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Abstract: An analytical solution is presented that captures the bulk of the dynamics of close
flybys about oblate celestial bodies. The solution is obtained by perturbations. More specifically,
an infinitesimal contact transformation is found that reduces the perturbed hyperbolic Keplerian
motion to a hyperbolic Kepler problem with varied angular momentum. It takes into account first
order effects of the oblateness coefficient and provides clear improvements over the usual Keplerian
solution in the closest approach of the flyby. The examples carried out show that the errors obtained
with the new intermediary orbit are several orders of magnitude smaller than those obtained with
the Keplerian orbit.

Keywords: Perturbed hyperbolic Keplerian motion, J2-problem, flyby dynamics, perturbation
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1. Introduction

Planetary flybys are commonly described in the Keplerian approximation of hyperbolic orbits.
Usually, this assumption is reasonably accurate due to the short times spent in the close vicinity of
the visited planet. However, gravitational effects stemming from the non-central character of the
mass distribution of the planet, and, in particular, those related to its oblateness, produce a clearly
observable departure from the Keplerian trajectory. Due to the essentially hyperbolic dynamics,
these modifications of the orbit are more evident in its departure branch. This fact is illustrated in
Fig. 1 for the Voyager 2 encounter in August 1981 with Saturn [1], where the Root Sum Square
(RSS) errors of predictions based on both the Kepler and the J2-problem models with respect
to ephemeris are shown. The ephemeris model considers the perturbation effects of the Sun, of
Saturn’s major moons, and of Saturn’s J2 perturbation.

In the case of equatorial flybys, the Keplerian hyperbolas can be replaced by more accurate closed
form solutions, which are known to exist when the disturbing effect is restricted to the only influence
of the zonal harmonic of the second degree [2, 3]. However, these kinds of analytical solutions
are given in implicit form, and, besides, depend on special functions. Therefore, they lack of
the immediate insight obtained from the usual formulation in Keplerian elements. Alternatively,
explicit analytical solutions of perturbed Keplerian motion that only involve elementary functions
are customarily computed by perturbation methods without constraint to the equatorial case. This
technique is commonly applied to bounded orbits with an aim on long-term prediction [4, 5], but
perturbation solutions of unbounded motion have been computed too [6]. However, an important
distinction between these radically different applications of the perturbation approach is that
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Figure 1. Voyager 2 flyby of Saturn. RSS errors of the Kepler and J2-problem with respect to an
ephemeris model. The error values are shown as relative measures with respect to the ephemeris
positions and velocity, at the respective time steps.

boundary conditions, which are mostly irrelevant for perturbations solutions of the elliptic motion,
strictly apply in the case of hyperbolic motion. More precisely, at infinity the perturbed Keplerian
motion turns into a simple Keplerian hyperbola.

Perturbation solutions of quasi-periodic motion are customarily computed in the action and angle
variables of the integrable reference model. This setting has the advantage of preventing the
appearance of mixed secular-periodic terms in the transformation equations on which the solution
depends upon [7]. However, this characteristic becomes irrelevant in the case of perturbed hyperbolic
motion, where the extreme values of the true anomaly are bounded by the asymptotes of the reference
Keplerian hyperbola, and, therefore, neither mixed nor secular terms are a concern. In addition,
many of the classical intermediary solutions of the artificial satellite problem can be reformulated in
polar coordinates [8] and hence are not constrained to the case of negative energies, thus avoiding the
need of using two different sets of action-angle variables when dealing with bounded and unbounded
orbits by perturbations. In particular, Deprit’s radial intermediary, hereafter abbreviated as DRI, has
the remarkable advantage of capturing the bulk of the oblateness perturbation while relying only on
elementary functions [8]. Because of its simplicity, the use of DRI in orbit propagation applications
has been repeatedly encouraged in the case of bounded motion [9, 10, 11].

