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ABSTRACT 

Probabilistic Seismic Hazard Assessment (PSHA) evaluates the probability of exceedance of a given 

earthquake intensity threshold like the Peak Ground Acceleration (PGA), at a target point for a given 

exposure time. The stochasticity of the occurrence of seismic events is modelled by stochastic 

processes and the propagation of the earthquake wave in the soil is typically evaluated by empirical 

relationships called Ground Motion Prediction Equations (GMPEs). The large uncertainty affecting 

PSHA is quantified by defining alternative model settings and/or model parametrizations. In this 

work, we propose a novel Bootstrapped Modularised Global Sensitivity Analysis (BMGSA) method 

for identifying the model parameters most important for the uncertainty in PSHA, that consists in 

generating alternative artificial datasets by bootstrapping an available input-output dataset and 

aggregating the individual rankings obtained with the modularized method from each of those. 

The proposed method is tested on a realistic case study that refers to the PSHA of volcanic islands 

(for example Ischia, Italy). The results are compared with a standard variance-based Global 

Sensitivity Analysis (GSA) method of literature. The novelty and strength of the proposed BMGSA 

method are both in the fact that its application only requires input-output data and not the use of 

a PSHA code for repeated calculations. 
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Acronyms 
PSHA Probabilistic Seismic Hazard Assessment 

PGA Peak Ground Acceleration 

GMPE Ground Motion Prediction Equation 

SA Sensitivity Analysis 

GSA Global Sensitivity Analysis 

MGSA Modularised Global Sensitivity Analysis 

BMGSA Bootstrapped Modularised Global Sensitivity Analysis 

IM Intensity Measure 

MCS Monte Carlo Simulation 

BU Bottom-Up 

AO All-Out 

BC Borda Count 

 

Symbols  

𝚫𝑻 Exposure time window 

𝜸 Threshold value of the given intensity measure 

𝛌𝑯 Annual rate of exceedance of the 𝜸-th PGA level 

𝛌 Annual rate of mainshockoccurrence at a given source location 

𝒇𝒎(𝒎) Probability distribution of different earthquake magnitudes 

𝒎𝒎𝒊𝒏 Minimum magnitude of the probability distribution 𝒇𝒎(𝒎) 

𝒎𝒎𝒂𝒙 Maximum magnitude of the probability distribution 𝒇𝒎(𝒎) 

𝒃 Slope parameter of the probability distribution 𝒇𝒎(𝒎) 

𝒇𝒓(𝒓) Probability distribution of the source-to-target distance 

𝒓 Source-to-target distance 

𝑪 Computational cost of the double-loop Monte Carlo Simulation 



𝝂 Number of input variables 

𝒏𝟏 Sample size for estimating the inner loop of the double-loop MCS 

𝒏𝟐 Sample size for estimating the outer loop of the double-loop MCS 

𝒅 Index of the generic bootstrapped dataset 

𝑫 Total number of the bootstrapped dataset 

𝒈 Model 

𝒀 Output of the model 𝒈 

�̅� Input parameters 

�̿� Input-output dataset 

𝒔 Index of the input-output pattern of �̿� 

𝑺 Total number of the input-output pattern of �̿�, i.e., number of rows of �̿� 

𝑵 Number of input parameters, i.e. 

𝒏 Index of the input parameter 

𝑽𝒂𝒓[∙] Variance 

𝔼[∙] Expectation operator 

𝑺𝒏 Sobol index of the 𝒏-th parameter 

�̿�𝒅
∗  Reduced matrix 

𝑲 Number of mutually exclusive subset of the reduced matrix 

𝒌 Index of the mutually exclusive subsets of the reduced matrix 

�̿�𝒅
∗𝒌 

Generic mutually exclusive subset of the reduced matrix of the generic bootstrapped 

dataset 

𝑱 Number of rows of the �̿�𝒅
∗𝒌 

𝑺𝒏,𝒅 Sobol index of the 𝒏-th parameter of the generic 𝒅-th bootstrapped dataset 

�̅�𝑩𝑼,𝒅 Input ranking (bottom-up strategy) of the generic bootstrapped dataset 

�̅�𝑩𝑼 Final aggregated input ranking (bottom-up strategy) 

𝑩𝑪𝒏 Borda count for the 𝒏-th input variable 

𝒑𝒏,𝒅 𝒏-th input variable order inside the 𝒅-th ranking 

�̅�𝑨𝑶 Final aggregated input ranking (all-out strategy) 

𝝈𝑮𝑴𝑷𝑬 Standard deviation of the GMPE 

 

  



1. INTRODUCTION  

Probabilistic Seismic Hazard Assessment (PSHA) consists of assessing at a given target location and 

for a given exposure time window Δ𝑇, the probability that a given intensity measure (IM) of the 

ground motion, typically the Peak Ground Acceleration (PGA), exceeds a threshold value 𝛾, that is 

then summarized in hazard curves, where the IM is plotted versus its annual rate of exceedance [1]. 

To compute the annual rate of exceedance, the most consolidated and widely used method is 

described in [2]: first, the annual rate of the mainshocks (i.e., the strongest events in a seismic 

sequence) is estimated; then, the propagation from the source to the site of interest is performed. 

Usually, the former is based on an Earthquake Rupture Forecast model, that relies on either spatial 

distributions of the mainshocks, commonly using area source models [3], or smoothed seismicity 

models [4], coupled with magnitude frequency distributions, ordinarily described by the Gutenberg-

Richter law [5]. 

