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Abstract—The human-machine teaming paradigm is increas-
ingly widespread in critical domains, such as healthcare and do-
mestic assistance. The paradigm goes beyond human-on-the-loop
and human-in-the-loop systems by promoting tight teamwork
between humans and autonomous machines that collaborate
in the same physical space. These systems are expected to
build a certain level of trust by enforcing dependability and
exhibiting interpretable behavior. We present emerging results in
this direction, with a novel framework aiming at achieving better
trust in human-machine teaming leveraging formal analysis, as
well as eXplainable AI. We illustrate our approach and the
emerging results with an example from the healthcare domain.

Index Terms—Human-machine teaming, formal analysis, sta-
tistical model checking, explainable AI

I. INTRODUCTION

The increasing pervasiveness and capabilities of au-
tonomous systems and their ability to work in complex envi-
ronments has brought about the need for a different paradigm
of interaction between humans and machines, called Human-
Machine-Teaming (HMT). In this paradigm, machines and
humans can be seen as teammates that collaborate leveraging
their strengths and reducing their weaknesses. A successful
collaboration yields a shared awareness, that is, the behavior of
machines can be interpreted by humans, and the physiological
characteristics of humans are reified into machines.

Awareness facilitates human-machine understanding and
helps build trust in their collaboration. Here we adopt the
definition of trust introduced in [18], as “the attitude that an
agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability”. This defini-
tion can be declined along different lines taking into account
several dimensions including quality and social metrics [15].
As a first step towards trust creation in HMT, we adopt a
vision where machines shall offer dependability guarantees
and exhibit transparent behavior by explaining their actions
in a human-interpretable format. However, the opaque nature
of these systems has a negative effect on the level of trust
since their decisions are typically fully autonomous and may
be confusing for humans, or may even cause hazards in critical
domains. At the same time, the widespread diffusion of AI
technologies makes robotic agents flexible [4], [13], [16], able
to respond to changing needs and expectations of humans, that
may even act in an adversarial way. This latter point poses

further challenges in understanding the meaning of trust in the
other direction, that is, machine trust towards human behavior.

In this paper, we present our initial ideas and emerging re-
sults fostering human trust towards machine behavior in HMT.
To this end, we propose the EASE1 framework and its underly-
ing high-level conceptual architecture. EASE leverages formal
analysis, based on Statistical Model Checking (SMC) [11],
as well as eXplainable AI, based on model-agnostic inter-
pretable Machine Learning (ML) techniques [24]. Since formal
analysis may be computationally expensive, we keep it in
pre-production as an offline stage, where we can execute
demanding activities without interfering with the running mis-
sions. Formal analysis feeds a binary classifier estimating the
relations between uncertain and changing teaming factors and
the mission outcome in terms of satisfaction of dependability
properties. The classifier is then used online to predict the
mission outcomes and explain them to human teammates.

The envisioned framework is illustrated with a running
example in the healthcare domain featuring multiple sources
of uncertainty in the human-machine interaction, such as
diverse physical and physiological characteristics of the agents
involved in the teamwork. The contributions of this work
are as follows: (1) we tackle the human-to-machine HMT
trust via dependability and explainability at runtime; (2) we
introduce EASE, a pioneering framework combining SMC
and interpretable ML; (3) we propose a three-layer software
architecture supporting both offline and online stages of EASE.

Related Work. The self-adaptive systems community [1],
[2] has been promoting a set of approaches to embed in
systems a certain degree of autonomy and the ability to deal
with foreseen/foreseeable changes through (ad-hoc) control
loops. The role of humans in these systems has been a
topic of discussion and debate, with researchers arguing for
fully autonomous self-adapting systems (humans-out-of-the-
loop), and others asserting the need of humans as external
controllers and supervisors (human-on-the-loop) [12], [23],
or as input providers for the system’s work (human-in-the-
loop) [22]. Recent work by Garlan et al. [6], [21], [22]
formalizes the inclusion of the human-in/on-the-loop using
stochastic models incorporating human personality traits and

1EASE stands for Exploration, AnalySis, and Explanation.



including explanations to facilitate the human understanding
of the system operation through model checking.

The notion of HMT has been recently introduced in [10],
[23], where interaction patterns yield a partnership exploiting
the strengths of both actors. The framework introduced in [23]
supports the elicitation of HMT options in a set of simulated
operational contexts. The work presented in [10] extends the
MAPE-K loop with human-related tasks and describes an
infrastructure that supports this tight collaboration enforcing
transparency, augmented cognition, and coordination.

Another orthogonal line of research focuses on conceptual
frameworks for trust in autonomous systems per-se [9], and
in human-machine interactions in general [4], [13], [16]. Trust
definition and management encompass multiple facets elicited
in recent surveys [13], [16], [25], including dependability
and explainability aspects that represent our main focus. The
lifecycle of trust management with a definition of properties,
metrics and possible solutions in the area of social Internet of
Things is illustrated in [15]. A roadmap on human-machine
mutual understanding and collaboration is presented in [4].