We explore the use of DRI in the analytical propagation of unbounded perturbed Keplerian motion.
Its most effective use is in the natural conception. That is, when the intermediary orbit is obtained
as the result of an infinitesimal contact transformation that converts the non-integrable model into
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an integrable one in the new variables. This transformation is derived from a generating function
obtained by indefinite integration, which, therefore, is determined only up to an arbitrary “constant”.
That is, an arbitrary function that does not depend on the integration variable. While ignoring
this arbitrary function is usually admissible when dealing with bounded motion [12], this is in
no way the case of unbounded orbits, where the particular form of the arbitrary constant must
be determined in such way that the associated infinitesimal contact transformation matches the
boundary conditions at infinity. The particular choice of the arbitrary constant does not affect
the form of the intermediary orbit in the new variables, which remains the same as in the case of
bounded motion. On the contrary, the contact transformation from new to original variables is
notably modified. Still, a nice feature of the new transformation is that it depends only on periodic
functions of the true anomaly. This is in clear contrast with the original transformation in [6], which
directly converts the perturbation problem into the Kepler problem in the new variables instead of
an intermediary orbit.

In our tests, we checked that the simple replacement of the Keplerian orbit by the solution in new
variables stemming from DRI —that is, ignoring the contact transformation— clearly improves
flyby descriptions about different solar system bodies. The improvements may reach more than
one order of magnitude in the closest approach of the flyby when the complete hyperbolic DRI
solution is implemented. Still, the performance of the analytical solution deteriorates for orbits
close to parabolic, and fails in the case of parabolic orbits. In this regard, it is worth to remark that
the deterioration of analytical perturbation solutions for eccentricities close to the unity is not a
peculiarity of hyperbolic-type motion, and, quite on the contrary, happens also to most existing
analytical solutions of perturbed elliptic Keplerian motion.

2. DRI for open orbits

The main effects of the noncentral potential of an Earth-like planet on the dynamics of low orbits are
a result of the dominant impact of the zonal harmonic of the second degree, whose nondimensional
coefficient is commonly denoted J2 after [13]. Therefore, a gravitational perturbation model in
which the gravitational potential is truncated to this term is customarily known as the main problem
of artificial satellite theory [5], or the J2-problem.

The J2-problem problem admits Hamiltonian formulation. When written in polar canonical co-
ordinates (r,θ ,R,Θ) —standing for the radius, polar angle, radial velocity, and specific angular
momentum, respectively— the Hamiltonian takes the form

M = K +P, (1)

where K is the Keplerian

K =
1
2

(
R2 +

Θ2

r2

)
− µ

r
, (2)

in which µ is the central body’s gravitational parameter, and P is the disturbing function

P =−1
4

J2
Θ2

r2
R2
⊕

p2
p
r

(
2−3sin2 I +3sin2 I cos2θ

)
, (3)
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where R⊕ is the central body’s mean equatorial radius, p = Θ2/µ is the orbit parameter, and
I = arccosN/Θ is orbital inclination, with N denoting the third component of the angular momentum
vector (per unit mass). The latter is constant as long as its conjugate coordinate ν = Ω, the right
ascension of the ascending node, is an ignorable variable in Eq. (1). When written in orbital elements
K =−µ/(2a), where a is the orbit semimajor axis. Besides, r = p/(1+ecos f ), in which e and f
denote the eccentricity and the true anomaly, respectively, whereas θ = f +ω , with ω denoting the
argument of the periapsis.

In addition to N, the J2-problem accepts the energy as a second integral M (r,θ ,R,Θ;N) = E. Still,
it lacks the necessary third integral that would guarantee the existence of a closed form solution [14].
Nevertheless, for the small values of J2 of Earth-like bodies, the size of the regions of phase space in
which chaos may emerge are so small [15] that, in practice, the search for integrable approximations
of the J2-problem makes full sense.

The search for substitutes of the J2-problem is a recurrent topic in the literature since the beginning
of the space era. Many of them depend on special functions, for instance [16, 17, 18, 19], yet
intermediary orbits depending on elementary functions also exist [8, 20]. We focus on DRI,

D =
1
2

(
R2 +

Θ2

r2

)
− µ

r
− 1

4
J2

Θ2

r2
R2
⊕

p2

(
2−3sin2 I

)
, (4)

which enjoys both desired features of being formulated in polar variables —thus applying to both
open and closed orbits— as well as being integrable in elementary functions [8]. That DRI is
integrable becomes evident from the fact that the coordinate θ is now an ignorable variable of
Hamiltonian (4), and, therefore, its conjugate momentum Θ becomes the third needed integral.
The solution of DRI can be obtained by the Hamilton-Jacobi method. In particular, the complete
Hamiltonian reduction in Delaunay-type hyperbolic variables is detailed in the Appendix.

