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Abstract. Robust inference for the Cluster Weighted Model requires
the specification of a few hyper-parameters. Their role is crucial for
increasing the quality of the estimators, while arbitrary decisions about
their value could severely hamper inferential results. To guide the user in
the delicate choice of such parameters, a monitoring approach has been
introduced in the recent literature, yielding an adaptive method. The
approach is here exemplified, via the analysis of a dataset on the effect
of punishment regimes on crime rates.

1 Introduction and Notation

The purpose of the present paper is to demonstrate how to perform hyper-
parameters selection when applying Cluster Weighted Modelling (CWM) to a
real dataset. In detail, through the employment of graphical tools, we propose a
two-stage monitoring procedure to sequentially detect the number of potential
outliers and the thresholds used in constrained estimation.

The contribution advances the studies on the semi-automation of clustering
techniques, which is a relevant topic in statistics and in real statistical applica-
tions. Our proposal has been developed along the lines of Cerioli et al. (2018)
and Torti et al. (2021).

We begin by introducing very briefly the notation, then provide the main
ideas of the monitoring methodology, and in Sect.2 we present and discuss an
application to Crime data. Final remarks end the paper in Sect. 3.

Let X be a vector of covariates with values in R¢, and let ¥ be a dependent
(or response) variable with values in R. Assume that the regression of ¥ on X
varies across G levels, say groups or clusters, of a categorical latent variable Z.
The linear gaussian CWM, introduced by Gershenfeld (1997), decomposes the
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joint distribution of (X,Y), in each mixture component, as the product of the
marginal and the conditional distributions, as follows:

G
P(x,y;0) = ) w1 (i byx + b, 0 )pa(x; g, B (1)

g=1

where ¢q(-; g, Xg) denotes the density of the d-variate Gaussian distribution
with mean vector p, and covariance matrix X¢. Y is related to X by a linear
model in (1), that is, ¥ = bgx + bg, + &g with g4 ~ N(0,0';‘f), b, € RY, bg €
R, O'g2 € R*, Vg = 1,...,G. Unfortunately, Maximum Likelihood inference on
models based on normal assumptions suffers from two major drawbacks: (i) the
likelihood is unbounded over the parameter space, hence its maximization is
in an ill-posed mathematical problem; (ii) the resulting inference is strongly
affected by outliers (see, e.g., Huber and Ronchetti 2009). To overcome both
issues, Garcifa-Escudero et al. (2017) introduced the Cluster Weighted Robust
Model (CWRM), where a fixed fraction @ of the less plausible observations is
trimmed out and the estimation of the scatter matrices and the regression errors
is constrained to ensure robust inference. The first constraint is applied to the
set of eigenvalues {4;(Xg)}i=1,...q of the scatter matrices g by requiring

AL (Zgy) < ex A (Zg,) forevery 1<l #lhb <dand 1<g1 #g2<G. (2)

The second bound is enforced to the variances O'g2 of the regression error terms
as follows

2
<
0-81 - Cyo-gz

for every 1 < g1 # g2 <G. (3)
The constants cx,c, > 1 prevent degenerate cases with |X,| — 0 and 0'3 — 0
leading to an unbounded likelihood or non interesting spurious solutions. There-
fore, the percentage of trimmed data and the threshold for eigenvalues ratio play
an important role and should be carefully set.

We will exemplify how the monitoring tools introduced in Cappozzo et al.
(2021) can be applied to real data. A first monitoring step is devoted to screen
the space of solutions for CWRM, in view of making an informed choice for
the trimming level @, which is the most crucial parameter. Metrics such as the
group proportion, the total sum of squares decomposition, the regression slopes
and standard deviations, the cluster volumes, and the Adjusted Rand Index
(ARI) between consecutive cluster allocations are monitored when varying «, to
uncover the most sensible trimming level to be employed.