The latter is typically evaluated by empirical relationships, called Ground Motion Prediction 

Equations (GMPEs), finally leading to the annual rate of exceedance of a selected IM level, 𝜆𝐻, that 

is quantified by means of the total probability theorem as [6]: 

𝜆𝐻(𝑃𝐺𝐴 > 𝛾) = 𝜆∫ ∫ 𝑃(𝑃𝐺𝐴 > 𝛾|𝑚, 𝑟)𝑓𝑚(𝑚)𝑓𝑟(𝑟)𝑑𝑚𝑑𝑟
𝑅𝑚𝑎𝑥

0

𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

 (1) 

where 𝜆 is the annual rate of mainshock occurrence at a given source location (i.e., the number of 

occurrences of earthquakes above a given minimum magnitude threshold 𝑚𝑚𝑖𝑛 per year); the 

distribution 𝑓𝑚(𝑚) describes the probability distribution of different earthquake magnitudes, 

typically assumed to follow a truncated Gutenberg-Richter distribution within the interval of values 

[𝑚𝑚𝑖𝑛; 𝑚𝑚𝑎𝑥] and slope parameter 𝑏 [6]; 𝑓𝑟(𝑟) describes the probability distribution of the source-

to-target distance 𝑟, assuming a spatial distribution for earthquakes [1]. These input distributions 

are typically determined from historical, instrumental, and geological observations [1], [7] but large 



uncertainty exists, so that many alternative parametrisations of the model are possible [8], [9]. In 

this respect, Sensitivity Analysis (SA) can aid the understanding of how the uncertainty in the model 

is apportioned among the model input parameters uncertainties [10], [11]. In other words, through 

SA, one can identify the most sensitive parameters and better focus the uncertainty analysis without 

losing accuracy [12]. Different SA techniques have been proposed in literature, which can be sorted 

into three main categories: local, regional, and global [13]. Local and regional analyses limit inputs 

variations to a subset of their overall ranges. Local methods evaluate at low computational costs 

the effects on the system response of small perturbations in the model input variables around fixed 

values [13]. Then, local SA provides information on the sensitivity of the model output to the input 

variability at some fixed points. Regional analyses, on the contrary, focus on calculating the 

sensitivity of the model output to the variability of the inputs varying in given ranges of the inputs; 

yet, they do not give complete account to the uncertainty of the model inputs, in terms of their 

distributions [14], [15]. Global Sensitivity Analysis (GSA) methods, instead, explore the whole 

distribution range of the model inputs and the effects of their mutual combination on the model 

output, but they do so at larger computational costs than local and regional methods [14], [15]. GSA 

methods can be regression-based [16], variance-based  [15], [17], [18] distribution-based [19], [20] 

and expected value of information (EVI)-based [21]. Among the GSA methods, variance 

decomposition based on Sobol indices is most widely used [22].  

Sobol indices measure the contribution the input variables provide, individually or in groups, to the 

variability of the model output [14], [23]. They are usually computed via a double-loop Monte Carlo 

Simulation (MCS), with computational cost equal to 𝐶 = 𝑣 ∙ 𝑛1 ∙ 𝑛2, where 𝑣 is the number of input 

variables, 𝑛1 the sample size for estimating the inner loop and 𝑛2 the sample size for the outer loop  

[24], [25]. When the model runs are time consuming, the computational cost is high and strategies 

have been proposed to reduce it, including: reduced order models calibrated on input-output data 



obtained by few runs of the original model, e.g., Bayesian approaches [26], kriging [12], [27],and 

polynomial chaos expansion [28], [29]; sampling schemes tailored to efficiently characterize the 

sensitivity of the model inputs, e.g., Fourier Amplitude Sensitivity Test (FAST) [30], [31] and Effective 

Algorithm for computing global Sensitivity Indices (EASI) [32]; finally, data-driven approaches allow 

exploiting available datasets to calculate sensitivity measures [22], [33], [34], [35], which is quite of 

interest for many practical applications in which an input-output dataset is available and models to 

perform a GSA using MCS-based methods cannot be run [22], [36]. 

In this work, we propose a novel data-driven method based on bootstrapping, Modularised GSA 

(MGSA) and ensemble strategies, to identify the input variables of a seismic model (for example, 

�̅� = (𝜎𝐺𝑀𝑃𝐸 , 𝜆,𝑚𝑚𝑎𝑥, 𝑚𝑚𝑖𝑛, 𝑏, 𝑟), where 𝜎𝐺𝑀𝑃𝐸  is the standard deviation of the GMPE, 𝜆 is the 

annual rate of seismic activity at the source location, 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 are the minimum and the 

maximum magnitude parameters of the truncated Gutenberg-Richter distribution, whose slope is 𝑏 

[6], [37], and 𝑟 is the source-to-target distance [6]) whose output 𝑌 = 𝜆𝐻(𝑃𝐺𝐴 > 𝛾) is most 

sensitive to, assuming that only an input-output dataset is given and with no need of repeating 

hazard computations. The method can be used a posteriori, i.e., when the PSHA has been 

performed, as well as a priori, when an update of the PSHA is required, by informing the 

seismologists about the parameters that drive most the uncertainty, and allowing for scenarios 

exploration, saving modelling efforts and computational time. The procedure of the novel method 

is sketched in the flowchart of Figure 1. It consists of, first, applying a Bootstrap technique to the 

available input-output dataset [�̅�;  𝑌] to artificially increase the amount of data available [38], [39]. 

