 0 (worst), 0.5 (no
better than random guessing), and 1 (best).

Figure 3a illustrates the AUC measure obtained by applying
10-fold cross-validation. We can observe that the top three
classifiers (RF, GBM, and XGB) have average and median
AUC values close to 1. As shown in Table III, the results of
model ranking using the non-parametric Scott-Knott effect size
difference (ESD) test6 [32] identify GBM and XGB as first-

6Comparison approach that leverages hierarchical clustering to partition the
set of AUC values into distinct groups with a non-negligible difference.
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Fig. 4: Cost-effectiveness comparison (SMC vs GBM).

rank models. Even though the difference is not statistically
significant, we finally selected GBM as the best classifier since
it has a higher median AUC compared to XGB (0.988 vs
0.985). Figure 3b shows the ROC curves of the GBM (first-
rank) classifier. Each curve (one for each fold) features the
TP rate on the y axis, and the FP rate on the x axis. The
top left corner represents the optimum (i.e., 0 FP rate of zero,
and 1 TP rate). The mean ROC yields a steep curve, meaning
that the GBM model exhibits a behavior close to ideal (i.e., it
maximizes the TP rate while minimizing the FP rate).

RQ1 Summary: We identified GBM and XGB as first-
rank models, according to the AUC measure with 10-fold
cross-validation. GBM has a slightly higher median AUC
(0.988) compared to XGB (0.985) even though there is a
negligible effect size difference.

2) RQ2 (online cost-effectiveness): We executed the online
prediction activity multiple times using the best classifier
GBM. We observed 500 predictions given new assignments to
HMT factors belonging to DS′ (i.e., new data points outside
the training and validation sets). For each assignment v̄, we
compared the predicted outcome and the oracle (i.e., actual
outcome y ∈ DS′ ) to measure the effectiveness in terms of
TP, TN, FP, and FN rates. In addition to the effectiveness,
we measured the cost as the number of required resources:
execution wall-clock time and resident memory.

Figure 4 summarizes the cost-effectiveness results collected
in these experiments. Figure 4a illustrates the execution time
(seconds) required by the SMC and the GBM classifier to
verify the property and predict the verification outcome, re-
spectively. We can observe that the time required by the SMC
is, in general, several orders of magnitude higher compared
to GBM. The SMC takes on average 436s, while the GBM
takes on average 72µs. Concerning memory consumption, the
results in Fig. 4b show that SMC requires on average 81
MBytes, while GBM uses on average 130 MBytes. While
the cost is comparable in terms of memory consumption, the
execution time required by SMC is prohibitive and it makes
it inadequate for online usage in our context. Considering

execution time, GBM represents indeed a better option since it
takes only a few microseconds for each prediction. Figure 4c
illustrates the confusion matrix built by comparing predictions
against the oracle. It shows that both TN and TP values are
high: 294 out of 307 negative outcomes and 182 out of 194
positive outcomes, respectively. On the contrary, both FN and
FP values are small: 13 out of 307 negative outcomes and 12
out of 194 positive outcomes, respectively. We can observe
that the effectiveness in terms of correct predictions is high
and the probability of observing mispredictions is low. Overall,
we observed an FP rate of 0.026 and an FN rate of 0.024.

RQ2 Summary: The cost of GBM is lower compared to
SMC. On average, each prediction takes 72µs, while SMC
requires 436s. The efficacy of GBM in terms of correct
predictions is high, as FP and FN rates are less than 0.03.

3) RQ3 (types of explanations): To answer this RQ, we first
used permutation feature importance7 [4] to detect the most
important HMT factors. We then analyzed the four top factors
(i.e., patient free will, patient health, robot speed, and robot
battery charge) using PDP to extract global explanations for
the average effect of these factors on the scenario outcome.
According to these results, we sampled new assignments and
then analyzed them through LIME to understand the extent
to which local changes applied to controllable factors can
increase the chance of success.