Afterwards, the second monitoring step screens the space of solutions &, gen-
erated by varying the number of clusters G, and the pair of hyper-parameters
cx and ¢, over a grid, conditioned on a fixed trimming level. We aim at col-
lecting a reduced list @ of “optimal” solutions, qualified by two features: their
optimality in terms of a CWRM-specific BIC criterion (Cappozzo et al. 2021),
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and their stability across hyper-parameter values. Stability of solution A means
that, varying the values of the constraints, the estimation yields a partition B
pretty close to A (the ARI between A and B is greater than a threshold n).

Finally, to explore the quality of the clustering obtained in the optimal solu-
tions and to uncover the nature of the outliers, silhouette plots (Rousseeuw
1987) can be employed. Silhouette plots have been introduced for representing
the quality of the clustering solution, and may be defined in the spirit of discrim-
inant factors introduced in Garcia-Escudero et al. (2011). Specific discriminant
factors, tailored for the CWM characterization in (1) should be considered here.
The first discriminant factor DF(i) assesses the strength of the assignment, or
the strength of the trimming decision for unit / in the joint modeling expressed
by the CWM. On the other side, DFy|x(i) and DFx(i) break down the over-
all mixture density in the contribution of the G regression hyperlanes and the
component-wise random covariates, respectively.

2 Crime Dataset

The dataset originates from a study on the effect of punishment regimes on crime
rates. We analyse aggregate data on 47 US states taken place in 1960 illustrated
by Ehrlich (1973), available in the MASS R package. The crime rate, measured as
the number of offenses per 100.000 population, is the response variable Y.

The goal is to infer whether the structure of dependence among covariates
differently affects the crime rate ¥ depending on the geographical area.

Available predictors X for each of the 47 states are the following: percentage
of males aged 1424, mean years of schooling, police expenditure, labour force
participation rate, number of males per 1000 females, state population, number
of non-whites per 1000 people, unemployment rate of urban males 1424, unem-
ployment rate of urban males 35-39, gross domestic product per head, income
inequality, probability of imprisonment, and average time served in state prisons.
Finally, the indicator variable denoting the 16 Southern states will be considered
as the grouping variable hereafter. To this extent, robust CWM is applied on
(X,Y) to uncover geographical grouping. The high number of variables involved
in the estimation and the small sample size represent a challenge for the dis-
criminating task.

The first step of our monitoring tools provides the outcome displayed in
Fig. 1, where @ takes values on a grid from 0 to 0.255. We opted for setting in
advance G = 2 the number of geographical areas we would like to uncover. This
choice is in line with the monitoring philosophy, for which any domain-related
knowledge that may guide hyper-parameter selection shall be included in the
analysis.
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Fig. 1. Crime data: monitoring tools obtained in Step 1. Groups proportion (black bars
denote the trimmed units), total sum of squares decomposition, regression coefficients,
standard deviations, cluster volumes, ARI between consecutive cluster allocations are
shown as a function of the trimming level @. G is kept fixed and equal to 2
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We see that the choice of @ = 0.064 stabilizes the variance of the regression
errors o, and de-inflate the determinant of the scatter matrix |Z;|*¢ in the first
cluster (represented in green in Fig. 1), aligning them to the order of magni-
tude of the analogous quantities in the second cluster. Therefore, an estimation
based on 44 observations seems sufficient to assure robustness without sacrificing
efficiency.