Then, for each 𝑑-th dataset, a sensitivity index is calculated for each input variable. Without loss of 

generality, in this work we propose to calculate the first-order Sobol index, which measures the 

input variables individual contributions to the variability of the model output [14], [23]: in practice, 

for each input variable, the 𝑑-th dataset is modularised (i.e., partitioned) into sub-sets that are used 



to calculate the variance of the model output 𝑌 and the first-order Sobol index [25]. Finally, the 𝐷 

independent rankings of the input variables, obtained based on their first-order Sobol indices 

values, are ensembled to provide an aggregated ranking of the input variables which the output is 

sensitive to. Typical ensemble strategies are Bottom-Up (BU) and All-Out (AO) strategies: the former 

computes a ranking order of the input variables out of each 𝑑-th dataset and combines the 𝐷 

alternative rankings a posteriori to generate a final aggregated ranking order [10]; on the contrary, 

the latter merges a priori the information from the 𝐷 datasets by averaging the 𝐷 Sobol indices for 

each input parameter and, then, provides the final ranking [10].  

 

Figure 1 – Flowchart of the proposed method. 

The proposed method is tested on with respect to the calculation of the hazard intensity 

corresponding to 10% probability of being exceeded in 50y for a realistic case study with a point 

seismic source nearby the target point, as it occurs for for volcanic islands with short source-to-site 

distance and high b-values (for example, Ischia (Italy) [40]). The results are compared to those 

obtained by a standard variance-based GSA method [11], which is the state-of-practice approach 

when the simulation model is available. 



The remainder of the paper is organised as follows. Section 2 explains the novel BMGSA method. 

Section 3 presents the case study. Section 4 shows the results of the application of the proposed 

method to the data of the case study and the comparison with the results obtained with the 

standard variance-based GSA of literature. Conclusions are drawn in Section 5. 

2. THE NOVEL BOOTSRAPPED MODULARISED GSA 

Let us consider a seismic model 𝑔 whose output value 𝑌 ∈ ℝ depends on the values of uncertain 

input parameters �̅� = (𝑋1, 𝑋2, … , 𝑋𝑁) , with N being the number of input parameters: 

𝑌 = 𝑔(�̅�) (2) 

where, without loss of generality, �̅� = (𝜎𝐺𝑀𝑃𝐸 , 𝜆,𝑚𝑚𝑎𝑥 , 𝑚𝑚𝑖𝑛, 𝑏, 𝑟) and 𝑌 =  𝜆𝐻(𝑃𝐺𝐴 > 𝛾)). 

Let us also assume that an input-output data set �̿� is given (i.e., the analyst may not have the 

simulation code available): 

�̿� = (
�̅�1

⋮
�̅�𝑆
) = (

𝑥1
1 ⋯ 𝑥𝑁

1

⋮ ⋱ ⋮
𝑥1
𝑆 ⋯ 𝑥𝑁

𝑆
     
𝑦1

⋮
𝑦𝑆
) (3) 

where �̅�𝑠 = [�̅�𝑠 , 𝑦𝑠], ∀ 𝑠 = 1,… , 𝑆 is the 𝑠-th input-output pattern of �̅� = (𝑋1, 𝑋2, … , 𝑋𝑁, 𝑌). 

The proposed methodology consists in:  

1. Generating 𝐷 alternative bootstrapped artificial datasets from the available input-output 

dataset �̿� [41];  

2. From each 𝑑-th alternative dataset and for each input variable, calculating a sensitivity index 

(here the first-order Sobol index) with the modularised method [25]; 

3. Aggregating the 𝐷 individual rankings (one for each alternative dataset) with Bottom-Up/All-

Out strategies [10]. 



GENERATION OF THE BOOTSTRAPPED DATASETS 
Bootstrap is a computer-based method usually employed to assess the accuracy of statistical 

estimates with minimum assumptions [39]. The main benefit is avoiding additional computational 

burden (for example, when simulation codes are computationally demanding or not available, as in 

the current case) by relying only on the available data [39], [42], which makes it particularly fit for 

the purpose of this work.  

The basic idea is to generate a number 𝐷 of artificial datasets �̿�𝑑 by random sampling, with 

replacement from �̿�, the input-output patterns. The generic bootstrapped �̿�𝑑, thus, consists in a 

𝑆 × (𝑁 + 1) matrix. 

THE MODULARISED METHOD TO CALCULATE THE SOBOL INDEX 
The Sobol index is the result of the application of a variance-based method that apportions the 

output variance into the single (or groups of) variables variances [43], [44]. No hypotheses are made 

on the structure of the model 𝑔 from which the data have been generated. The variance 𝑉𝑎𝑟[𝑌] of 

the output 𝑌 can be, indeed, decomposed as follows [14], [15]: 

𝑉𝑎𝑟[𝑦] = 𝑉𝑎𝑟𝑋𝑛[𝔼𝑋~𝑛(𝑦|𝑥𝑛)] + 𝔼𝑋𝑛[𝑉𝑎𝑟𝑋~𝑛(𝑦|𝑥𝑛)] (4) 

where: 

• 𝑉𝑎𝑟𝑋𝑛[𝔼𝑋~𝑛(𝑦|𝑥𝑛)] is the variance of 𝑌 caused by 𝑋𝑛 without considering its interactions 

with other input variables (i.e., 𝑋~𝑛) 

• 𝔼𝑋𝑛[𝑉𝑎𝑟𝑋~𝑛(𝑦|𝑥𝑛)] is the variability of 𝑌 depending on all variables but on 𝑛 (i.e., 𝑋~𝑛);  