However, in its natural interpretation, DRI is obtained as a result of an infinitesimal contact
transformation ξi = ξ ′i +∆ξi(ξ ), i = 1,2, . . .6, in which ξ = (r,θ ,ν ,R,Θ,N) and ξi denotes a
particular variable. Hence, Hamiltonian (4) should rather be written in prime variables ξ ′ =
(r′,θ ′,ν ′,R′,Θ′,N′), and the solution provided by DRI is obtained by plugging the time solution to
Eq. (4) into the transformation from prime to original variables. More precisely, the corrections
∆ξi = J2{ξi,U }, where the curly brackets denote the Poisson bracket operator, are derived from a
generating function U = U (ξ ) of the canonical variables. Following [21] we write the generating
function in the canonical set of Delaunay variables (`,g,h,L,G,H) rather than the polar ones.
Namely

U =−G
1
8

R2
⊕

p2

{
s2[3esin( f +2g)+3sin(2 f +2g)+ esin(3 f +2g)]− (6s2−4)esin f

}
+C , (5)

where G = Θ, s≡ sin I = (1−c2)1/2 with c≡ cos I = H/G and H = N, whereas C is an integration
“constant” —a function of the orbital elements with null derivative with respect to the mean anomaly
`, to wit C ≡ C (g,L,G,H). Remarkably, Eq. (5) is valid in both cases of bounded and unbounded
motion with the caveat that the Keplerian elements used in each distinct case have a different
interpretation associated to the particular dynamical regime. The function C is arbitrary for
perturbed elliptic motion and is commonly neglected —yet it is not always the case [12].
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On the contrary, C is no longer arbitrary in the case of open orbits, a case in which the solution must
fulfill specific boundary conditions that apply to hyperbolic-type motion. In particular, the perturbed
Keplerian motion becomes simply Keplerian at infinity, a place in which the series representing the
mean to osculating transformation must, therefore, vanish. For the latter, we follow [6] and apply
the boundary conditions ∆ξ |∞ = 0 to the corrections. After straightforward operations, we obtain,

C = G
1
4

R2
⊕

p2

{
(3s2−2)η− s2

e2

[
η

3 cos2g+
1
2
(3e2−2)sin2g

]}
, (6)

where, η =−G/L =
√

e2−1. Hence

∆` =
R2
⊕η

32e4 p2

{
2e3(3s2−2)

[
4eη +(3e2−4)sin f −4esin2 f − e2 sin3 f

]
+ s2

[
3e5 sin( f −2g)

−8(e2 +2)η3 cos2g−2(9e4 +8e2−8)sin2g−3(5e2 +4)e3 sin( f +2g)

−(e2−28)e3 sin(3 f +2g)+18e4 sin(4 f +2g)+3e5 sin(5 f +2g)
]}

, (7)

∆g =
R2
⊕

32e4 p2

{
−16e4

η(6s2−5)−2e3
[
3e2(17s2−14)+4(3s2−2)

]
sin f

−8e4(3s2−2)sin2 f −2e5(3s2−2)sin3 f +3e5s2 sin( f −2g)

+16η
3
[
e2(2s2−1)− s2

]
cos2g+

[
6e4(7s2−4)−8e2(7s2−2)+16s2

]
sin2g

+3
[
e2(15s2−8)−4s2

]
e3 sin( f +2g)+12(5s2−2)e4 sin(2 f +2g)

+
[
e2(19s2−8)+28s2

]
e3 sin(3 f +2g)+18s2e4 sin(4 f +2g)+3s2e5 sin(5 f +2g)

}
, (8)

∆h =
R2
⊕

4p2 c
{

e−2
[
(3η

2 +1)sin2g+2η
3 cos2g

]
+3esin( f +2g)+3sin(2 f +2g)