Paper organization. Section II introduces the example we
use to illustrate our envisioned approach EASE, which is then
presented in Sec. III. A discussion about the potential societal
impact of better (bidirectional) trust is presented in Sec. IV,
while Sec. V concludes the paper and presents our future work.

II. A RUNNING EXAMPLE IN HEALTHCARE

Robots can be used in hospitals to accompany patients in
the ward and assist healthcare workers in their daily activities.
In this setting, human agents may be affected by physical or
mental fatigue and act independently of a prescribed plan out
of their free will. More generally, the environment in which
HMT takes place is highly dynamic since the presence of
people and the workload on care workers are subject to change.

In this work, HMT missions consist of a finite sequence
of services provided by robots and initiated by humans,
according to one or more interaction patterns [19], [20]. Our
running example adopts the “human follower” and “human
leader” patterns as follows. Consider the portion of the ward
consisting of an entrance, a waiting room, a doctor’s office
and a storage room. The sequence consists of four services.
The robot reaches the entrance and accompanies the patient to
the waiting room. It then heads towards the current position
of the doctor, it meets the doctor and follows them to the
storage room where they fetch the required tools. The robot
follows the doctor back to the office. Finally, the robot returns
to the waiting room and escorts the patient to the office where
the doctor is waiting for them. The mission succeeds if all
services are delivered within a given amount of time defined
by the designer. Mission success is the targeted dependability
requirement for the robotic application.

III. THE EASE APPROACH

In this section, we present the main stages of our approach,
depicted in Fig. 1: offline 1⃝ HMT modeling, 2⃝ exploration
and analysis; and online 3⃝ prediction and explanation. The
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Fig. 1: EASE workflow.

underlying three-layer EASE architecture is depicted in Fig. 2.
The top layer is responsible for assisting in the HMT modeling
stage, the middle layer includes the main components allowing
the exploration, analysis and prediction of the HMT behavior,
while the bottom layer represents the HMT system itself. In the
following, we describe the EASE stages as well as the involved
components of the proposed architecture. We exemplify the
key concepts through the running example of Sec. II.

A. HMT Modeling

According to Fig. 1, the modeler starts the offline stage
using the ModelManager component (see Fig. 2) to define the
HMT interaction patterns of interest through a user-friendly
Domain-Specific Language2 (DSL). The modeler specifies the
agents’ characteristics, including the health status of humans,
the age and the fatigue/recovery rates, the initial battery level
of the robots, their discharge rates, and the initial position
of all the agents in the teaming area (see Table I). These
human-interpretable HMT factors are variables, each with its
own type and domain. Hence, an assignment v̄, mapping
every variable to a domain value, characterizes human agents
and robot agents, influences the HMT, and possibly affects,
in turn, dependability aspects. Given an HMT mission and
an assignment v̄, the ModelManager automatically generates
a formal representation of the pattern referred to as model
instance M[v̄], i.e., a Stochastic Hybrid Automata (SHA)

2DSL for Human-Robot Interactive Service Scenarios: sources publicly
available at https://github.com/LesLivia/hri dsl.

https://github.com/LesLivia/hri_dsl
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Fig. 2: High-level conceptual architecture of EASE.

TABLE I: Selected examples of HMT factors.

Variable Agent Type Domain

Free Will patient categorical {dutiful, obedient, disobedient}
Age/Fatigue patient categorical {young, elderly}×{healthy, sick, unsteady}
Position x doctor continuous [0, 50] m
Position y doctor continuous [0, 8] m

Robot Speed robot continuous [30.0, 100.0] cm/s
Battery Level robot continuous [11.1, 12.4] V

network [3]. The formalism allows for the expression of non-
linear dynamics of the physical variables and a stochastic
characterization of human free will. Although the DSL is
agnostic with respect to the verification tool, this work exploits
an automated model-to-model transformation procedure to
generate a UPPAAL model [11], [20].

Example 1 (Model instance): Figure 3 shows an extract of
the SHA model instance that formalizes part of the running ex-
ample of Sec. II.3 The categorical free will parameter in Table I
represents an uncertain aspect of the interaction captured by
means of probabilistic edges. When a human agent is standing
and receives the go command, she/he can either start or
refuse walking with probability pdo and 1− pdo, respectively.
The value pdo depends on the free will profile specified
by the modeler. The edges between locations standing and
walking, labeled with condition γFreeWill, model the human
autonomous decision in terms of a dice roll. Another example
is the age of the individual involved. Age determines the rate
of fatigue and recovery of an individual in motion, i.e. an
individual’s muscular endurance/recovery capacity against a
period of activity/rest. In Fig. 3 fatigue is modeled by means
of a variable F , whose temporal behavior is defined through
Ordinary Differential Equations fstand and fwalk and value
ranges in the interval [0, 1]. Parameters ρ and λ are the fatigue
and recovery rates, which depend on the categorical parameter
fatigue profile [20]. Fmax is the maximum tolerated fatigue
allowing the human to react to command go.