• 𝔼(∙) is the expectation operator; 

The first-order Sobol index for the 𝑛-th generic input variable is defined as [14], [15] : 

𝑆𝑛 =
𝑉𝑎𝑟𝑋𝑛[𝔼𝑋~𝑛(𝑦|𝑥𝑛)]

𝑉𝑎𝑟[𝑦]
, ∀ 𝑛 = 1, … , 𝑁 (5) 



The larger 𝑆𝑛, the more 𝑋𝑛 contributes to the variance of 𝑌 [43]. As mentioned in the Introduction, 

the computation of the Sobol indices usually requires a double-loop MCS, which can be 

computationally burdensome. Since, in practice, the numerator is solved by a double-loop MCS [15]:  

• The inner loop computes 𝔼𝑋~𝑛(𝑦|𝑥𝑛) using 𝑛1 random samples of �̅�~𝑛 with fixed �̅�𝑛; 

• The outer loop computes 𝑉𝑎𝑟𝑋𝑛[𝔼𝑋~𝑛(𝑦|𝑥𝑛)] by iterating the inner loop 𝑛2 times, with 

different values of 𝑋𝑛;  

In total, for each 𝑆𝑛, the number of model evaluations is 𝐶𝑛 = 𝑛1 ∙ 𝑛2, that is unaffordable if each 

evaluation is time-consuming (notice that, in many practical applications, each loop must be of order 

greater than 1000 [13], [25]). To address this issue and avoid calling the simulation code, we propose 

a modularised approach, that partitions the �̿�𝑑 into subsets and proceeds as follows [24], [25]. 

Step 1: construct the reduced matrix 

For each 𝑛-th input variable, append the 𝑛-th input column of �̿�𝑑 to the output column; then, shuffle 

the rows in ascending order to obtain �̿�𝑑
∗ , where 𝑥𝑛

1∗ ≤ 𝑥𝑛
2∗ ≤ ⋯ ≤ 𝑥𝑛

𝑠∗:   

�̿�𝑑
∗ = (

𝑥𝑛
1∗

⋮
𝑥𝑛
𝑆∗
     
𝑦1∗

⋮
𝑦𝑆∗
) (6) 

Step 2: partition the reduced matrix in subsets 

Partition the support of 𝑋𝑛 in 𝑘 = 1,… , 𝐾 mutually exclusive subsets �̿�𝑑
∗𝑘, such that ⋃ 𝑋𝑛

𝑘 = 𝑋𝑛
𝐾
𝑘=1 ∧

𝑋𝑛
𝑘 ∩ 𝑋𝑛

𝑙≠𝑘 = ∅. Operatively, divide the resulting matrix �̿�𝑑
∗  into 𝑘 = 1,… , 𝐾 submatrices �̿�𝑑

∗𝑘  of 𝐽 

rows, each retaining the order of the Step 1: 

�̿�𝑑
∗𝑘 = (

𝑥𝑛
1∗𝑘

⋮

𝑥𝑛
𝐽∗𝑘
     
𝑦1∗𝑘

⋮
𝑦𝐽∗𝑘

) (7) 



Note that  𝐽 ∙ 𝐾 = 𝑆, where 𝑆 is the total input-output pattern size and  𝐾 = 𝑖𝑛𝑡(√𝑆) [24], [33].  

Notice that the large 𝐾 improves the accuracy of the estimation of 𝑉𝑎𝑟𝑋𝑛[∙], while worsening the 

accuracy of the estimation of 𝔼𝑋~𝑛(𝑦|𝑥𝑛), and vice versa [24][45]. 

Step 3: estimation of the Sobol index 

The Sobol index 𝑆𝑛,𝑑 is, finally, calculated as in Eq. (8): 

𝑆𝑛,𝑑 =
𝑉𝑎𝑟𝑋𝑛[𝔼𝑋~𝑛(𝑦|𝑥𝑛)]

𝑉𝑎𝑟[𝑦]
≈

1
𝐾
∑ (�̅�𝑘 − �̅�)

2𝐾
𝑘=1

1
𝑆
∑ (𝑦𝑠 − �̅�)2
𝑆
𝑠=1

 (8) 

where: �̅� =
1

𝑆
∑ 𝑦𝑠𝑆
𝑠=1  and �̅�𝑘 =

1

𝐽
∑ 𝑦𝑗∗𝑘𝐽
𝑗=1 . 

The calculation of 𝑆𝑛,𝑑, as a result of the modularisation, depends solely on 𝑋𝑛 and 𝑌, and can be 

performed even if the input values of �̅�~𝑛 are not available [24], [25].  

ENSEMBLE OF THE ALTERNATIVE RANKINGS 
Each input variable 𝑋𝑛 has been, thus, assigned a 𝑆𝑛,𝑑. Input variables can, accordingly, be ranked 

from the most important (largest 𝑆𝑛,𝑑) to the least contributor to the variance (smallest 𝑆𝑛,𝑑). Two 

strategies are explored for ensembling the 𝐷 available alternative rankings: the BU and AO 

strategies [10]. 