+esin(3 f +2g)−6η−6esin f} , (9)

∆L = L
R2
⊕

8η2r2

{
2e(3s2−2)cos f −3s2 [ecos( f +2g)+2cos(2 f +2g)+ ecos(3 f +2g)]

}
, (10)

∆G = G
R2
⊕

4p2 s2
{

e−2[(3η
2 +1)cos2g−2η

3 sin2g]+3ecos( f +2g)+3cos(2 f +2g)

+ecos(3 f +2g)
}
. (11)

Note that the corrections in Eqs. (7)–(11) must be evaluated in new variables ξi = ξ ′i +∆ξi(ξ
′)

when computing osculating elements from the time solution of Hamiltonian (4), but in osculating
variables ξ ′i = ξi−∆ξi(ξ ) when computing the constants on which the solution of Hamiltonian (4)
depends on. Recall that the corrections ∆ξi = J2{ξi,U } are accurate to just O(J2), thus unavoidably
limiting the accuracy of the intermediary solution.

3. Numerical explorations

To asses the validity of DRI in replacing the standard Keplerian orbit in a flyby, we carried out several
comparisons for different major bodies of the solar system. We present two meaningful comparisons
for the planet Mars, for which we use the physical parameters1 µ = 0.042828× 106 km3/s2,

1 nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (consulted in May 31, 2022)
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J2 = 1960.45× 10−6, R⊕ = 3396.2 km, and obliquity to orbit of Ieq = 25.19 degree. From [22],
the radius of the sphere of influence (SOI) in which Mars’ gravitation dominates the dynamics is
≈ 1.1×106 km or about 324 times Mars’ radius. Therefore, our tests will be limited to parts of
hyperbolic-type orbits whose distances to Mars clearly lie inside this region.

The first test case is an hyperbolic-type orbit with initial conditions a = 1298.73 km, e = 4, I = Ieq,
Ω = 60◦, ω = 90◦, and M =−16400◦, corresponding to the initial polar variables

r = 376,948.517 km, θ =−13.71425◦, R =−5.76178 km/s, Θ = 28884.81 km2/s,

thus starting the simulation from a distance to Mars of about one third of the SOI radius. Figure 2
illustrates the numerically simulated trajectory in the J2-problem dynamics with a magnification on
the flyby event, whose closest approach happens about 500 km over the surface of Mars.

Figure 2. Mars example flyby for e = 4. Distances are km.

Figure 3 shows the RSS errors obtained when the true orbit is replaced by different analytical
approximations starting from the same initial conditions. The label “Kepler” means the classical
Keplerian orbit, which starts with almost vanishing errors due to the negligible effect of J2 at the
initial distance; RSS errors (represented with gray, solid curves) increase slowly when approaching
Mars, reach the km level at the flyby, and continue to increase at a much higher rate when departing
the planet, reaching about 270 km at the end of the propagation. The label “DRI common” means
that the propagation is made using the common implementation of DRI. At the beginning of the
propagation, where the dynamics remains mostly Keplerian, RSS errors (light gray, dashed) increase
faster than in the previous case due to the slightly different mean motion of DRI, yet this situation is
amended when the J2 disturbing effects become more apparent; close to the flyby the RSS errors
first balance with, and then improve slightly over those of the Keplerian approach, reaching about
170 km at the end of the propagation. Finally, labels “DRI natural” mean that the propagation is
made with the natural version of the intermediary. Errors improve notably in this last case, yet the
propagation starts with larger yet insignificant errors than in the previous simulations due to the
truncation of the transformation equations to O(J2). The errors remain in the meter level during the
flyby, and grow slowly in the departure branch, reaching about 200 m at the end of the propagation.

The second test is a quasi-parabolic orbit with initial conditions a = 879,240.0 km, e = 1.02, I = Ieq,
Ω = 60◦, ω = 90◦, and M =−6.7◦, corresponding to the initial polar variables

r = 86,017.0 km, θ =−61.543◦, R =−1.06735 km/s, Θ = 19501.96 km2/s,
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Figure 3. RSS position errors of the flyby in Fig. 2. Note the logarithmic scale.