3Complete model available at github.com/LesLivia/hri designtime.

Fig. 3: Portion of SHA modeling a human walking.

B. Exploration and Analysis

Given an SHA network instance M[v̄], dependability
properties can be verified using Statistical Model Checking
(SMC) [11] executed by the SMC component. SMC is cheaper
than exhaustive state space exploration since it is based on a
finite number of simulations of the target system. Based on
these runs, SMC estimates the expression PM[v̄](ψ), which
represents the probability of property ψ holding for a random
run of M[v̄]. Formulae ψ are automatically-generated Metric
Temporal Logic (MTL) properties [17] we use to check
whether the HMT is successful within a given time limit. SMC
determines the confidence interval [p− ϵ, p+ ϵ] for the actual
probability of ψ holding. Thus, we say that M[v̄] satisfies
property ψ, denoted by M[v̄] |= ψ, if the lower bound value
p − ϵ is greater than a user-defined probability threshold. As
per Fig. 2, SMC interacts with the Knowledge component that
stores the artifacts required by the formal analysis (i.e., SHA
models, dependability properties, analysis outcomes).

Example 2 (Verification of dependability properties): Every
service in our example (e.g., follow the doctor) is associated
with a Boolean value supplied i that is true if the i-th service
in the sequence succeeds. So, the generated dependability
property ψ has the form ♢≤τ

∧
i supplied i, where ♢ is the

“eventually” operator and τ ∈ R>0 a user-defined time limit.
The set of human-interpretable HMT factors induces a large,
or even infinite, space of assignments that may break de-
pendability requirements. According to Fig. 2, the component
in charge of dealing with this issue is Sampler deliberately
designed to increase knowledge through the exploration of
the HMT factors rather than exhaustive enumeration. The
sampling process can adopt different strategies based on the
characteristics of the search space. Uniform random sampling
is suitable in case the likelihood of successful and failing runs
is comparable. If one of the two cases is a rare event, other
search strategies can be adopted (e.g., simulated annealing, and
genetic algorithms [5]). Thus, the search process can either
maximize the lower bound p− ϵ or minimize the upper bound
p + ϵ, selectively pushing the evolutionary search towards
successful or failing runs, respectively.

According to Fig. 1, the outcome of the exploration includes
the success region, i.e., the region of the space that contains the
assignments v̄ such that M[v̄] |= ψ holds; as well as the failure
region that contains assignments such that M[v̄] ̸|= ψ holds.
At the end of stage 2⃝, having identified the success and failure
regions, the robotic agents can be deployed in production.

https://github.com/LesLivia/hri_designtime/tree/master/resources/gen_models/ease_exp


C. Prediction and Explanation

The ClassifierAndExplainer component retrieves from
the Knowledge the data produced by the Sampler. Using this
dataset, the ClassifierAndExplainer trains and validates
a binary classifier [26] to bridge the gap between the offline
and online stages. The classifier is built offline and it works
online while the HMT mission is running to predict and
explain the probability of success, as it learns the relationships
between HMT factors (or features) and the corresponding
mission outcome (i.e., the property ψ holds or not). Indeed,
HMT factors may differ from those identified offline during
exploration. In this case, the classifier can predict the mission
outcome given new data points (assignments).

Example 3 (Training and validation): Figure 4a shows
the outcome of an evaluation process considering different
classification models (e.g., Random Forests, Neural Network)
built using a dataset of 1000 assignments split into 80%
training and 20% validation using stratified sampling. The
evaluation is based on the Area Under the receiver operator
characteristic Curve (AUC) technique [14]. As the Random
Forests exhibits the highest performance (0.87), it is deployed
in ClassifierAndExplainer to predict the mission outcome
based on the HMT factors collected by Monitor.

According to Fig. 1, model-agnostic explanations are produced
using either local or global interpretable ML techniques [24].
Since our goal is to provide humans with fast feedback on
the ongoing run, in our current implementation, we rely on
the Local Interpretable Model-agnostic Explanations (LIME)
method [24] to probe repeatedly the classifier and understand
the predicted outcome (either success or failure). LIME tests
the effect of local variations synthetically injected into the
current HMT factors sampled from the field. Starting from the
current values v̄, the ClassifierAndExplainer components
uses LIME to generate a new dataset made of perturbations
of v̄ and the corresponding outcome given by the classifier.
The new dataset is used to train an interpretable model (e.g.,
a regression model), which is weighted by the proximity of
the perturbations to v̄. If the model shows that the mission
is likely to fail, the explanations illustrate the reason for the
failure to the human teammates. The system administrator can
also use the explanations to change the mission and trigger a
new offline analysis stage.