2.3.1 BOTTOM-UP STRATEGY 

Each 𝑑-th bootstrapped dataset �̿�𝑑 is treated separately from the others to generate its input 

ranking �̅�𝐵𝑈,𝑑. Then, the set of input rankings obtained from all the 𝐷 datasets is processed a 

posteriori to give the final aggregated ranking order �̅�𝐵𝑈 (Figure 2) [10] . For each �̿�𝑑 the 𝑆𝑛,𝑑 are 

computed and, by sorting in ascending order, the corresponding ranking �̅�𝐵𝑈,𝑑 is obtained. The final 

ranking order �̅�𝐵𝑈 is obtained applying the Borda method, that consists in computing the Borda 



Count (BC) for each input variable [10]. Denoting by 𝑝𝑛,𝑑 the 𝑛-th variable order inside the 𝑑-th 

ranking, the BC for the input variable 𝑋𝑛 is given by [10] : 

𝐵𝐶𝑛 = ∑𝑝𝑛,𝑑

𝐷

𝑑=1

. (9) 

A small value of 𝐵𝐶𝑛 means that the 𝑛-th input variable is among the most important (top ranked) 

input variables [10] .  

 

Figure 2 – The proposed bottom-up aggregation strategy. 

2.3.2 ALL OUT STRATEGY 

The AO strategy a priori merges the information coming from each dataset �̿�𝑑. For each input 

variable 𝑋𝑛, the expected value 𝔼(𝑆𝑛) of each Sobol index 𝑆𝑛 is computed over the 𝐷 datasets [10]: 

𝔼(𝑆𝑛) =
1

𝐷
∑𝑆𝑛,𝑑

𝐷

𝑑=1

 (10) 

Sorting 𝔼(𝑆𝑛) in ascending order provides the AO aggregated ranking �̅�𝐴𝑂 (the larger the value of 

𝔼(𝑆𝑛), the more important the 𝑛-th input variable) [10].  



 

Figure 3 –The proposed all-out aggregation strategy. 

3. CASE STUDY 

The proposed GSA methodology has been tested on a benchmark case study regarding the PSHA of 

one hypothetical seismic point source and one target point located in its proximity. Such 

configuration is of particular interest when volcanic zones, e.g., volcanic islands, are of concern, 

since these are usually characterized by short source-to-site distance and high b-values [40]. We 

can, for example, realistically assume Ischia (Italy) to be the target point. 

The source model consists of a point source with a given annual rate and generating seismicity with 

magnitudes following a truncated Gutenberg-Richter distribution [37]. The source model is, then, 

coupled with a standard Ground Motion Prediction Equation (GMPE) for the propagation of the 

earthquake waves [46]. A reference target point is selected in the near field, at distance of 

approximately 10 km.  

The uncertainty of the PSHA is evaluated by means of Eq. (1) with respect to six input parameters, 

accounting for a reasonable large number of 16384 alternative computational settings (i.e. 214, 

possibly larger than in [11], where, as done in this work, a classical crude Monte Carlo sampling 



strategy is used to sample 212 alternative settings), capable of guaranteeing a thorough enough 

scenario exploration within a tractable computational time. This results in �̿� = [16384 × 7], as in 

Eq. (11) below. The purpose is to quantify the impact of these parameters on the uncertainty of the 

IM value corresponding to an exceedance probability of 10% in 50 years, that is with a return period 

of 475 years. The input parameters are �̅� = (𝜎𝐺𝑀𝑃𝐸 , 𝜆,𝑚𝑚𝑎𝑥, 𝑚𝑚𝑖𝑛, 𝑏, 𝑟) where: 𝜎𝐺𝑀𝑃𝐸  is the 

standard deviation of the GMPE, 𝜆 is the annual rate of seismic activity at the source location (i.e., 

the number of earthquakes per year of intensity magnitude 𝑚 a minimum magnitude 𝑚𝑚𝑖𝑛), 

𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 are the minimum and the maximum magnitude parameters of the truncated 

Gutenberg-Richter distribution, whose slope is 𝑏 [6], [37], and 𝑟 is the source-to-target distance [6]. 

The latter parameter is here added to the other five input to emulate the dependence of GMPEs on 

source characteristics like earthquake depth, size or geometry. The output variable is the 𝑃𝐺𝐴, i.e., 

the reference peak ground acceleration at the target location that has annual rate of exceedance 

𝜆𝐻 assumed to be equal to 1/475 (corresponding in this case to a PGA of 0.07g).  

�̿� =

(

 
 

𝜎𝐺𝑀𝑃𝐸1 𝜆1
⋮

𝜎𝐺𝑀𝑃𝐸𝑠
⋮

⋮
𝜆𝑠
⋮

𝜎𝐺𝑀𝑃𝐸𝑆 𝜆𝑆

𝑚𝑚𝑎𝑥1 𝑚𝑚𝑖𝑛1
⋮

𝑚𝑚𝑎𝑥𝑠
⋮

⋮
𝑚𝑚𝑖𝑛𝑠
⋮

𝑚𝑚𝑎𝑥𝑆 𝑚𝑚𝑖𝑛𝑆

𝑏1 𝑟1
⋮
𝑏𝑠
⋮

⋮
𝑟𝑠
⋮

𝑏𝑆 𝑟𝑆

𝑃𝐺𝐴1
⋮

𝑃𝐺𝐴𝑠
⋮

𝑃𝐺𝐴𝑆)

 
 

 (11) 

The distributions of all the six input variables �̅� are reported in Table 1, all assumed to be normal as 

customary [11]. Notably, the source-target distance is set around 10 km, thus in the very near field, 

in which the dependence of distance on the source characteristics (geometry, depth, and 

dimension) is more pronounced. Consequently, a quite large variance is set for 𝑟. The other 

parameters are inspired from the ones adopted in the areal sources of the PSHA study that is 

enforced by law in Italy, MPS04 [47], [48]. In particular, the parameters of the source model 

(𝜆,𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 and 𝑏) are inspired by source zone 920 (Val di Chiana-Ciociaria) of MPS04, with a 

reduced value 𝑚𝑚𝑖𝑛 (from 4.76 to 4.5) and 𝜆 (as we are considering a point source). The central 



value of 𝜎𝐺𝑀𝑃𝐸  is instead taken from [46].  Variance value representing the uncertainty on the 

parameters, are set based on expert judgement. 