Figure 5 shows the results of PDP. The effect of the two
categorical factors patient free will and health is shown in
Fig. 5a and Fig. 5b, respectively. The interpretation of these
plots is causal. Namely, we can quantify the extent to which
changes to these two factors influence success on average. We
can observe that, when the patient is either focused or nominal,
the probability of success is higher than 0.5 on average. The
probability drops below 0.05 when the patient is inattentive.
Similarly, the probability is around 0.5 when the patient is
either healthy or sick, but it drops to 0.1 when the health

7Technique that randomly shuffles the values of each feature to assess how
much the classifier depends on them according to the drop in accuracy.
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Fig. 5: PDP global explanations of the average effect of HMT factors.

status is unsteady (i.e., more critical than “sick”). The two-
variable PDP in Fig. 5c shows the probability of success on
joint values. For focused and nominal patients, the probability
is nearly independent of free will, while there is a dependence
on the health status. For inattentive patients, the probability of
success is low and nearly independent of health status.

The effect of the two continuous factors robot charge
and speed is shown in Fig. 5d and Fig. 5e, respectively.
Considering the speed, we can see that there is a peak in the
average probability between 75 and 85 cm/s. The probability
drops when the speed is either less than 50 or higher than 85
cm/s. The joint effect in Fig. 5f shows that, for speed values
between 60 and 70 cm/s, there is a plateau nearly independent
of the charge level (if it is between 11.5 and 12.4 V).

In general, we can also observe that we can increase the
average probability of success by controlling the speed of the
robot. We tested this last observation by running the scenario
with the following assignment of HMT factors: elderly patient
with nominal free will profile and healthy status; doctor
starting from x = 3062.5 and y = 761.2; robot with 40
cm/s cruise speed, and 12.2 V charge level. According to
Fig. 5e and Fig. 5f, the expected probability of success is
very small mainly because of a small speed value. The local
explanation extracted using LIME in Fig. 6a confirms this
result by showing the relative importance of the factors and
by quantifying the extent to which each value of the current
assignment contributes to the outcome. The cruise speed
smaller than 49.6 cm/s represents the main reason in this case

(highest weight equal to 0.35). Other factors, such as nominal
free will profile and healthy status (weight −0.24), increase a
bit the chance of success, estimated by LIME as 0.028 under
the current assignment. We then changed the speed from 40 to
85 cm/s. The results in Fig. 6b show that by controlling this
factor, the probability of success increases to 0.969. Under the
new assignment, the success is explained by LIME in terms
of two main reasons: nominal free will and healthy patient
(highest weight 0.21). In both cases (scenario under the former
and the new assignment), the success probability estimated by
LIME is consistent with the confidence interval computed by
the SMC: [0.0, 0.1] and [0.87, 0.97], respectively.

RQ3 Summary: PDP explanations show there is a partial
interaction between patient free will and health status. The
joint effect of robot charge and speed shows the extent
to which the cruise speed can be controlled to increase
the average probability of success. LIME explanations for
selected HMT assignments are consistent with this result.

VI. DISCUSSION AND THREATS TO VALIDITY

In this section, we discuss the major advantages and short-
comings of EASE and threats to the validity of our findings.

A. Strenghts and Weaknesses

In our experience, EASE offers the following advantages:
• EASE deals with infinite spaces of teaming factors whose

effects cannot be reasonably explored exhaustively.



0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
weight

patient_age is eld
2253.50 < doctor_x <= 3062.50

267.50 < doctor_y <= 761.20
robot_charge > 12.09
patient_health is heal

patient_freewill is nom
robot_speed <= 49.60

fe
at

ur
e

(a) Estimated success probability 0.028 (scenario failure)

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
weight

patient_age is eld
267.50 < doctor_y <= 761.20

2253.50 < doctor_x <= 3062.50
robot_charge > 12.09
robot_speed > 82.65
patient_health is heal

patient_freewill is nom

fe
at

ur
e

(b) Estimated success probability 0.969 (scenario success)

Fig. 6: Examples of LIME explanations.

• Parameter sampling in EASE is deliberately designed to
increase knowledge by exploring the space of teaming
factors. The search strategy may be selected based on
the characteristics of the search space at hand.

• EASE deals with the prohibitive usage of model checking
online. The cost of making online predictions in terms of
execution time is 7 orders of magnitude lower compared
to running the statistical model checker.

• EASE builds global and local explanations to help op-
erators track the outcomes down to human interpretable
root causes in terms of relevant teaming factors.

Based on our evaluation, a few disadvantages may arise:
• The training phase may be costly since it requires the

analysis of a large number of model instances. However,
we keep this phase offline not to interfere with the
running teaming scenario.

• Online predictions made by classifiers are not exact, thus,
we may observe wrong predictions. However, according
to our experience, both true-positive and false-positive
rates are low (both values less than 0.03).