Example 4 (LIME explanations): Figure 4b shows a local
explanation generated by LIME. It shows the relative impor-
tance of the HMT factors and quantifies the extent to which
their value contributes to the likelihood of observing a failure
(or a success). For instance, the patient’s free will disobedient
(weight 0.56) represents the main reason for the failure. Other
features, like the age/fatigue profile (weight −0.19), reduce the
probability of failure, estimated by LIME to be 0.99 under the
current assignment of HMT factors.

IV. DISCUSSION

In this section, we discuss our work, focusing on the
limitations of the EASE approach. We also formulate future
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Fig. 4: Preliminary results from our running example.

research questions that drive our research activity in HMT.
a) Mutual human-machine understanding: While human

trust has been widely explored, a machine-centric perspective,
where machines learn from humans and trust them, is a
more recent multidisciplinary endeavor. A continuous learning
cycle, aiming at obtaining a refined understanding of human
behaviors and physical/emotional states, together with the
explanations of machine behaviors entail mutual understanding
between the two collaborating roles of the system. Quality
guarantees, obtained through formal analysis of dependability
properties, together with mutual understanding are, in our
vision, the essential drivers for building mutual trust. The
learning cycle requires multiple efforts in several research
fields (e.g., machine intelligence, cognitive and affective model
implementations, biophysical signal processing) but is key to
the development of the next generation of HMT applications.
The following questions deserve discussion by the research
community: Qa1 is the common definition of trust [18] general
enough to cover all these facets? Qa2 how can we real-
ize machine-interpretable explanations for human behavior?
Qa3 how can the concept of awareness be defined and how
does it relates to the concept of mutual trust? Qa4 what are
the societal and ethical concerns in this vision?

b) Reference Architecture for HMT: The identification
of a software reference architecture as a shared vocabulary to
discuss HMT applications represents an open challenge. Even
though the conceptual architecture in Fig. 2 is an initial sketch
specific to the EASE approach, it represents our initial effort in
describing and reasoning about the architectural characteristics



of HMT systems that account for the key elements underlying
trust, such as explainability. Research questions to be con-
sidered are: Qb1 what are the architectural characteristics of
HMT systems? Qb2 what are the key concerns in the design
of trustable and explainable HMT systems? Qb3 how to enact
a monitoring and learning process to achieve bidirectional
awareness? Qb4 how can the machine explain itself to humans
(i.e., self-explainability)? Qb5 how to make the system able to
adapt itself (i.e., self-adaptation) as needed for the achievement
of its goals despite changes, when humans and machines
interact more closely according to the HMT paradigm?

c) Formal guarantees in HMT: HMT systems are typ-
ically employed in critical domains (e.g., healthcare). These
systems must be designed with strong, ideally provable,
guarantees of dependability properties, or more in general,
with quality aspects specified in a formal fashion. A natural
starting point is to consider formal methods (e.g., SMC in
our approach). However, such methods must deal with the
inherent variability and uncertainty in humans as well as other
relevant phenomena of the environment. This leads to a very
high-dimensional space of uncertain and changing factors that
cannot be reasonably explored following exact and exhaustive
methods. We believe that a major challenge in the design
of HMT is finding the right balance between formality and
feasibility. So, future research questions are: Qc1 how can
we formally model and guarantee trust in human behavior?
Qc2 what are the relevant quality metrics for explanations in
this context? Qc3 which formalisms can be used to model ex-
planations? Qc4 what are the scalable approaches that can be
reasonably adopted to generate formally-verified explanations?

V. FUTURE PLANS

We plan to extend our vision by providing an enhanced
concept for a co-trust cycle of continuous human-machine
learning, and the realization and experimentation of such a
vision through the EASE framework and its concrete HMT-
based software architecture. We also plan to investigate how to
include into the SHA model other multi-disciplinary cognitive-
related aspects and conduct variability model analysis. We
want to mitigate uncertain (quality) attributes of the system
under scrutiny and of the SHA model itself, especially with
the availability of statistical inference techniques, such as
Bayesian reasoning [7]. We would like to provide formal
guarantees also for ethics-related concerns while designing,
developing, deploying, and executing HMT systems. We also
intend to define different levels of explainability [8] and the
meta-requirements that an HMT system shall satisfy to meet
the corresponding explainability level. Finally, we plan to
extend the framework with the notion of prescriptive analytics.
According to the analysis of the machine’s progress and plans,
the Exploration and Analysis layer could be endowed with
a recommender component responsible for determining an
optimal course of action and providing prescriptions for the
machine and for the humans. This would make them more
cognitive of critical situations and allow both to explore the
solution space in a coordinated manner.
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