The numerically simulated trajectory in the J2-problem dynamics is shown in Fig. 4, where the
closest approach now happens about 1000 km over Mars’ surface.

Figure 4. Mars example flyby for a quasi-parabolic orbit (e = 1.02). Distances are km.

Now, because η = 0.2, the divisor η2r2 in Eq. (10) will reduce the accuracy of the correction to L.
Hence, larger errors of DRI predictions should be expected during the flyby, where the radius takes
the smallest values. As shown in Fig. 5, that is exactly the case, and the improvements obtained
when replacing the Keplerian approximation of the flyby by the natural version of DRI reduce from
the several orders of magnitude in the previous example to just one order of magnitude in the current
case. Indeed, due to the much longer time spent in the close vicinity of the red planet, the error in
the closest approach clearly peaks when using DRI, reaching about 830 m over Mars’ surface. After
the peak, the DRI errors notably improve, and continuously increase along the departure branch
of the quasi-parabolic trajectory at the expected rate, remaining again several orders of magnitude
smaller than when using the Keplerian approximation.
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Figure 5. RSS position errors of the quasi-parabolic flyby in Fig. 4. Note the log scale.

4. Conclusions

Clear improvements in flyby simulations about major bodies of the solar system can be obtained
when replacing the Keplerian hyperbola by one of the common main problem intermediaries in polar
coordinates existing in the literature. Among them, DRI stands out for its simplicity and insight
into the dynamics. Moreover, the accuracy of the flyby description is dramatically increased when
the analytical solution is complemented with the infinitesimal transformation that naturalizes the
intermediary. As opposite to the case of bounded orbits, extending DRI to higher orders is standard
for open orbits, in which case the appearance of mixed terms is not of concern. Still, the increased
accuracy is at the unavoidable cost of notably extending the length of the perturbation series that
describe the solution. The construction of this kind of improved analytical solution, which would be
required in the description of quasi-parabolic flybys, is in progress, and will be reported elsewhere.
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A Complete Hamiltonian reduction of DRI in the case of open orbits

That DRI is integrable becomes evident by noting that Hamiltonian (4) is a quasi-Keplerian system
with varied angular momentum. Namely,

D =
1
2

[
R2 +

Γ(Θ,N)2

r2

]
− µ

r
, Γ = Θ

[
1− 1

2
J2

R2
⊕

(Θ2/µ)2

(
3

N2

Θ2 −1
)]1/2

. (12)

Therefore, we can compute the solution by the Hamilton-Jacobi method [23]. We follow analogous
steps as those in [10] for the case of bounded orbits. That is, we compute the transformation
(R,Θ,N) = ∂S/∂ (r,θ ,ν), (`1,g1,h1) = ∂S/∂ (L1,G1,H1), stemming from the generating function
in separate variables S = νH1 +θG1 +W (r,L1,G1,H1). We obtain

R =
∂W
∂ r

, Θ = G1, N = H1, `1 =
∂W
∂L1

, g1 = θ +
∂W
∂G1

, h1 = ν +
∂W
∂H1

, (13)

and replace them into Eq. (12) to form the Hamilton-Jacobi equation

1
2

[(
∂W
∂ r

)2

+
Γ(G1,H1)

2

r2

]
− µ

r
=

µ2

2L2
1
,

which is solved by indefinite integration. We obtain W =Γ
∫ r

r0
χ(r;L,G,H)1/2 dr, where the radicand

χ ≥ 0 is the quadratic form

χ =− 1
r2 +2

µ

Γ2
1
r
+

µ2

L2
1Γ2 . (14)
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Then, replacing W into Eq. (13), we trivially obtain

R = R(r)≡ Γ
√

χ, (15)

whereas, after straightforward computations, the non-trivial part of the transformation yields

`1 =
µ2

L3
1

∫ r

r0

1
R(r)

dr, g1 = θ +Γ
∂Γ

∂G1

∫ s

s0

1
R(s)

ds, h1 = ν +Γ
∂Γ

∂H1

∫ s

s0

1
R(s)

ds, s =
1
r
,

in which, after replacing in Eq. (12) Θ = G1, N = H1, from (13), we obtain

∂Γ

∂G1
=

[
3+

1
2

J2
R2
⊕

(G2
1/µ)2

]
G1

Γ
−2

Γ

G1
,

∂Γ

∂H1
=−3

2
J2

R2
⊕

(G2
1/µ)2

H1

Γ
. (16)