In the second step, the monitoring procedure assesses the validity and stabil-
ity of the solutions. Figure 2 reports the results, while the pairs plots for the first
and second optimal solutions, based on a subset of explanatory variables, are
displayed in Figs. 3 and 4, respectively. The first optimal solution remains best
for cx = 10 and for ¢y ranging from 1 to 8, while when ¢y = 10 the second opti-
mal solution appears. On the one hand, the first solution shows a wide stability
varying the values of the constraints; on the other hand, the second solution
offers the highest classification accuracy. Indeed, the latter partition possesses
only 2 misclassified units, maintained even after assigning the three trimmed
units using the MAP rule: the proposed monitoring procedure provides a highly
accurate classification for this dataset. In this regard, the best result present in
the literature has been achieved by means of a competing method, introduced
in Subedi et al. (2015), in which a variant of the CWM was developed con-
sidering a mixture of r-factor analyzers for modeling the marginal distribution
of X and a f-distribution for the regression error. Such a model certainly has
nice features in terms of explainability and parsimony, it nonetheless showcases
4 misclassified units when applied to the US crime dataset. The ¢ distribution
is known to be a very good option in presence of mild outliers, but hard trim-
ming seems to achieve slightly better performance in this context. Note that,
as already reported in Subedi et al. (2015), mixture of regression (DeSarbo and
Cron 1988; De Veaux 1989) and mixtures of regression with concomitants (Day-
ton and Macready 1988) do not show good clustering performance whenever the
distribution of the covariates plays a role on the cluster structure of the data
(see the pairs plot in Figs. 3 and 4): such approaches are, by construction, unable
to capture it.

Lastly, from the right panel in Fig. 3, the silhouette plots tell us that obser-
vations 4 and 29 are bad leverage points, having low values of the discrimi-
nant factors DFy|x and DFx respectively assessing the strength of the assign-
ment /trimming for each unit in relation to the regression lines and the covariates.
Without trimming such observations, inferential results on the regression param-
eters would have been biased. Observation 11 is instead a non-outlying point in
the covariates and with a fitting regression line for one of the G = 2 components,
but with an outlying pattern according to the joint CWM density (revealed by
the high negative value for DF).
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Fig. 2. Crime data. Step 2: monitoring the optimal solutions, indicated by the cells
with ordinal numbers 1, 2, 3 and 4 (@ = 0.064). Each solution is featured by one color,
showing the range of cases in which it is best (darker opacity cells), and stable (lighter
opacity cells), varying cx (horizontal axis) and cy (vertical axis) in &p. G is fixed and
equal to 2
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Fig. 3. Crime data. Pairs plot of the first optimal solution obtained in Step 2, different
colors denote the partition induced by the CWRM, trimmed units are denoted by X
(left panel) and silhouette plots displaying DF(i), DFy|x(i) and DFx (i) for observation
i in the dataset (right panel)
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Fig. 4. Crime data. Pairs plot of the second optimal solution obtained in Step 2,
different colors denote the partition induced by the CWRM. Trimmed units are denoted
by X

3 Conclusions

Robustness is the property of statistical methods to infer the generating process
that originates the main body of the data in presence of contamination. A wide
class of robust procedures for clustering is featured by constrained estimation
and impartial trimming, for which specific hyper-parameters are introduced. In
this paper, we presented an application of a recent contribution to the literature
for the case of cluster-wise regression, where a monitoring approach is proposed.
We have shown how the graphical and computational tools are able to assist the
practitioner in the delicate task of setting hyper-parameters in the estimation of
robust cluster weighted models, to analyze the effect of punishment regimes on
crime rates.

The method relies on the combination of two exploratory steps. Sensible
options for the trimming proportion a are identified in the first monitoring
step. Afterwards, in the second monitoring step, the whole space of solutions
is explored, varying the hyper-parameters governing the heterogeneity in the
covariates and the regression error terms, as well as the number of groups.

In the analysis of the crime dataset, our semiautomatic procedure yields two
final solutions, qualified by the interval of hyper-parameters values in which
their optimality, stability and validity hold true. The first solution shows a wide
stability; on the other hand, the second solution offers the highest classification
accuracy for this dataset. New silhouette plots reveal the nature and the extent
of the outlying observations, distinguishing between outliers with respect to the
clustering of the covariate X, and the local regression lines Y, following the nature
of the Cluster Weighted model.

Further research can be devoted to reducing the computational burden of
the proposed methodology, and extending it to other robust clustering models.
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