B. Threats to validity

1) Construct validity: Threats in this category arise if
selected measurements/criteria do not reflect the properties of
interest of our study subjects. We limit this threat by assessing
their validity before using them in our experimental campaign.
The AUC measures the discriminatory power of predictive
models and is widely suggested by recent research [21] to
carry out a model evaluation. We measure the computational

cost by taking into account standard metrics based on execu-
tion time and memory consumption. The effectiveness of the
best classifier is assessed by considering common predictive
accuracy measures (TP, TN, FP, and FN), as described in [15].
We then interpret PDP and LIME results in the context of
our case study. Both PDP and LIME are model-agnostic
techniques we selected due to their flexibility [30].

2) Conclusion validity: We mitigate conclusion validity
threats by reducing the possibility of overfitting on the test set
by applying 10-fold cross validation [33]. Thus, we increase
the possibility of generalizing the classifiers to observed data
in the training set and unseen data in the test set. To reduce
the possibility of obtaining results by chance in the context
of RQ2, we execute both SMC and GBM 500 times for all
assignments in the dataset DS′ .

3) Internal validity: Threats may be caused by bias in
establishing cause-effect relationships in our experiments. We
extract a large sample for all the HMT factors considered in
our case study to limit these threats. Fine-grained access to
these factors increases internal validity compared to observa-
tions without manipulation. During the training and validation
of the classifiers, we adopt stratified sampling to reduce the
risk of obtaining underrepresented HMT factors.

4) External validity: Threats may exist if the characteristics
of our case study are not indicative of the characteristics of
other HMT systems. We mitigate these threats by considering
an existing case study from the literature with non-trivial space
of HMT factors, including discrete and continuous variables.
The generalization of our findings to other systems having
more complex SHA specifications and a comprehensive scal-
ability assessment of EASE require additional experiments.

VII. RELATED WORK

The combination of ML and formal verification has been
the subject of previous studies having the aim of endowing
the results derived from an ML model with formal guaran-
tees of correctness [3], [13], [16]. As an example, ML has
been exploited to solve the problem of forming ensembles
of cooperating autonomous components [5]. This problem
is classically solved by solving complex constraints, that is,
reducing it to a Constraint Satisfaction Problem (CSP). The use
of CSPs, however, does not scale given the inherent complexity
of the problem, and the introduction of classifiers suitably
trained with instances (and solutions) of pre-computed CSP
problems proves effective in reducing computational costs.

The design, development, and deployment of robotic appli-
cations that realize collaborative scenarios involving humans
and service robots are addressed in [22]–[24]. The scenarios
are sequences of collaborative activities, each satisfying an in-
teraction pattern. Different parameters characterize a scenario,
including, for example, the speed of the robot and human traits
such as the tendency to fatigue of the subjects involved in the
action. Formal guarantees on the feasibility of the scenarios
are obtained through stochastic model checking.

Along these lines, it lies the most recent work of Garlan
et al. [6], [26], [27], where the inclusion of the Human-in/on-



the-loop is formalized through stochastic models incorporating
human personality traits and including explanations to facili-
tate the human understanding of the system operation through
model checking. Research on the explainability of autonomous
and robotic systems is recognized as an important topic since
the lack of transparency makes their decisions and effects on
the world hard to interpret for humans [7].

Another related research line recently started exploring a
more advanced form of collaboration between humans and
machines, which has been referred to as HMT [8], [28], where
the interaction is perceived as a partnership exploiting the
strengths of both actors. Specifically, the approach presented
in [28] proposes a framework to help investigate different
HMT options in a set of simulated operational contexts.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduce EASE, a novel approach that
combines statistical model checking and interpretable ML to
achieve better trust in HMT domains. Our evaluation shows
the ability of EASE to predict and explain the satisfaction
of dependability properties in HMT. We assessed the cost-
effectiveness through a trade-off analysis between the accuracy
of ML predictions and the required resources. We found that
the cost of using the classifiers online is 7 orders of magnitude
lower compared to statistical model checking. Furthermore, the
best classifier yields high accuracy (i.e., both false-positive and
false-negative rates are less than 0.03).

We plan to study the effectiveness of alternative factor
sampling strategies based on metaheuristic optimization to
guide the generation of the verification dataset in presence
of rare events. We also plan to carry out a comprehensive
scalability assessment of the approach targeting SHA models
having higher structural complexity.
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