Next, using the auxiliary functions p̃ = Γ2/µ , ã = L2
1/µ , ẽ =

√
1+ p̃/ã > 1, we factorize χ in the

form
χ =− 1

r2 +
2
p̃r

+
1

ãp̃
=
( 1

rP
− 1

r

)(1
r
− 1

rA

)
,

where rP = ã(ẽ− 1) and rA = −ã(ẽ+ 1). Alternatively, replacing ã = p̃/(ẽ2− 1), we obtain
rP = p̃/(ẽ+1) and rA =−p̃/(ẽ−1).

Now, the integration in the radius is achieved by a change of variable to the hyperbolic anomaly υ

using the relation r = ã(ẽcoshυ−1), whereas the integration in the inverse of the radius is solved by
the usual change to the true anomaly s = (1+ ẽcosϕ)/p̃; note from the latter that χ = (ẽ/p̃)2 sin2

ϕ .
For the lower limit of the integrals r0 = 1/s0 = rP, which is the minimum distance to the origin, we
obtain, ∫ r

r0

1
R(r)

dr =
ã3/2

µ1/2 (ẽsinhυ−υ),
∫ s

s0

1
R(s)

ds =− 1
Γ

ϕ. (17)

Hence, the transformation

R =
Γ

p̃
ẽsinϕ, Θ = G, N = H, `1 = ẽsinhυ−υ , g1 = θ − ∂Γ

∂G1
ϕ, h1 = ν− ∂Γ

∂H1
ϕ,

completely reduces Hamiltonian (12) to D = µ2/(2L2
1), from which we obtain the solution in

hyperbolic Delaunay variables

`1 = `1(t0)+nt, g1 = g1(t0), h1 = h1(t0), L1 = L1(t0), G1 = G1(t0), H1 = H1(t0),

where n = ∂D/∂L1 =−µ2/L3
1.

The sequence for making the transformation from hyperbolic Delaunay elements to polar variables
and vice versa are summarized in Algorithms 1 and 2, respectively.
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Algorithm 1 (`1,g1,h1,L1,G1,H1)−→ (r,θ ,ν ,R,Θ,N)

1: Make N = H1, Θ = G1, and compute Γ from the last of Eq. (12).
2: Evaluate ã = L2

1/µ , p̃ = Γ2/µ , and hence ẽ = (1+ p̃/ã)1/2.
3: Solve υ from `1 = ẽsinhυ−υ .
4: Compute ϕ = 2tan−1

[√
(ẽ+1)/(ẽ−1) tanh 1

2υ

]
.

5: Evaluate r = p̃/(1+ ẽcosϕ), and R = (Γ/p̃)ẽsinϕ .
6: Compute θ = g1 +[(G1/Γ)(3− ε)−2Γ/G1]ϕ , with ε =−1

2J2R2
⊕µ2/G4

1.
7: Compute ν = h1 +3ε(H1/Γ)ϕ .

Algorithm 2 (r,θ ,ν ,R,Θ,N)−→ (`1,g1,h1,L1,G1,H1)

1: Make H1 = N, G1 = Θ; evaluate Γ and E = D from Eq. (12).
2: Compute L1 =−µ/

√
2E; evaluate ã = L2

1/µ , p̃ = Γ2/µ , and hence ẽ = (1+ p̃/ã)1/2

3: Solve ẽcosϕ =−1+ p̃/r, ẽsinϕ = p̃R/Γ, for ϕ .
4: Compute υ = 2tanh−1

[√
(ẽ−1)/(ẽ+1) tan 1

2ϕ

]
.

5: Evaluate `1 = ẽsinhυ−υ

6: Compute g1 = θ − [(G1/Γ)(3− ε)−2Γ/G1]ϕ , with ε =−1
2J2R2

⊕µ2/G4
1.

7: Compute h1 = ν−3ε(H1/Γ)ϕ .
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