Table 1 - Model input variables and output, with their associated distributions. 

Input variable Units Type of distribution Mean value Standard deviation 

𝝈𝑮𝑴𝑷𝑬 𝑔0 (𝑚 𝑠2)⁄  Normal 0.3446 0.0490 

𝝀 𝑦𝑟−1 Normal 0.0600 0.0021 

𝒎𝒎𝒂𝒙 - Normal 5.6791 0.2430 

𝒎𝒎𝒊𝒏 - Normal 4.5005 0.1000 

𝒃 - Normal 1.9597 0.0580 

𝒓 𝑘𝑚 Normal 10.0142 2.9639 

 

The results of the proposed method are compared to those obtained by a standard variance-based 

GSA method [11], which is the state-of-practice approach when the simulation model is available.  

4. RESULTS 

The BMGSA methodology described in Section 2 has been applied to the case study presented in 

Section 3. The original dataset �̿� has been replicated by bootstrap to generate 𝐷 = 1000 datasets. 

Each replicate matrix �̿�𝑑 is comprised of 𝑆 = 16384 rows (the input-output patterns) and 7 columns 

(6 input variables, 1 output). The partition size chosen to test the proposed methodology is 𝐾 =

𝑖𝑛𝑡(√𝑆) = 128. 

The results of the assessment carried out with the standard GSA on the case study of Section 3 are 

taken as a benchmark, i.e., as correct ranking. This ranking is reported in Table 2, along with the 

values of the Sobol indices. 



Notably, the main drivers of the uncertainty on the reference PGA are  

𝑚𝑚𝑖𝑛 and 𝜎𝐺𝑀𝑃𝐸. While the dependence on 𝜎𝐺𝑀𝑃𝐸   is a well-established result [49], the dependence 

on 𝑚𝑚𝑖𝑛 is not that straightforward, and it is probably due to the selection of a target point in the 

very near field (about 10 km) and the use of a very large value for the slope 𝑏-value (about 2). The 

combined effect of these two parameters is to produce a very large number of events with a 

magnitude very close to 𝑚𝑚𝑖𝑛, resulting in a critical dependence of the reference PGA on the 

selected minimum magnitude value. Also, notice that the first order Sobol indices sum to greater 

than one, meaning that the variables considered are correlated [50]. Finally, it is worth mentioning 

that this result cannot be taken as general, because obtained under specific modelling assumptions 

(e.g., large return period and large PGA values): the analysis of the results to other 

settings/assumptions/constraints and the generality of such results is the object of future work.  

Table 2 – Input variables ranking obtained with the standard GSA. 

Rank 1 2 3 4 5 6 

Input variable 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑚𝑚𝑎𝑥  𝑏 

𝑺𝒏 0.5896 0.3811 0.0470 0.0320 0.0264 0.0221 

 

4.1 RESULTS OF THE BOTTOM-UP STRATEGY 
The application of the ensemble BU strategy produces the final ranking obtained by the Borda 

method, shown in Table 3. The major limitation of the BU strategy is that the result is lumped in a 

ranking table that is not transparent with respect to the actual Sobol indices that generate that 

ranking and, finally, the analyst is not provided with any confidence measure on the resulting rank: 

in other words, it cannot be quantitatively assessed how much the generic 𝑛-th input 𝑋𝑛 contributes 

to the variance of 𝑌. 



Table 3 – Input variables ranking obtained through MGSA, D=1000 bootstrapped datasets, BU strategy. 

Rank 1 2 3 4 5 6 

Input variable 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑚𝑚𝑎𝑥  𝑏 

 

4.2 RESULTS OF THE ALL-OUT STRATEGY 
The ranking and the expected values of the Sobol indices obtained with the ensemble strategy AO 

are reported in Table 4. As stated for the BU strategy, one can observe that: 

1. The variables 𝜎𝐺𝑀𝑃𝐸  and 𝑚𝑚𝑖𝑛 are the first two (by far) more relevant inputs (Figure 4); 

2. The other input variables bring a negligible contribution to the variability of the output. 

Table 4 – Input variables ranking obtained through MGSA, D=1000 bootstrapped datasets, AO strategy. 

Rank 1 2 3 4 5 6 

Input variable 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑚𝑚𝑎𝑥  𝑟 𝑏 

𝔼(𝑺𝒏) 0.5760 0.3693 0.0508 0.0359 0.0336 0.0249 

 

 

Figure 4 – Sobol indices obtained with the AO strategy. 

4.3 COMPARISON WITH THE BENCHMARK RESULTS 
 



The results of the proposed methodology have been then compared with the ranking results of the 

standard GSA, reported in Table 5.  

Table 5 – Input variables rankings (sample size S=16384). 

Rank 1 2 3 4 5 6 

Standard GSA  𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑏 𝑚𝑚𝑎𝑥  

BU (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑚𝑚𝑎𝑥  𝑟 𝑏 

AO (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑚𝑚𝑎𝑥  𝑟 𝑏 

No bootstrap (MGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝑟 𝑚𝑚𝑎𝑥  𝜆 𝑏 

 

Both ensemble strategies and the standard GSA identify the 𝜎𝐺𝑀𝑃𝐸  and 𝑚𝑚𝑖𝑛 as the most important 

variables, whereas the sensitivity indices of the other input variables are negligible (Table 5, Figure 

5). The disagreement regarding the ranking for the positions 4-6 may be due to i) hidden 

dependences and/or correlations between the input variables that are neglected when the 

alternative datasets are generated, and ii) the paucity of data upon which the rankings are drawn. 

 

Figure 5 – Sobol indices obtained with the standard GSA. 



To highlight the important role played by the bootstrapping (Section 2.2) in obtaining such results, 

we show (from Figure 6 to Figure 10) the results that would have been obtained with a given input-

output dataset �̿� of decreasing size (𝑆 = 16384, 8192, 4096, 2048, 1024) (that correspond to 

successive halves of the dataset size), employing the more transparent AO ensemble strategy (green 

squares in Figure 6 to Figure 10). These results are compared with i) the benchmark values (Standard 

GSA, blue diamonds in the Figure 6 - Figure 10) and ii) the results obtained with the MGSA without 

bootstrap (magenta circles in the Figure 6 - Figure 10). The relative rankings are reported in Tables 

6-9.   

When �̿� = [16384 × 7] and �̿� = [8192 × 7], the Standard GSA (), the BMGSA (green squares in the 

Figure 6) and the MGSA agree on the identification of 𝑚𝑚𝑖𝑛 and 𝜎𝐺𝑀𝑃𝐸  as the most important 

variables, whereas for the third most important variable only Standard GSA and BMGSA agree on 𝜆. 

Then, the approaches provide different rankings for lower ranking positions. 

 

Figure 6 – Sobol indices estimates at sample size S=16384. 



 

Figure 7 – Sobol indices estimates at sample size S=8192. 

Table 6 – Input variables rankings (sample size S=8192). 

Rank 1 2 3 4 5 6 

Standard GSA  𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑏 𝑚𝑚𝑎𝑥  

AO (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑏 𝑚𝑚𝑎𝑥  𝑟 

No bootstrap (MGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝑚𝑚𝑎𝑥  𝑏 𝜆 𝑟 

 

When �̿� = [4096 × 7] and �̿� = [2048 × 7], the Standard GSA and the BMGSA agree on the 

identification of 𝑚𝑚𝑖𝑛 and 𝜎𝐺𝑀𝑃𝐸  as the most important variables, as well as on the third (𝜆) and 

fourth (𝑟) most important variables. Then, the approaches provide different rankings for lower 

ranking positions. The MGSA instead yields a completely different ranking (except for positions 4 

and 5, when �̿� = [4096 × 7] and �̿� = [2048 × 7], respectively). Notice that, when the dimension 

of �̿� decreases, even if the most important variables are correctly identified, a less accurate 

estimation of the Sobol indices is provided and the differences between the GSA, the BMGSA and 

MGSA increase. 



 

Figure 8 – Sobol indices estimates at sample size S=4096. 

Table 7 – Input variables rankings (sample size S=4096). 

Rank 1 2 3 4 5 6 

Standard GSA  𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑏 𝑚𝑚𝑎𝑥  

AO (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑚𝑚𝑎𝑥  𝑏 

No bootstrap (MGSA) 𝜎𝐺𝑀𝑃𝐸  𝑚𝑚𝑖𝑛 𝑚𝑚𝑎𝑥  𝑟 𝜆 𝑏 

 

 

Figure 9 – Sobol indices estimates at sample size S=2048. 



Table 8 – Input variables rankings (sample size S=2048). 

Rank 1 2 3 4 5 6 

Standard GSA  𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑏 𝑚𝑚𝑎𝑥  

AO (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑚𝑚𝑎𝑥  𝑏 

No bootstrap (MGSA) 𝜎𝐺𝑀𝑃𝐸  𝑚𝑚𝑖𝑛 𝑟 𝜆 𝑚𝑚𝑎𝑥  𝑏 

 

When �̿� = [1024 × 7], the Standard GSA, the BMGSA and the MGSA agree on the identification of 

𝑚𝑚𝑖𝑛 as the most important variable, whereas for the second (𝜎𝐺𝑀𝑃𝐸) and third (𝜆) most important 

variables only Standard GSA and BMGSA agree. Then, the approaches provide different rankings for 

lower ranking positions. Nevertheless, as Figure 10 clearly shows, the numerical values of the Sobol 

indices obtained with the proposed BMGSA may not be considered satisfactory. Furthermore, 

Figure 11 to Figure 15 shows that, when the dimension of �̿� decreases, the distributions of 𝑆𝑛,𝑑 

become wider (i.e., bootstrap replicates are subject to noise and, as a result, the Sobol indices 

estimate are not precise).  

 

Figure 10 – Sobol indices estimates at sample size S=1024. 



Table 9 – Input variables rankings (sample size S=1024). 

Rank 1 2 3 4 5 6 

Standard GSA  𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑟 𝑏 𝑚𝑚𝑎𝑥  

AO (BMGSA) 𝑚𝑚𝑖𝑛 𝜎𝐺𝑀𝑃𝐸  𝜆 𝑏 𝑟 𝑚𝑚𝑎𝑥  

No bootstrap (MGSA) 𝑚𝑚𝑖𝑛 𝜆 𝜎𝐺𝑀𝑃𝐸  𝑏 𝑚𝑚𝑎𝑥  𝑟 

 

 

Figure 11 - 𝑆𝑛,𝑑 distributions at sample size S=16384 

 

Figure 12 - 𝑆𝑛,𝑑 distributions at sample size S=8192 



 

Figure 13 - 𝑆𝑛,𝑑 distributions at sample size S=4096 

 

Figure 14 - 𝑆𝑛,𝑑 distributions at sample size S=2048 



 

Figure 15 - 𝑆𝑛,𝑑 distributions at sample size S=1024 

As general conclusion, we can state that bootstrapping allows relying on a very small dataset. 

Indeed, a sample size of 𝑆 = 2048 (Figure 9) allows correctly identifying the most important input 

variables, whereas 𝑆 = 4096 (Figure 8) yields already a very satisfactory estimate of the Sobol 

indices values (compared with the GSA estimates). Thus, as a general recommendation, we may 

conclude that a ratio of 4:1 of 𝑆: 𝐷 (dataset size vs number of bootstrap replicates) is enough to 

guarantee satisfactory results, without resorting further to demanding computations. 

For the case study at hand, we can conclude that, 𝑚𝑚𝑖𝑛, 𝜎𝐺𝑀𝑃𝐸 , and 𝜆 have been identified as the 

input variables which most influence the reference PGA, whereas 𝑟, 𝑏, and 𝑚𝑚𝑎𝑥 influence is 

negligible (for whatever dataset size 𝑆 = 16384, 8192, 4096, 2048, 1024). The analyst, once 

identified the input parameters which most influence the uncertainty on reference PGA, may decide 

to further investigate the choice made regarding such inputs and proceed with the uncertainty 

analysis.  

We underline that the numerical results obtained are relative to the specific case study and cannot 

be generalized to other PSHA cases. In particular, while the strong impact of 𝜎𝐺𝑀𝑃𝐸 , and 𝜆 on hazard 

quantifications is well known (e.g. [11]), the reasons behind the importance of 𝑚𝑚𝑖𝑛 must be further 



investigated. In Figure 16, we show the impact of small events (i.e., with a magnitude around Mw 

4.5). The relative short source-to-site distance (10 km) and the low PGA level (0.07g) make the 

contribution of small events of utmost relevance: the conditional probability of exceedance of such 

PGA level for a magnitude Mw 4.5 is larger than 0.2. In the case of larger distances (e.g., 40km) and 

larger PGA levels (e.g., 0.20g), the impact of small events decreases noticeably. 

 

Figure 16 – Probability of exceedance of a specific PGA level, 0.07g for panel (a), 0.20g for panel (b), as a function of the magnitude, 
using the GMPE adopted in this study, for two different distances (10 km for the blue curve, 40 km for the red curve) 

The large probabilities shown by the blue curve (r=10 km) in Figure 16 (a) explain the unexpected 

large importance of 𝑚𝑚𝑖𝑛 as input variable in the PSHA computation (see [49] or [51]) and calls for 

a deeper investigation of the effect of small magnitude events in PSHA, as it is in the case of volcanic 

islands [40]. This highlights that the proposed method is useful to be used for sanity check of hazard 

assessments, as PSHA results are assumed independent from the selection of 𝑚𝑚𝑖𝑛 [11]. In this case, 

indeed, we show that, for small magnitudes, the tails of the GMPE are sufficiently populated to 

strongly impact the hazard quantification also at a relatively high return period (475 years in this 

case), at least in the near field of the source areas. 

Notably, this effect may be due to the extension of the validity of the GMPEs to small magnitude 

events that, in some cases, can even lead to a bias in the hazard estimation, as pointed out also in 

other studies (see [49], [51]),. 



5. CONCLUSIONS 

In this work, we have proposed a novel Bootstrapped Modularised Sensitivity Analysis (BMGSA) 

method based on bootstrapping, MGSA and ensemble strategies to identify the input parameters 

which the output of a PSHA model is most sensitive to, assuming that only an input-output dataset 

is given whereas the model is not available. The novelty and strength of the proposed BMGSA 

method is that to be applied it only needs data and not the source simulation code. The capability 

of the proposed method is tested on a benchmark case study. The results have been compared with 

a standard variance-based GSA method of literature, showing that the proposed method and the 

standard GSA agree on the identification of the three by-far most important input variables. 

Furthermore, the BMGSA has proved to be reliable even when applied to very small datasets.  

The application of the developed technique to a realistic PSHA demonstrates its capability of scoring 

correctly the importance of existing uncertainty factor, needing only the input and the output data. 

This allows applying the technique to any hazard model in which uncertainty is to be evaluated. Its 

systematic application to hazard studies to detect the most influential parameters would allow 

hazard practitioners to both improve the sanity checks during the assessment and to focus future 

research toward the reduction of uncertainty, by further characterisation of the important factors. 

The results of our applications, for example, highlight the importance of small magnitudes near to 

the seismic source areas, showing the importance of the definition of the minimum magnitude and 

the potential impact of the tail of the uncertainty distributions on GMPE on seismic hazard 

evaluation. Also, the application of the proposed technique can result practically useful when the 

PSHA is to be updated on a time basis (usually 5/10 years): in this case, a standard GSA would not 

allow the seismologist to obtain the results in reasonable time; on the contrary, the BMGSA here 

proposed enables a lean update of the PSHA, by informing the seismologists about the parameters 



that rule most the uncertainty; focusing on these only, scenarios exploration and conclusions would 

be more swiftly performed and drawn, respectively. 
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